Chapter II

LOGIC AND SET

LOGIC AND SET

1. SET THEORY

Set is collection of objects which have same or equal characteristic. The objects in a set are called elements or members of the set

• Symbols in set theory

x ∈ A	x is an element of A; x lies in A, x belongs to A x is in A	
x ∉ A	x is not an element of A, x does not lie in A	
	x does not belong to A, x is not in A	
x, y ∈ A	(both) x and y are elements of A,lie in A	
	belong to A, are inA	
x, y∉ A	(neither) x nor y is an element of A, lies in A, belongs to A is in A	
Ø	the empty set (= set with no elements)	
$\mathbf{A} = \mathbf{\emptyset}$	A is an empty set	
$A \neq \emptyset$	A is non-empty	
A=B	A in equal to B	
$A \subset B$	A is sub set of B, A is contained in B	
$A \subseteq B$	A is subset of or equal to B	
$A \supset B$	A is superset of B, A contains B	
A ∪ B	the union of (the sets) A and B, A union B	
	A cup/joint B	
$A \cap B$	A intersection B, the intersection of (the sets) A and B	
	A cap/meet B	
A\B	The difference between A and B	
$A \times B$	A times B, the cartessian product of (the sets) A and B,	
	A cross B	
$A \cap B = \emptyset$	A is disjoint from B, the intersection of A and B is empty	
$\{x \mid \ldots\}$	The set of all x such that	
С	The set of all complex numbers	

M1 AMN

Q	The set of all rational numbers
R	The set of all real numbers

Practice

Fill the blank with the right words

- 1. is a set which has no member
- 2. The number of distinct objects in a set is called the of the set
- 3. The cardinality of empty set is
- 4. If a set has finite member, we called the set set. Otherwise, we called the set set
- 5. contains those elements that belong to A or to B (or to both)
- 6.contains those elements that belong to both A and B
- 7.contains the ordered pairs (a, b), where a (resp., b) belongs to A (resp., to B)
- 8.contains all ordered n-tuples of elements of A

2. LOGIC

• Symbols in logic theory

S v T	S or T, the disjunction of S and T
$S \wedge T$	S and T, the conjunction S and T
$S \Rightarrow T$	S implies T ; if S then T
$S \Leftrightarrow T$	S is equivalent to T; S if and only if (iff) T
$\neg S$	not S
$\forall x \in A \dots$	for each [= for every=for all] x in A
$\exists x \in A \dots$	there exists [= there is=for some] an x in A (such that)
$\exists ! x \in A \dots$	there exists [= there is] a unique x in A (such that)
∄x ∈ A	there is no x in A (such that)

Examples

$x > 0 \land y > 0 \Rightarrow x + y > 0$	if both x and y are positive, so is $x + y$
$\nexists x \in Q \ x^2 = 2$	no rational number has a square equal to two
$\forall x \in R \exists y \in Q x - y < 2/3$	for every real number x there exists a rational number y such that the absolute value of x minus y is smaller than two thirds

Practice

Fill the blank with the right words from the list given below.

negation, true, consequent, disjunction statement, biconditional, statement, implication, disjunction statement.

- 1. is a sentence that is either..... or false.
- 2. If a statement is true, then its is false.
- 3. A compound statement that use the word —or is called

- 4. A compound statement that is true only when statements that make it are true is called
- 5. If the antecedent is true, and the is false, then an is false.
- 6. A compound statement which is true if the two statements that combined have the same truth value is called.....

Exercise 1

- 1. Let $A = \{a,b,c\}$. What can you tell about :
- a and c
- f
- {b,c}
- { }
- 8
- 2. How do we say these mathematical terms?
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$
- $A \subseteq (B \setminus C) \cap E$
- $A = A \setminus (A \setminus B)$
- $A = (A \setminus B) \cup (A \cap B)$
- 5. $(D \setminus E) \cap (D \cap E) = \emptyset$

Exercise 2

Read out the following sentences:

- 1. $S \Rightarrow (H \land U)$
- 2. $(S \Rightarrow H) \land U$
- 3. $((N \lor G) \land (\neg N) \Rightarrow (G \Rightarrow N)$
- 4. $(P \Rightarrow Q) \land (Q \Rightarrow R) \Leftrightarrow (P \Rightarrow R)$
- 5. $\forall x, Ax \Rightarrow Mx$

 $\exists x, \neg Cx \lor Dx$