Chapter II

 LOGIC AND SET
LOGIC AND SET

1. SET THEORY

Set is collection of objects which have same or equal characteristic. The objects in a set are called elements or members of the set

- Symbols in set theory

$x \in A$	x is an element of A ; x lies in A, x belongs to $\mathrm{A} x$ is in A
$\mathrm{x} \notin \mathrm{A}$	x is not an element of A, x does not lie in A x does not belong to A, x is not in A
$x, y \in A$	(both) x and y are elements of A, \ldots lie in A \ldots belong to A, \ldots are inA
$\mathrm{x}, \mathrm{y} \notin \mathrm{A}$	(neither) x nor y is an element of A, \ldots lies in A , ... belongs to A, \ldots is in A
\emptyset	the empty set (= set with no elements)
A $=\emptyset$	A is an empty set
$A \neq \varnothing$	A is non-empty
$\mathrm{A}=\mathrm{B}$	A in equal to B
$\mathrm{A} \subset \mathrm{B}$	A is sub set of B, A is contained in B
$\mathrm{A} \subseteq \mathrm{B}$	A is subset of or equal to B
$\mathrm{A} \supset \mathrm{B}$	A is superset of B, A contains B
$A \cup B$	the union of (the sets) A and B, A union B A cup/joint B
$A \cap B$	A intersection B, the intersection of (the sets) A and B A cap/meet B
$\mathrm{A} \backslash \mathrm{B}$	The difference between A and B
$A \times B$	A times B, the cartessian product of (the sets) A and B, A cross B
$A \cap B=\varnothing$	A is disjoint from B, the intersection of A and B is empty
\{x\|...\}	The set of all x such that
C	The set of all complex numbers

\mathbf{Q}	The set of all rational numbers
\mathbf{R}	The set of all real numbers

Practice

Fill the blank with the right words

1. \qquad is a set which has no member
2. The number of distinct objects in a set is called the \qquad of the set
3. The cardinality of empty set is \qquad
4. If a set has finite member, we called the set \qquad set. Otherwise, we called the set
\qquad set
5. \qquad contains those elements that belong to A or to B (or to both)
6. \qquad ..contains those elements that belong to both A and B
7.

 (resp., to B)
8. \qquad contains all ordered n-tuples of elements of A
2. LOGIC

- Symbols in logic theory

S V T	S or T, the disjunction of S and T
$\mathrm{S} \wedge \mathrm{T}$	S and T , the conjunction S and T
$\mathrm{S} \Rightarrow \mathrm{T}$	S implies T ; if S then T
$\mathrm{S} \Leftrightarrow \mathrm{T}$	S is equivalent to T ; S if and only if (iff) T
\neg S	not S
$\forall x \in A .$.	for each [= for every=for all] x in A . . .
$\exists \mathrm{x} \in \mathrm{A}$.	there exists [$=$ there is $=$ for some] an x in A (such that) . . .
$\exists!\mathrm{x} \in \mathrm{A} \ldots$	there exists [= there is] a unique x in A (such that) . . .
$\nexists \mathrm{x} \in \mathrm{A} .$.	there is no x in A (such that). . .

Examples

$\mathrm{x}>0 \wedge \mathrm{y}>0 \Rightarrow \mathrm{x}+\mathrm{y}>0$	if both x and y are positive, so is $\mathrm{x}+\mathrm{y}$
$\nexists \mathrm{x} \in \mathrm{Q} \mathrm{x}^{2}=2$	no rational number has a square equal to two
$\forall \mathrm{x} \in \mathrm{R} \exists \mathrm{y} \in \mathrm{Q}\|\mathrm{x}-\mathrm{y}\|<2 / 3$	for every real number x there exists a rational number y such that the absolute value of x minus y is smaller than two thirds

Practice

Fill the blank with the right words from the list given below.
negation, true, consequent, disjunction statement, biconditional, statement, implication, disjunction statement.

1. is a sentence that is either \qquad or false.
2. If a statement is true, then its is false.
3. A compound statement that use the word -or is called
4. A compound statement that is true only when statements that make it are true is called
5. If the antecedent is true, and the \qquad is false, then an \qquad is false.
6. A compound statement which is true if the two statements that combined have the same truth value is called. \qquad

Exercise 1

1. Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. What can you tell about :

- a and c
- f
- $\{\mathrm{b}, \mathrm{c}\}$
- \{ \}
- 8

2. How do we say these mathematical terms?

- $\mathrm{A} \backslash(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \backslash \mathrm{B}) \cup(\mathrm{A} \backslash \mathrm{C})$
- $A \subseteq(B \backslash C) \cap E$
- $A=A \backslash(A \backslash B)$
- $A=(A \backslash B) \cup(A \cap B)$
- 5. $(\mathrm{D} \backslash \mathrm{E}) \cap(\mathrm{D} \cap \mathrm{E})=\varnothing$

Exercise 2

Read out the following sentences:

1. $\mathrm{S} \Rightarrow(\mathrm{H} \wedge \mathrm{U})$
2. $(S \Rightarrow H) \wedge U$
3. $((\mathrm{N} \vee \mathrm{G}) \wedge(\neg \mathrm{N}) \Rightarrow(\mathrm{G} \Rightarrow \mathrm{N})$
4. $(P \Rightarrow Q) \wedge(Q \Rightarrow R) \Leftrightarrow(P \Rightarrow R)$
5. $\forall \mathrm{x}, \mathrm{Ax} \Rightarrow \mathrm{Mx}$
$\exists \mathrm{x}, \neg \mathrm{Cx} \vee \mathrm{Dx}$
