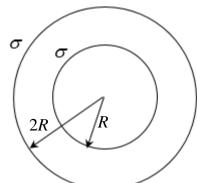
Université Mohamed Boudiaf –M'sila Faculté des Sciences, Socle commun *SM*, **2022/2023**

Module: Physique 2, sans documents, Durée: 01 H 30

22 mai 2023

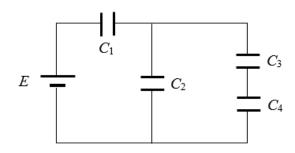

Vous êtes prié:

- d'éteindre votre téléphone portable,
- d'indiquer votre nom et prénom, votre groupe et le nombre de feuilles intercalaires soigneusement numérotées, de bien mettre en évidence les résultats littéraux (les principaux résultats étant encadrés),
- La calculatrice n'est pas nécessaire.

Exercice 1 (7 points)

On considère une sphère de rayon R, de centre O, contenant une distribution surfacique de charges dont la densité σ est constante. Cette sphère est entourée d'une autre sphère de rayon 2R, de même centre que la première et portant également la même distribution (σ) que la première. On repère la position d'un point M de l'espace par sa distance r

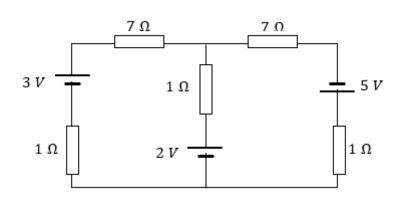
- 1. Calculer la charge portée par chacune des deux sphères.
- 2. En utilisant le théorème de Gauss, déterminer le champ électrique en tout point *M* de l'espace.



Exercice 2 (6 points)

au centre O de la sphère.

Soient quatre condensateurs $C_1 = 1\mu F$, $C_2 = 2\mu F$, $C_3 = 1\mu F$ et $C_4 = 2\mu F$, non chargés, et reliés comme indiqué sur la figure ci-dessous :


- 1. Calculer la capacité équivalente entre les bornes du générateur.
- 2. On donne E = 11V, trouver la charge et la tension (DDP) aux bornes de chaque condensateur.

Exercice 3 (7 points)

Soit le réseau de la figure ci-dessous.

- 1. Combien y a-t-il de nœuds?
- 2. Combien y a-t-il de branches ? En déduire le nombre d'intensités de courant à calculer.
- 3. En utilisant les lois de Kirchhoff, calculer l'intensité du courant circulant dans les différentes branches du réseau.

Le responsable du module : H. Latelli