ELECTRICITY AND MAGNETISM

Mathematical Preliminary

1- Coordinate systems
1-1 Cartesian system (Rectangular system)
One can locate the point M, in space, in the cartesian system by some

number said the coordinates (x,y.z), each expresses how far is the point

from the origin of the cartesian basis (i,], k), which can be orthonormal.

R M
- One dimension: OM = xI S Ly o >
X
o < x < oo: is the abcissa Fig.1-a

- Two dimensions: OM = x1 + yj
o < x < oo: is the abcissa

o < y < oo: is the ordinate

- Three dimensions: OM = xi + yj + zk
o < x < oo: is the abcissa
o < y < oo: is the ordinate

oo < z < oo: is the hight

1-2  Polar system
The point is located in plane with the coordinates

are the distance from the origin and the angle

»

Polar Axis (Datum)'
direction OM joining the pole O and the point M. Fig.2

made between the datum (polar axis) and the 0

The basis is (U, ).
So, OM = pu,

0 < p< oo
0<0<2m



1-3 Cylindrical system A

The location of point is on the imaginary surface of a cylinder with =

axis 0Z, and radius p. The projection of the point on the base is

defined by the radius and the angle 8 with respect to the datum,

like the polar coordinates. The Hight of the point from the base of

cylinder is the cote Z

The position of point M is given by

OM = pii, + zk

1-4  Spherical system

Polar axis

The location of point is on the imaginary surface of

a sphere of radius r, longitude ¢ and colatitude 0

- Theradius0<r< o
- The colatitude 0 <0<

- The longitude 0 < @ < 2m

The position of point M is given by:

. ?ﬂ;\“\ Fig4
OM = ru,
Vector Analysis
2- Vector Algebra
2-1-1 SCALAR PRODUCT
B
The scalar product between two vectors is given by
D
AoB = |A||B|cos(A,B) = A.B.cos0 . >
Fig.5

We use this definition which is equivalent to the sum of the product of the

components of the vectors 4 and B taken two by two respectively
A°-B=A,B,+A,B,+4,B,
Remark:

To calculate (compute) the magnitude of any vector, we take only the square

root of the scalar product of the with itself (whatever is the coordinate system)

Al =VA-A=A
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2-1-2 VECTORIAL PRODUCT

The scalar product between two vectors is given by

ANB = |A||B|sin(4,B) i = A.B.sinf u

sl

=)

With U always orthogonal to the vector operands Aand B L Al ﬁ)

|

2-1-3 SCALAR AND VECTORIAL TRIPLE PRODUCT Fig6
- The scalar triple product between two vectors is given by
Ao (ANB)
- The vectorial triple product between two vectors is given by
AN(ANB)
3- Differential Calculus
3-1-1 DERIVATIVE AND DIFFERENTIAL
Differential and derivative are two fundamental concepts in calculus that are
often used interchangeably. While they are related, they are not the same thing.
Understanding the difference between differential and derivative is important in
mastering calculus and its applications. Differential deals with infinitesimal
change in some varying quantity. The derivative of a function represents an
instantaneous rate of change in the value of a dependent variable with respect to
the change in value of a dependent variable
Let the two variables x,y, the infinitesimal change in these variables is dx and
dy. But if the x variable is independent and y is a variable that depend on the
variable. The rate of change of y with respect to the variable x is said the
derivative of the function y(x).
3-1-2 DERIVATIVE AND DIFFERENTIAL
3-1-2-1 Function of one variable
Let x be an independent variable, and y Ay
is the dependent variable, so each * / “
variation of the independent variable Ax /

produce the change Ay. So, Ax and Ay are A;‘I ______ o7
the variations. 4 y

If each wvariation is very small or

»
»

infinitesimal these variations tends to the A



elementary variation dx and dy, which we call differentials of x and y
Ax — dx

Ay — dy

The quotient between the two variations Ay and Ax is the slope of the tangent of

the line joining the points A and B in the figure (Line A;).

If we take the point A such that its coordinates are xo and Yo, then after variations
we get the point B with the coordinates xo+ Ax and y, + Ay. If these variations
are infinitesimal (Ax — 0;Ay — 0), so, the point A tends to the point B. The line
A1 become the tangent of the curve at point A (xo; Yo) which is the line A;. This line

represents the derivative of y with respect to x

lim =y (x0)

Ax—0

y(xo + Ax) —y(x9)\ dy
Ax dxly,

Differential equations are equations that contain unknown functions and some of their
derivatives.

What are Derivatives?

The concept of derivative of a function is one of the most powerful concepts in
mathematics. The derivative of a function is usually a new function which is called as

the derivative function or the rate function.

The derivative of a function represents an instantaneous rate of change in the value of a
dependent variable with respect to the change in value of the independent variable. It’s
a fundamental tool of calculus which can also be interpreted as the slope of the tangent
line. It measures how steep the graph of a function is at some given point on the graph.
In simple terms, a derivative is the rate at which function changes at some particular
point.

Differences: Differential and Derivative

While differential and derivative are related, they are not the same thing. The main
difference between differential and derivative is that a differential is an infinitesimal
change in a variable, while a derivative is a measure of how much the function changes
with respect to its input.

Another difference is that the differential is a function of two variables, while the

derivative is a function of one variable. The differential of a function is given by



dfi(x) = f (x) dx, which is a function of both x and dx. The derivative, on the other hand,
is given by f(x) or dy/dx, which is a function of only x.

The differential is often used in applications of calculus to approximate changes in a
function, while the derivative is used to find the rate of change of a function at a given
point. The differential is also used in optimization problems to find the maximum or
minimum value of a function, while the derivative is used in a variety of applications,
including physics, economics, and engineering.

The following table highlights the major differences between Differentials and
Derivatives:

3-1-1 DIFFERENTIAL OPERATOR "V " (OPERATOR NABLA OR DEL)
The rule that assigns for each point of coordinates x, y and z a scalar is said to a
scalar function (temperature, charge, masse, ...)

The rule that assigns for each point of coordinates x, y and z a vector is said to a

vector function (velocity, force, ...)

The DEL operator is an operator that acts on a scalar or vectorial function to give
its differential

As mentioned above, the derivative of a function of one variable f(x), is given,

geometrically, by the slope of the tangent of the curve representing this function.
T2=f'

Let now the function depends on several variables. Let take two independent

variables x and y, then the differential or the infinitesimal variation of that

function is given by

af (x, of (x,
df (x,y) = ff;;y)dx+ fg;y)

f (x.y) and of (xy)
dx ady

d d
dy = (g dx+5-dy) Fx.y)
are the partial derivative

f(xy)
ax

is the partial derivative of the function f(x,y) with respect to the

variablex i.e. the derivative when varying x and y taken fixed (constant).

f(xy)
ax

is the partial derivative of the function f(x,y) with respect to the

variabley i.e. the derivative when varying y and x taken fixed (constant).



In the case of real space, the variables are x,y and z. The differential of the scalar

function f(x,y,2) is given as

d Y 4 94, 9y —(ad L9 +ad)
f(x,y,z)—axx ayy 9z %%~ (g™ ayy asz(x,y,z)

Remarque:

If we have only one of these variables x,y and z which varies the other are

constant, then the differential of the function is:

_of af _ of
df_axdx = dx  ox

3-1-2 GRADIENT AND DIRECTIONAL DERIVATIVE
A- GRADIENT

As set above the differential of the function z 7(x, y)
A
f(x,y,2) is given by
_of  of  of =
df(x,y,z) —adx+a—ydy+£dz Y
Which we can write in the form &
of . of ., of - . , -
df(x,y,z)—(al+£ +£k)°(dxl+dy]+dzk) Y
Fig.8

= df(x,y,z) =Vfodr
x
This is the general form of the differential of the function f (x, y, 2z) whatever is the
coordinate system.
V)f : is said the gradient of the function “ f”

dr : is the infinitesimal displacement

B- A DIRECTIONNAL DERIVATIVE
For the function of one variable de direction of the variation is

well defined, but when we deal with the variation of the function /

of several variables, the question is, in what direction? So, we i /,"l//?lj
speak about a directional derivative. : w ’
In the figure on side, the derivative of the function can be in any
direction, but if we want to see at what rate the change is done 7
in the U direction for example,

- X Fig.9

fu,:Vfc’ﬁ



Finally, if we take the derivative in a certain direction such that the differential
be maximized, so
fa' = Vf o1 = |Vf| [7i] cos(Vf; 1)
The scalar product is a maximum, if the angle between the vectors is “n/2 7
|Vf| = df
The differential is null when df(x,y,z) =0
So,Vfodi=0 = VfLldF
The gradient is equal to the maximum rate of change in the normal direction of

the surface f{(x ,y)

When the operator DEL multiplied directly with a scalar function, it produces its

gradient which is a vectorial quantity

Example

What is the directional derivative of the function... in the direction u?

3-1-3 DIVERGENCE
1

N
20\

\ﬁp/
/4;\ A v A A ﬂ

a) (b) (c)

Fig.10

The divergence expresses how much the vector function 6(x, y,Z) is spread from

the point in question

Let a vector function a(x, Y,2) =G, 1+ 6G,j+G, k. The divergence of this function is

found by applying the DEL operator scalarly upon it

i@ _v.@ _36, 3G, a6,
lv( (x,y,Z)— (x,y,Z)— ax ay az

When the operator DEL act, scalarly, upon a vector, it produces the divergence,

which is a scalar quantity



Curl(G) = VAG(x,y,2) =

- The divergence can be positive. So, we have a source (fig. 10-a)
- The divergence can be negative. So, we have a sink (fig. 10-b)

- The divergence can be null. So, the vector is solenoidal (fig. 10-c)

3-1-4 CURL
ZA
ZA /
~ / <t
-
- \ — -— e o«
4/‘/ =~ .
///4/"_‘;\///= -~ - ) - - -— -— - - .
- 'J/ Yy = - = - - = Yy
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X / -
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Fig.11

The curl expresses how much the vector function (_?:(x, y,2) swirls around the point

in consideration

Let a vector function (_f(x, ,2) =G, 1+6G,j+G, k. The curl of this function is found

by applying the DEL operator vectorially upon it

Kk

d G, 0G,\, (090G, 0\, 9 0)\-
az| (ay _E>‘ o o)+ (5 a2)®
G,

When the operator DEL act, vectorially, upon a vector, it produces the curl, which

i
a 0
dx OJdy
G, G,
is a vectorial quantity.

3-1-5 THE SECOND DERIVATIVE

The gradient, the divergence and the curl are the first derivative only. When we
apply the DEL operator twice, we obtain the second derivative, but tacking care
when applying the second time. Because the gradient is obtained when we apply
the DEL operator upon the scalar function, while the divergence and the curl are
contained when applying the DEL operator upon the vector function. So, it is

possible that certain actions are not permissible.



V(VoG(x,y,2)) Gradient of the divergence
Vo (V/\E(x, y,z)) Divergence of the curl

Vo (Vf(x,y,2)) Divergence of the gradient
VA(VAG(x,y,2)) Curl of the curl

V’/\(Vf (x,¥,2)) Curl of the gradient

From this combination we found an important object that produced when applying

the divergence of the gradient
d 9 - ad af -\ 0*f 9*f o*
/ a—")°(f*+—f*+a—f">‘ et

Ve (Vf(xy.2) = (_H@’ ax ' T oy’ T 9xz " ay? " 922
0% O O _ .,
dxz  dy? az2 =Vir=4

V2 = A This operator is called THE LAPLACIAN

4- INTEGRAL CALCULUS
4-1 ELEMENTARY DISPLACEMENT- DIFFERENTIAL DISPLACEMENT
We determine the displacement in certain direction for infinitesimal change or
differential increment of the position
4-1-1 CARTESIAN COORDINATES
We have three directions in all space i, j and k
e 0x direction
The direction of the displacement is in the T direction so the change from x; to
X, is given by Ax, for infinitesimal displacement we have so dx
e 0y direction
The direction of the displacement is in the j direction, so the change from y; to

¥y, is given by Ay, for infinitesimal displacement we have so dy

e 07 direction

The direction of the displacement is in the k direction so the change from z, to

z, is given by Az, for infinitesimal displacement we have so dz

4-1-2 POLAR COORDINATES

We have two directions in plane i, and iy

e In the radial direction



The direction of the displacement is in the radiale direction so the change from
p1 to p, is given by Ap, for infinitesimal displacement we have so dp

e In transversal direction
The direction of the displacement is in the transversal direction, so the change

from 6, to 6,is given by pA@, for infinitesimal displacement we have so pd@

4-1-3 CYLINDRICAL COORDINATES
We have in all space the z coordinate with those of polar coordinates (p, 0, z),
three directions are U,, Uy and k
e In the radial direction

The direction of the displacement is in the radiale direction so the change from
p1 to p, is given by Ap, for infinitesimal displacement we have so dp

e In transversal direction
The direction of the displacement is in the transversal direction, so the change

from 6, to 6,is given by pAB8, for infinitesimal displacement we have so pd@

e In the axial direction

The direction of the displacement is in the axial direction, so the change from z,

to z,is given by Az, for infinitesimal displacement we have so dz

4-1-4 SPHERICAL COORDINATES
We have in all space the radial coordinate r, the longitude and the colatitude
e In the radial direction
The direction of the displacement is in the radiale direction so the change from
4 to 13 is given by Ar, for infinitesimal displacement we have so dr
e In the longitude direction
The direction of the displacement is in the longitude direction, so the change

from @, to ¢, is given by r sinB A@, for infinitesimal displacement we have so
sinfdg

e In the latitude direction

The direction of the displacement is in the latitude direction, so the change from

8, to 8,is given by Az, for infinitesimal displacement we have so dz



4-2 ELEMENTARY SURFACE- DIFFERENTIAL SURFACE

The element of surface is a result of product of two

variations, like a small square, in different direction. ‘ ?AS"
R Az |
As, y
4-2-1 CARTESIAN COORDINATES Ay >
Ax !
The infinitesimal displacements are in three directions dx, dy !
and dz AS,
X
Fig.12

The surface is a vector whose magnitude is the area of that

surface and the direction is orthogonal to it.

AS, = Ay.AzT = The infinitesimal surface is: dS, = dy.dz i /
This surface is obtained by fixing the ' x' coordinate A
Afy = Ax.Az] = The infinitesimal surface is: dfy =dx.dzj
This surface is obtained by fixing the 'y ' coordinate

A§Z = Ax. Ayﬁ> = The infinitesimal surface is: d§z =dx.dyt

This surface is obtained by fixing the'z' coordinate

4-2-2 POLAR COORDINATES
The area is spanned by the variation in the in the radiale
direction with amount Ap,and the amount pAB# in
transversal direction. We have used the ' pAB 'in the later
variation such that the two displacements will be
homogenous.
Let fixe the angle 8 and varying the coordinate p, we obtain the displacement Ap.
Now, let fix the distance p and varying the coordinate 0, we obtain the
displacement pA@. So, the area spanned for a small displacement is given by.

AS = pAp AOU with U =1, ANy
In the limit case when we have an infinitesimal displacement, the area is given

by the yellow patch in the figure and is: dS = p dp d@ u




4-2-3 CYLINDRICAL COORDINATES
The variation that produces the elements of surface are: pAf, Ap and Az

-  When we fix the radial component (radial direction), the

other components that span the area are ' pA@'and 'Az’. &
So, the element of surface is: ) pdg
M o
AS, = pABAzU, = The infinitesimal surface is: dS, = p d6 dz, ’) 8 -Qgr-‘i’e\‘
- When we fix the transversal component, the other l Fig.14

components that span the area are 'dp’' 'and 'Az’' . So, the element of

surface is:
ASy = Ap Az 1y = The infinitesimal surface is: dSgy = dp dz

- When we fix the axial component (axial direction), the other components

that span the area are ' pA@ 'and 'Ap’. So, the element of surface is:
A§Z = plA@dp k = The infinitesimal surface is: d§p =pdOdp k

4-2-4 SPHERICAL COORDINATES
The variation that produces the elements of surface are: rA0, Ar and r sin@A¢@
- When we fix the radial component (radial
direction), the other components that span the

area are 'rAB 'and'r sinfA¢@ '. So, the element of

surface is:

Afr = rsinfA@ rAB U, = The infinitesimal surface is:

ds, = r’*sin0 do do i,

- When we fix the colatitude component, the other

Fig.15

components that span the area are 'Ar’ 'and

'r sinfA@ ' . So, the element of surface is:
A§9 =rsinf A@ Ar Uy = The infinitesimal surface is: dfe = rsin@dr de U,

- When we fix the longitude component, the other components that span

the area are ' Ar'and 'r A@'. So, the element of surface is:

AS, = rAOAr U

0 = The infinitesimal surface is: df,p =rdrdfu,

(7]



4-3 ELEMENTARY VOLUME- DIFFERENTIAL VOLUME
The element of volume is a result of product of three variations, like a small cube,
in different direction

4-3-1 CARTESIAN COORDINATES

The three displacement that we have seen above for each direction -
are Ax, Ay and Az.So, the element of volume is given by:
A
AV = Ax.Ay.Az AxLZ
= The infinitesimal volume is: dV = dx.dy.dz ; Ty
Fig 16

4-3-2 CYLINDRICAL COORDINATES
The three displacement that we have seen above for each direction are Ar, r A8
and Az.So, the element of volume is given by
AV = r Ar AB Az
= The infinitesimal volume is: dV = r dr d0 dz
Fig.10
4-3-4 SPHERICAL COORDINATES
The three displacement that we have seen above for each direction are Ar, r A@ and
Az.So, the element of volume is given by
AV = r sinf Ar AG A

= The infinitesimal volume is: dV = r sin0 dr d@ A@

4-4 INTEGRALS

4-4-1 SIMPLE INTEGRAL

If we deal with a function of single variable, the integral of that function or the

primitive is given by: Ay y=fx
ff(x) dx=F(x) + C /(&)
f(a)
With C is a constant
dF(x) _
and e f(x) A
Because the functions F(x) and F(x) + C are the e Fig.17 x=b

integrals for the same function (integrand) f(x). Thus, for
different value of C, we obtain different integral of f(x). This implies that this
integral is indefinite

If the boundary is defined, we have the definite integral



b
f f(x) dx = F(b) — F(a)

The geometrical interpretation of this definite integral, it gives the area delimited

by the curve and limit of integration. Lower limit x = a and upper limitx = b

4-4-2 DOUBLE INTEGRAL
If we deal with a function of two variables, we can use the integral for both

differential variables dx and dy

| rexy) axay

f(x,y) =@

Two cases to report:

__;;____
~
R
<
—~

When the two variables x and y are not . S,
dependent on each other, the double integral can / rig.18

be reduced like to a product of two simple

integrals each concern the corresponding variable.

1= ay [ £y ax

When the two variables x and y are dependent on each other, the double

integral can be done for one variable first y(x) and then for the second variable.

Ifp, <y<¢@,; x1<x<x,and then

x2 P2(x)
I= f ( j fx, y)dy) dx
X1 P1(x)

In certain case it is convenient to reverse the order of integration P, < x <P,

Y2 Y2(¥)
I = f (f f(x,y)dx) dy
¥1 Y1)

andy; <y <y,

Example
Let the function f(x,y) = ye™ where 1<x<2and0<y <2
1st case:

2 2 2 e*y
14 =f <f yexydx>dy=j y—
0 \J1 o ¥

1+ e* — 2¢2
2

2 2
= J. (ezy — ey) dy =
1 0



; _fz j-z g gy — 2 e*y Zexyd 4 _J-Z er er 1 i
2= | \J yerdy)dx= | \yo-— | Ay )dx= | |5 - 1Gr | ) 9
1

282x er 1
I, = — -t |dx
=) (F-55)

Notice that we can calculate the area of a surface using the double integral, also
the volume.

4-4-3 TRIPLE INTEGRAL

If we deal with a function of three variables, we can use the integral for both

differential variables dx,dy and dz

i s ([

Two cases to report:

1!’2 (x'y)
f f(x,y,2) dz) dy) dx
1pl (x!y)

When the two variables x, y and z are not dependent on each other, the triple
integral can be reduced like to a product of three simple integrals each concern

the corresponding variable without regarding which is first.

szdx.fdy.ff(x,y,z) dz

When the three variables x, y and z are dependent on each other, the triple
integral can be done for one variable first z(x,y), then for the second y(x)
variable and then the third x.

Notice: we can compute the volume by using triple integral

4-4-4 PATH INTEGRAL OR LINE INTEGRAL: GRADIENT THEOREM
Line integral, which mean an integral along a curve in space, it deals with a

vectorial quantity, and the expression given as follows:

B—> -
Vodl
| ‘

With V(x, y,Z) is a function vector and di an
A Fig.19

<!

infinitesimal displacement
The transport of a vector Valong the path AB is given by the line integral.

The vector Vhas the components, in cartesian system, V,(x,y,2),V,(x,y,z) and

V,(x,y,2).So, V(x,y,2) =V, + Vyj+ V,k and dl = dxi + dyj + dzk

B B
j Vodizf (Vydx +V,dy+V,dz)
A A



When the trip is a closed loop the two ends A and B coincide and the integral

is to be carried a long that path is said the circulation of the

. v’ ¢ B
vectorV.
A Fig.20

Circulation(V) = % Vodl

The line integral, in general, it depends on the path taken from A to B. But there
is a special case of vector function for which the integral is independent of the
path and is determined only by the end points.

The vector function that has this property is said to be conservative.

If we take a scalar function W(x,y,z) its variation or differential is given by:

dW—awd +awd +awd = VW odi
“ax dy YTz %%~

So

B B .
de=W(B)—W(A)=f VW o dli
A A

Which is the fundamental theorem of gradient

Example

Calculate the line integral of the function G (x,y) = y*T+ 2x(y + 1)J, from point
A(1,1,0) to point B(2,2,0) along path (1) and path (2).

What is the line integral of G (x,y) for a loop that goes from A to B along path (1)
and return to A along path (2)?

y
Solution Q@O’\ P
R . AR
_ - g // 1
dl=dxt + dyj +dzk 10 e ?3
PATH (1 X

Path (1) consist of 2 pieces AC and CB

- - c
[ ged=|
Path (1) A

()

o

QU

~y

+
S
e o

(Y

[

QU

~y

Along AC:

dy=dz=0and y=1 soGodl =G.dx =y?dx = dx

= f:éodf=f12dx= 1

Along CB:

dx=dz=0and x=2 soéodT=Gxdx =2x(y+1dy =4y + 1dy
= [PGodl=['4(y+1)dy =10

-

So, along the path (1), line integral ofé(x, y) is: fPath ® Godl =1+ 10 =11



PATH (2
The line joining A to B is given by the equationy = x = dy =dx , dz=0

2
f Godl = f Y27+ 2x(y + 1)f o (dxi + dyj) = f (3x% + 2x)dy = 10
Path (2) Path (2) 1

Along path (1) the line integral is “11” and along the path (2) is “ 10 ”. So,

f Godl # f Godl
Path (2) Path (1)

This allows us to conclude that the vector function G (x,y) is not conservative.

Line integral of G (x,y) for a loop ABCA

fc*odizf Eodi—f Godl=11-10=1%0
Path (1) Path (2)

The sign “— ”in the second term of righthand side, is due to parkouring the path
in the reverse way.

We conclude that; for a conservative vector function the line integral along a path
which form a loop is null. Or the line integral is independent of the path between

two points A and B

.rféodfzo PN f éodfzf Godl
Path (1) Path (2)

4-4-5 SURFACE INTEGRAL: DIVERGENCE THEOREM
GAUSS THEOREM (GREEN THEOREM)
Let a path (L) which is a loop that delimit the surface

“S ” and let the vector function A = A7+ AyJ+ Ak.

The surface integral of the function A (x,y,z) over the

surface S delimited by the contour "C" is defined as

f f Aods % -
$ A

S
When then the surface is closed the integral is written as: >

# Aods
Fig.21-b

1. is the normal to the closed surface, which is always outward, but for the open

follows:

surface, the direction is defined by right-hand rule when we follow the contour

of that surface.



The opened surface is bounded by the closed path (loop), whereas the closed

surface defines a volume.

The flow of a field A through the surface 'S"' is called flux. The divergence
theorem (Green’s theorem or Gauss’s Theorem) says that the flux of a vector

field through a closed surface is equal to the volume integral of the divergence
of that field.
fpaoas=[|[Vod av

Check the divergence theorem using the function 4 = y2 i + (2xy + z%) j + 2yz k

Example

and a unit cube at the origin.

V
Solution 4 T /(U
l

The six face that make a closed surface are:

Faces I, II, III, IV, V, VI .
Py Py 3 4——,[ P ——]]]
_)o_)z {4 — T+ —FK ) 27 2y 7 %
VoA <axl+ax]+6xk> (Y2 T+ (2xy +22)j + 2yz k) /0 -
VonZ(x+y) '
. 1,1 01 * l
= fffVoA dvz.f f fZ(x+y)dxdydz VI
0o Jo Jo

dv=dxdydz 0<x<1 0<y<1 0<z<1

MVJd”:[(Ll(f()lz(ﬂy)dx)dy)dz:z

The right-hand side of the theorem
. 1 1_) 1 1_) 1 1_) 1 1_) 1 1_) 1 1_)
fpacas= | [deds+ | [Feds+ | [Feds+| [Geds+| [Goas+| [doas
0 Jo0 0 Jo 0 Yo 0 Yo 0 Y0 0 Y0

U Y

Surface I Surface IT Surface IIT Surface IV Surface Surface VI

ds, =dydzi,ds,; =—-dydz7;
d§111 == dx dZ]_); d§IV == _dx dZ]_);
dsy = dx dyk ; dsy; = —dx dy k

- 1 r1 1 1 1 r1 1 ,1 1 ,1 1 ,1
# Aods = J. f y?dydz — f f y2dydz + f .f (2x + z?%) dxdz — f j z2dxdz + f f 2y dxdy + f f 0dxdy
0o Jo 0o Jo 0 Jo o Jo o Jo o Jo

Finally, the total flux is



Fig. 10
4-4-6 CURL THEOREM: STOKES THEOREM

This theorem states that the integral of a curl of a vector function 4 equals the
integral of that function over the boundary of that surface, i.e., the line integral

a long the closed path that delimits the surface

}ﬁzoduﬂmmod;





