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CHAPTER 01: ELECTROSTATICS
I-1 INTRDUCTION

Electrostatics is a branch of physics that deals with the study of stationary electric

charges and the behavior of objects that are electrically charged but are not in motion. It

primarily focuses on understanding the forces and effects produced by electric charges

at rest.

The foundation of electrostatics lies in the concept of electric charge, which is a

fundamental property of matter. There are two kinds of electric charges – positive and

negative. Like charges repel each other, while opposite charges attract each other

according to Coulomb's law. This law states that the force between two charged objects

is directly proportional to the product of their charges and inversely proportional to the

square of the distance between them.

One important phenomenon in electrostatics is the concept of electric fields. An electric

field is the region around a charged object where its influence can be felt. Electric fields

are produced by electric charges and exert forces on other charged objects placed within

the field. The strength and direction of an electric field at any point depend on the

magnitude and sign of the charges present.

Electrostatics also includes the study of electric potential and potential difference.

Electric potential is the amount of work done in bringing a unit positive charge from

infinity to a point in an electric field. Potential difference, on the other hand, is the

difference in electric potential between two points in an electric field, often measured in

volts. These concepts are crucial in understanding the behavior of charged particles and

electric circuits.

The practical applications of electrostatics are widespread. They range from everyday

phenomena, such as the attraction or repulsion of objects after rubbing them together, to

more complex applications like the operation of electrostatic precipitators used in air

pollution control, inkjet printers, and the technology behind Van de Graaff generators.

In summary, electrostatics is a branch of physics that studies the behavior of electric

charges at rest, exploring the forces and effects they produce. Understanding this field

is vital for various practical applications and provides the foundation for further

exploration of electromagnetism.

I-2 CONCEPT OF CHARGE

All matter is made of certain elementary particles, the three most common are electrons,

protons and neutrons. While the proton and neutrons are tightly confined within the

nucleus only, the electrons are loosely bound in atom and are in a cloud around a
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nucleus. The protons have a positive charge, the electrons have a negative charge

whereas the neutrons are neutral.

The charge is an intrinsic property that allowed the body to attract a smalls piece like a

paper, by certain force called electric force. Like gravitational force where two masses

are attracted each other. The charge is an ‘electric mass’. There are two types of charge,

negative and positive

If we a rod of glass is rubbed on a silk cloth, it acquires charge and attract a fragment of

paper, this attraction is due to this acquired charge.

I-3 EXPERIENCES

A- Experience 01

When the rod of glass is rubbed to a silk cloth, it acquires a charge. Taking another rod

of glass and rubbing it in the same manner. When we bring them to vicinity of each other,

they will repel

The glass rods have the same type of charge, it repels each other

B- Experience 02

When the rod of plastic is rubbed to a fur, it acquires a charge. Taking another rod of

plastic and rubbing it in the same manner. When we bring them to vicinity of each other,

they will repel

Silk Cloth

A rod of Glass

Motionless Positive
charges

Fig.1-a

A rod of Glass

Motionless Positive
charges

Fig.2-a

Fig.1-
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The plastic rods have the same type of charge, it repels each other

C-Experience 03

When the rod of plastic is rubbed to a fur, it acquires a charge.

Taking another rod of glass and rubbing it to the silk cloth. When

we bring them to vicinity of each other, they will attract

The plastic rods and the glass rod have different types of charge, it

attracts each other

Result

From these three experiences, we deduce that the charges are present in two kinds. like

charges repel each other and unlike charges attract each other.

D- Experience 04

If we rub a plastic rod to fur, it acquires a negative charge, same, if we take a glass rod

and rub it to the silk, it acquires a positive charge. If we touch a small neutral conductor

ball with one of the rods, that ball will be attracted for few second then it will repelled.

This can be explained by the fact, that during a contact there is a transfer of charges

from the rod to the ball. After that the excess charge will be distributed on the surface,

and the two body will be identically charged. So, they repel each other.

E-Experience 05

We try to electrify a metallic rod when we our feet touch a ground. The rod cannot be

electrified, because the excess charge will flow from the rod to the earth and conversely,
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it depends on the kind of charge we put on it, and it hold neutral. But if we take it with

rubber or nylon, then the charge cannot flow to or from the earth and the rod can be

electrified

The insulator can be easily charged. Because the charge putting on the body remains in

the location of contact and don’t spread along the body like metal.

I-4 METHOD OF CHARGING (ELECTRIFYING)

It exists several ways to electrify the body by any kind of charges

I-4-1 CHARGING BY FRICTION

In this method, when two bodies are rubbed together some

electrons are transferred from one to other. As result, one body

becomes positively charged while the other becomes negatively charged.

I-4-2 CHARGING BY CONDUCTION (BY CONTACT)

When a charged body is in direct contact with another neutral body, some of the excess

of charges will be transferred from the uncharged body to the charged body until they

reach certain equilibrium (same potential for metal)

Fur
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I-4-3 CHARGING BY IDUCTION (NO CONTACT)

Whenever a charged body (conductor or insulator) is brought near a neutral conductor,

the charged body will attract the opposite charge and repel similar charge present in the

neutral body. This process is called induction. When the neutral conductor is connected

to the earth, the charge repelled will be flown within. After removal the connected wire

to earth first, we remove, then, the charged body. Initially neutral, the body will be

charged. This way of charging is called electrifying by induction.

Notice that during electrification, only electrons are involved.

When we put the charge on the body. If it is localized in the point of contact the body is

an insulator. But if the charge is spread on the surface, the body is a conductor

 I-5 PROPERTY OF CHARGE

1- The charge is quantized. The charge of anybody or that transferred is equal to basic

unit of charge, denoted ′ 𝒆 = 𝟏. 𝟗 𝟏𝟎−𝟏𝟗 𝑪, or its integral multiples ′𝑸 = 𝒏𝒆 ′. The unit of

charge are the COULOMB.

𝑸: is the charge

𝒏: is an integer 𝒏 = ∓𝟏, ∓𝟐, ∓𝟑 ∓ ⋯

2- In an isolated system, the charge for two bodies in interaction, is conserved. No

charges are created or destroyed. The amount of charge which is transferred is same.

The charge given by one body equals the charge received by the other body. Within

an isolated system consisting of many charged bodies, due to interactions among the

bodies, charges may get redistributed but it is found that the total charge of the

isolated system is always conserved. Conservation of charge has been established

experimentally.

3- The charge is present in two kinds. Negative and positive charge (+𝑸; −𝑸)
4- The charge is a scalar quantity, so, we can add them algebraically.

𝑸𝟏 = 𝒏 𝒆 ; 𝑸𝟐 = 𝒎. 𝒆 ⟹ 𝑸𝑻 = 𝑸𝟏 + 𝑸𝟐 = 𝒏 𝒆 + 𝒎 𝒆 = (𝒏 + 𝒎 )𝒆

5- Charge is relativistically invariant. That is, qrest = qmotion.

Fig.8

Fig.9Conducto Insulato



23

6- Moving charge produces magnetic field in addition to electric field.

7- Accelerated charge radiates energy.

Example
If 109 electrons move out of a body to another body every second, how much time is

required to get a total charge of Q =1 C on the other body?

Solution

In one second 109 electrons move out of the body.

Therefore, the charge given out in one second is

𝑸 = 𝟏, 𝟔 𝟏𝟎–𝟏𝟗 × 𝟏𝟎𝟗 𝑪 = 𝟏, 𝟔 × 𝟏𝟎–𝟏𝟎 𝑪

The time required to accumulate a charge of 1C can then be estimated to be:

𝒕 =
𝟏𝑪

(𝟏. 𝟔 × 𝟏𝟎–𝟏𝟎 𝑪/𝒔) = 𝟔. 𝟐𝟓 × 𝟏𝟎𝟗 𝒔 = 𝟔. 𝟐𝟓 × 𝟏𝟎𝟗

In years

𝒕 =
𝟔. 𝟐𝟓 × 𝟏𝟎𝟗 𝒔

(𝟑𝟔𝟓 × 𝟐𝟒 × 𝟑𝟔𝟎𝟎) = 𝟏𝟗𝟖 𝑦𝑒𝑎𝑟𝑠

Thus, to collect a charge of one coulomb, from a body from which 109 electrons move out

every second, we will need approximately 200 years. One coulomb is, therefore, a very

large unit for many practical purposes.

It is, however, also important to know what is roughly the number of electrons contained

in a piece of one cubic centimeter of a material. A cubic piece of copper of side 1 cm

contains about 2.5 × 1024 electrons.

I-6 CHARGE DISTRIBUTION

Sometimes we observe that the charge, instead of being point charge it is distributed over

the entire. Such distribution can be uniform, random, or following a certain law.

Depending on the extent, this distribution can be linear or surface or volume distribution.

I-6-1 DISCREET DISTRIBUTION

When the charges are discreetly distributed, or there exist a set of point charge confined

on whatever the extent of the body, the total charge is equal to the sum of all the locals

point charges.

𝑸 = ෍ 𝒒𝒊

𝒏

𝒊=𝟏

I-6-2 CONTINUOUS DISTRIBUTION
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When the charge is continuously distributed, the total charge depends on the shape of

body and its local distribution

A-LINEAR DISTRIBUTION

Let the charge distributed along a line with a density ′𝝀′, the total charge is given by the

sum of all elements of charge of that body (example a very thin rod of length l)

To calculate the total charge, we determine the element of charge ′𝒅𝒒′, and sum all this

element along the length ′𝑳′

The element of length ′𝒅𝒍′ has an element of charge

𝒅𝒒 = 𝝀 𝒅𝒍

The charge of all body is given by:

𝑸 = න 𝒅𝒒
𝑸

𝟎
= න 𝝀 𝒅𝒍 = න 𝝀 𝒅𝒙

𝑳

𝟎

𝑳

𝟎

𝑸: Total charge of the body

𝝀: Linear charge density (charge per unit surface)

𝑳: The length of the charged body

Notice that the body can be any curved form, so we integrate along that curve.

B-SURFACE DISTRIBUTION

The charge distributed over a surface with a density ′𝝈′, the total charge is given by the

sum of all elements of charge of that body (example a very thin sheet)

To calculate the total charge, we determine the element of charge ′𝒅𝒒′,

and sum all this element along the surface ′𝑺 ′

The surface element ′𝒅𝑺 ′ has an element charge ′𝒅𝒒 = 𝝈 𝒅𝑺 ′

𝒅𝑺 = 𝒅𝒙 𝒅𝒚

The charge of all body is given by:

𝑸 = න 𝒅𝒒
𝑸

𝟎
= ඵ 𝝈 𝒅𝑺

𝑺

𝑸: Total charge of the body

𝝈: Surface charge density (charge per unit surface)

𝑺: The length of the charged body

C- VOLUME DISTRIBUTION

The charge distributed in a volume with a density ′𝝆′, the total charge is given by the

sum of all elements of charge of that body (example a sphere of radius R)

y
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To calculate the total charge, we determine the element of charge ′𝒅𝒒′,

and sum all this element along the volume ′𝑽 ′

The volume element ′𝒅𝒗 ′ has an element charge ′𝒅𝒒 = 𝝆 𝒅𝒗 ′

𝒅𝒗 = 𝒅𝒙 𝒅𝒚𝒅𝒛

The charge of all body is given by:

𝑸 = න 𝒅𝒒
𝑸

𝟎
= ම 𝝆 𝒅𝒗

𝑸: Total charge of the body

𝝆: Volume charge density (charge per unit volume)

𝑽: The length of the charged body

2 - INTERACTION OF CHARGES: ELECTRIC FORCE

When describing, in the previously paragraphs, that charged bodies undergoes

interaction either by repulsion or by attraction. This phenomenon is well quantified and

measured. It was Coulomb who proposed an experiment to measure this effect. He

concluded that the interaction forces between two charges is proportional to the amount

of charge involved (depends on the charges), and also proportional to the inverse squared

distance between them

2-1 INTERACTION BETWEEN 2 POINT CHARGES IN VACUUM: COULOMB’S LAW

The charges are assumed to be point, if their sizes are negligible or smaller compared to

the distance of interaction (distance separating them). the size may be ignored and the

charged bodies are treated as point charges. Coulomb’s law is a quantitative statement

about the force between two-point charges.

Coulomb measured the force between two-point charges and found that it varied

inversely as the square of the distance between the charges and was directly

proportional to the product of the magnitude of the two charges and acted along the line

joining the two charges.

Two-point charges ′ 𝒒𝟏 ′, ′ 𝒒𝟐′ are separated by a distance ′ 𝒓 ′ in vacuum, the magnitude

of the force ′ 𝑭 ′  between them is given by:

𝑭𝟏
𝟐ൗ = 𝒌

|𝒒𝟏| |𝒒𝟐|
𝒓𝟐 =

𝟏
𝟒𝝅𝝐𝟎

|𝒒𝟏| |𝒒𝟐|
𝒓𝟐

𝑭𝟏
𝟐ൗ : The force due to the action of 𝒒𝟏 on 𝒒𝟐 𝒓:Distance separating the two charges

𝒒𝟏: The charge of a body 1

𝒒2: The charge of a body 2

𝝐𝟎: permittivity of free space 𝝐𝟎 = 𝟖, 𝟖𝟓 𝟏𝟎−𝟏𝟐  𝑪𝟐

𝑵 𝒎𝟐 ⟹ 𝒄𝟐 𝟏𝟎−𝟕 = 𝒌 ≈ 𝟗 𝟏𝟎𝟗

z
𝒅𝒗

Fig.12

𝜌
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𝒄: The speed of light in vacuum 𝒄 = 𝟐. 𝟗𝟗𝟕𝟗𝟐𝟒𝟓𝟖 𝒎/𝒔

We use this formula and taking care that the like charges repel each other, and unlike

charges attract each other.

The vectorial form of COULOMB’s law, for two-

point charges in interaction, is given by:

𝑭ሬሬ⃗ 𝟏
𝟐ൗ = 𝒌

𝒒𝟏𝒒𝟐

𝒓𝟐 𝒖ሬሬ⃗ 𝒓

𝑭ሬሬ⃗ 𝟏
𝟐ൗ results from the action of 𝒒𝟏, the source, on

𝒒𝟐, the target. So the orientation of the unit vector

𝒖ሬሬ⃗ 𝒓 or the vector 𝒓ሬ⃗  is directed from the source to the target. The force lie along line joining

the two point charges

- Because 𝒓ሬ⃗ = 𝒓 𝒖ሬሬ⃗ 𝒓, the COULOMB’s can be written in the form:

𝑭ሬሬ⃗ 𝟏
𝟐ൗ = 𝒌

𝒒𝟏𝒒𝟐 
𝒓𝟑 𝒓ሬ⃗ = 𝒌

𝒒𝟏𝒒𝟐

|𝒓ሬ⃗ 𝟐 − 𝒓ሬ⃗ 𝟏|𝟑 (𝒓ሬ⃗ 𝟐 − 𝒓ሬ⃗ 𝟏)

- The COULOMB’s law obeys to reciprocity law (NEWTON’s 3rd law)

𝑭ሬሬ⃗ 𝟐
𝟏ൗ = −𝑭ሬሬ⃗ 𝟏

𝟐ൗ

- Since the charges are of two types, and taking in consideration the reciprocity law,

seen above, we can have the three representations, indicating below, for the forces of

interaction,

2-2 INTERACTION OF MULTIPLE PONCTUAL CHARGES:

SUPERPOSITION PRINCIPLE

Coulomb’s law as we have stated it describes only the interaction of two-point charges.

Experiments show that when two charges exert forces simultaneously on a third charge,

the total force acting on that charge is the vector sum of the forces that the two charges

𝒒𝟏  

>  𝟎

𝒒𝟐 > 𝟎

𝒒𝟏 < 𝟎

𝒒𝟐 < 𝟎

𝒒𝟏 > 𝟎

𝒒𝟐 < 𝟎

Fig.14
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would exert individually. This important property, called the principle of superposition

of forces, holds for any number of charges. By using this principle, we can apply

Coulomb’s law to any collection of charges. Coulomb’s law, as we have stated, should

be used only for point charges in vacuum

principle of superposition

When more than two charges are interacting in a system of particles then net force on

any given charge is the vector sum of all the individual forces acting on the given charge

by all other charges considered independently.

Let found the net forces, due to ′𝒏 ′discreet charges, on the charge 𝒒𝟎. To do this we

apply Coulomb’s law for all pairs of charge.

The Coulomb’s law for interaction between 𝒒𝟏 and 𝒒𝟐, gives

𝑭ሬሬ⃗ 𝟏
𝟎ൗ = 𝒌

𝒒𝟏𝒒𝟎
(𝒓𝟏)𝟐 𝒖ሬሬ⃗ 𝟏

𝒓𝟏 : separation between the charges 𝒒𝟏 and 𝒒𝟎

𝒖ሬሬ⃗ 𝟏: unit vector of the line joining the two charges 𝒒𝟏 and 𝒒𝟎

Doing the same thing with the pairs (𝒒𝟐; 𝒒𝟎), (𝒒𝟑; 𝒒𝟎), …, (𝒒𝑛; 𝒒𝟎). We obtain

𝑭ሬሬ⃗ 𝟐
𝟎ൗ = 𝒌 𝒒𝟐𝒒𝟎

(𝒓𝟐)𝟐 𝒖ሬሬ⃗ 𝟐, 𝑭ሬሬ⃗ 𝟑
𝟎ൗ = 𝒌 𝒒𝟑𝒒𝟎

(𝒓𝟑)𝟐 𝒖ሬሬ⃗ 𝟑, …., 𝑭ሬሬ⃗ 𝒏
𝟎ൗ = 𝒌 𝒒𝒏𝒒𝟎

(𝒓𝒏)𝟐 𝒖ሬሬ⃗ 𝒏

The resultant force is given by the vectorial sum of all these forces

𝑭ሬሬ⃗ 𝑛𝑒𝑡 = 𝑭ሬሬ⃗ 𝟏
𝟎ൗ = 𝒌

𝒒𝟏𝒒𝟎
(𝒓𝟏)𝟐 𝒖ሬሬ⃗ 𝟏 + 𝒌

𝒒𝟐𝒒𝟎
(𝒓𝟐)𝟐 𝒖ሬሬ⃗ 𝟐 + 𝒌

𝒒𝟑𝒒𝟎
(𝒓𝟑)𝟐 𝒖ሬሬ⃗ 𝟑+. . . +𝒌

𝒒𝒏𝒒𝟎
(𝒓𝒏)𝟐 𝒖ሬሬ⃗ 𝒏

⟹             𝑭ሬሬ⃗ 𝒏𝒆𝒕 = ෍ 𝒌
𝒒𝒊𝒒𝟎
(𝒓𝒊)𝟐 𝒖ሬሬ⃗ 𝒊

𝒏

𝒊=𝟏

= 𝒌𝒒𝟎 ෍
𝒒𝒊

(𝒓𝒊)𝟐

𝒏

𝒊=𝟏
  

This represents the principle of superposition

2-3 ACTION OF CONTINUOUS DISTRIBUTION ON POINT CHARGE

In above, we have considered the forces due to point charges, which are occupying very

small physical space. In the following we will see the effect of continuous charge

distribution, whether along a line, or over a surface or in a volume. As noted above ′𝝀′is

the linear density ′𝝈′ the surface density and ′𝝆′the volume

density, we calculate the force due to the one cited distribution.

- A line distribution of charge

Consider a line charge with a charge density 𝝀 extending from

𝑨 to 𝑩 along 𝒛- axis. The charge element 𝒅𝒒 associate with the

element 𝒅𝒍 = 𝒅𝒛 of the line is: 𝒅𝒒 = 𝝀 𝒅𝒍 = 𝝀 𝒅𝒛

𝑑𝑞

z

o
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Let take an element of charge 𝒅𝒒 on the rod, located at point 𝐌(𝟎, 𝟎, 𝐳), so 𝒓ሬ⃗ 𝟏 = 𝑶𝑴ሬሬሬሬሬሬሬ⃗ .

Let the point charge 𝒒 located at point 𝑷(𝒙, 𝒚, 𝒛), so 𝒓ሬ⃗ 𝟐 = 𝑶𝑷ሬሬሬሬሬሬ⃗ .If we take the two-point

charges 𝒒 = 𝒒𝟐  and 𝒅𝒒 = 𝒒𝟏  they will interact between each other. That interaction is

given by Coulomb’s law such that:

𝒅𝑭ሬሬ⃗ = 𝒌
𝒒𝟏𝒒𝟐 

𝒓𝟑 𝒓ሬ⃗ = 𝒌
𝒒𝒅𝒒

|𝒓ሬ⃗ 𝟐 − 𝒓ሬ⃗ 𝟏|𝟑 (𝒓ሬ⃗ 𝟐 − 𝒓ሬ⃗ 𝟏)

So, the interaction between 𝒒 and 𝒅𝒒 produce an elementary force 𝒅𝑭ሬሬ⃗

𝒅𝑭ሬሬ⃗ = 𝒌
𝒒𝒅𝒒

ห𝑶𝑷ሬሬሬሬሬሬ⃗ − 𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห
𝟑 ൫𝑶𝑷ሬሬሬሬሬሬ⃗ − 𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൯ =

𝟏
𝟒𝝅𝝐𝟎

𝒒𝒅𝒒

ห𝑶𝑷ሬሬሬሬሬሬ⃗ − 𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห
𝟑 ൫𝑴𝑷ሬሬሬሬሬሬሬ⃗ ൯

Now, what is the effect of the whole rod on the charge 𝒒. Because each element of charge

𝒅𝒒 produce the elementary force 𝒅𝑭ሬሬ⃗ , then the total force, according to superposition

principle, is the sum of the all-elementary forces produced by whole the rod.

𝑭ሬሬ⃗ = න 𝒅𝑭ሬሬ⃗
𝑭ሬሬ⃗

𝒐
= න

𝟏
𝟒𝝅𝝐𝟎

𝒒൫𝑴𝑷ሬሬሬሬሬሬሬ⃗ ൯

ห𝑶𝑷ሬሬሬሬሬሬ⃗ − 𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห
𝟑 𝒅𝒒

From the figure 16, we have:

𝑴𝑷ሬሬሬሬሬሬሬ⃗ = (𝒙𝟐 − 𝒙𝟏) 𝒊 + (𝒚𝟐 − 𝒚𝟏) 𝒋 + (𝒛𝟐 − 𝒛𝟏) 𝒌ሬሬ⃗

𝑶𝑴ሬሬሬሬሬሬሬ⃗ = 𝒛 𝒌ሬሬ⃗ because the element 𝒅𝒒 is at point M (0,0, z)

𝑶𝑷ሬሬሬሬሬሬ⃗ = 𝒙𝟐 𝒊 + 𝒚𝟐 𝒋 + 𝒛𝟐 𝒌ሬሬ⃗

⟹ 𝑴𝑷ሬሬሬሬሬሬሬ⃗ = 𝒙𝟐 𝒊 + 𝒚𝟐 𝒋 + (𝒛𝟐 − 𝒛) 𝒌ሬሬ⃗ and ห𝑴𝑷ሬሬሬሬሬሬሬ⃗ ห = 𝒓 = ඥ𝒙𝟐
𝟐 + 𝒚𝟐

𝟐 + (𝒛𝟐 − 𝒛)𝟐

Since, the point charge 𝒒 is fixed, then 𝒙𝟐, 𝒚𝟐 and 𝒛𝟐 are constants.

To determine the whole charge, of a rod, we vary 𝒅𝒒 along it. 𝒅𝒒 = 𝝀 𝒅𝒛

𝑭ሬሬ⃗ = න
𝟏

𝟒𝝅𝝐𝟎

𝒒൫𝑴𝑷ሬሬሬሬሬሬሬ⃗ ൯

ห𝑶𝑷ሬሬሬሬሬሬ⃗ − 𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห
𝟑

+𝑳

−𝑳
 𝒅𝒒 = න

𝒒
𝟒𝝅𝝐𝟎

 
𝝀 ቀ(𝒙𝟐 − 𝒙𝟏) 𝒊 + (𝒚𝟐 − 𝒚𝟐) 𝒋 + (𝒛𝟐 − 𝒛)𝒌ሬሬ⃗ ቁ

((𝒙𝟐 − 𝒙𝟏)𝟐 + (𝒚𝟐 − 𝒚𝟐)𝟐 + (𝒛𝟐 − 𝒛)𝟐)𝟑
𝟐ൗ

 𝒅𝒛
+𝑳

−𝑳

- A surface distribution of charge

Consider a surface charge with a charge density 𝝈

extending over a sheet. The charge element 𝒅𝒒 associate

with the element 𝒅𝒔 = 𝒅𝒙𝒅𝒚 of the surface is: 𝒅𝒒 = 𝝈 𝒅𝒔 =

𝝈 𝒅𝒙𝒅𝒚 

So, the interaction between 𝒒  and 𝒅𝒒 produce an

elementary force 𝒅𝑭ሬሬ⃗
𝒒

ds

z

y

x
o

P (x, y, z)

M (x1, y1.0)

𝒅𝒒

Fig.17
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𝒅𝑭ሬሬ⃗ =
𝟏

𝟒𝝅𝝐𝟎

𝒒𝒅𝒒

ห𝑶𝑷ሬሬሬሬሬሬ⃗ − 𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห
𝟑 ൫𝑴𝑷ሬሬሬሬሬሬሬ⃗ ൯

The total force of interaction between the whole surface charge and the point charge is:

𝑭ሬሬ⃗ = න 𝒅𝑭ሬሬ⃗
𝑭ሬሬ⃗

𝒐
= ඵ

𝟏
𝟒𝝅𝝐𝟎

𝒒𝒅𝒒

ห𝑶𝑷ሬሬሬሬሬሬ⃗ − 𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห
𝟑 ൫𝑴𝑷ሬሬሬሬሬሬሬ⃗ ൯

In this case 𝒅𝒒 = 𝝈 𝒅𝒔

𝑭ሬሬ⃗ = ඵ
𝝈𝒒

𝟒𝝅𝝐𝟎
 

 ൫𝑴𝑷ሬሬሬሬሬሬሬ⃗ ൯

ห𝑶𝑷ሬሬሬሬሬሬ⃗ − 𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห
𝟑 𝒅𝒔

In the cartesian coordinate 𝒅𝒔 = 𝒅𝒙𝒅𝒚. Since the point charge is at rest, its coordinates

are constants.

𝑭ሬሬ⃗ = ඵ
𝝈𝒒

𝟒𝝅𝝐𝟎
 
(𝒙𝟐 − 𝒙) 𝒊 + (𝒚𝟐 − 𝒚) 𝒋 + 𝒛𝟐𝒌ሬሬ⃗

ห𝑶𝑷ሬሬሬሬሬሬ⃗ − 𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห
𝟑 𝒅𝒙𝒅𝒚

(𝑴𝟐)

(𝑴𝟏)

- A volume distribution of charge

Consider a volume charge with a charge density 𝝆

extending on a given volume. The charge element 𝒅𝒒

associate with the element 𝒅𝒗 = 𝒅𝒙𝒅𝒚𝒅𝒛 of the volume is:

𝒅𝒒 = 𝝆 𝒅𝒗 = 𝝆 𝒅𝒙𝒅𝒚 

So, the interaction between 𝒒  and 𝒅𝒒 produce an

elementary force 𝒅𝑭ሬሬ⃗

𝒅𝑭ሬሬ⃗ =
𝟏

𝟒𝝅𝝐𝟎

𝒒𝒅𝒒

ห𝑶𝑷ሬሬሬሬሬሬ⃗ − 𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห
𝟑 ൫𝑴𝑷ሬሬሬሬሬሬሬ⃗ ൯

The total force of interaction between the whole volume charge and the point charge is:

𝑭ሬሬ⃗ = න 𝒅𝑭ሬሬ⃗
𝑭ሬሬ⃗

𝒐
= ම

𝝆𝒒
𝟒𝝅𝝐𝟎

൫𝑴𝑷ሬሬሬሬሬሬሬ⃗ ൯

ห𝑶𝑷ሬሬሬሬሬሬ⃗ − 𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห
𝟑 𝒅𝒗

Limitation of Coulomb’s law

1 – Limitation for point charges

When two conducting, charged spheres with

charges q1 and q2 are placed in such a way that

the separation distance between the is larger than

the dimensions of this spheres. So, the charge

seems to be points. The effect of charge induction is negligible. The Coulomb’s law can

be applied and gives the force (𝑟 >> 𝑞1 and 𝑞2)

𝒅𝒒 𝒅𝒗

x

z

y

M

P (x, y, z)

o

Fig.18

𝑟

Fig.19

𝑟1
𝑟2
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𝐹⃗ =
1

4𝜋𝜀0

𝑞1𝑞2

𝑟2 𝑢ሬ⃗

But if the two charges are brought closer, due to induction (each charge affect the other),

the effectives centers of these charged spheres will shift from the geometrical center to

point P1 and P2, and the effective separation distance is more than the distance between

their geometrical centers ൫𝑟𝑒𝑓𝑓 > 𝑟൯, and the electric force is less than the force when the

two charges are very distant.

𝐹⃗𝑒𝑓𝑓 =
1

4𝜋𝜀0

𝑞1𝑞2

𝑟2
𝑒𝑓𝑓

𝑢ሬ⃗        ⟹          𝐹⃗ > 𝐹⃗𝑒𝑓𝑓

If the charges are closer, but they have opposite signs, the centers P1

and P2 are closer than the previous case. The effective distance of

separation is less and the effective electric force will be greater

𝐹⃗𝑒𝑓𝑓 =
1

4𝜋𝜀0

𝑞1𝑞2

𝑟2
𝑒𝑓𝑓

𝑢ሬ⃗        ⟹          𝐹⃗ < 𝐹⃗𝑒𝑓𝑓

2 – Limitation for static charges

Coulomb's law is considered to be valid only for static charges because moving charges

may involve magnetic interaction which is not accounted in this law.

If the two charges are moving, both the charges will also have an associated magnetic

field in their surroundings. The net force will then be the vector sum of electrostatic force

and the magnetic force exerted by the two charges on each other. Coulomb's law only

accounts for the electrostatic force between the two charges so in condition of moving

charges Coulomb's law does not give the net interaction force between the two charges.

If one of the charges it at rest, then the magnetic force is null, and the magnetic effect

disappears, it remains only the electric effect. This produces the force deduced by the

Coulombs law.

𝑣1 > 0  𝑎𝑛𝑑  𝑣2 > 0    ⟹ 𝐹⃗ = 𝐹⃗𝑒𝑙 + 𝐹𝑚𝑎𝑔

𝐹⃗𝑒𝑙: The electrical forces produced by Coulomb’s law

𝐹𝑚𝑎𝑔: The magnetic force due to the motion of the two charges

(𝑣1 ≠ 0 𝑣2 ≠ 0 )

The magnetism effect disappears if at least one of the two

charges is at rest

3 – ELECTROSTATIC FIELD

𝑟𝑒𝑓𝑓

Fig.20

𝑟1 𝑟2

𝑟𝑒𝑓𝑓

Fig.21

𝑟1 𝑟2

𝑣1

𝑟

Fig.22

𝑟1

𝑟2𝒗ሬሬ⃗ 2

𝑣1

𝑟

Fig.23 - a

𝑟1
𝑟2

𝑟

Fig.23 - b

𝑟1
𝑟2𝒗ሬሬ⃗ 2
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3 -1 Concept of field (The Interaction: between Newton and Faraday)
During the interaction between two systems, the resulting force is applied either by

contact or remotely.

In the Newtonian notion, the interaction between two systems (A and B) is direct and

instantaneous. The question is how does the first system know or perceive the presence

of the second system. Following Faraday's approach, the interaction occurs indirectly

with a delay between cause and effect. Thus, he introduced the notion of the field. The

first system alters the space around it and creates a disturbance that spreads step by

step until it affects the second system, so it receives the action of the first system.

The field is a quantity (vector or scalar) that spreads over an area of space. To detect this

field, it must be tested by a second system (The presence of the earth's gravitational field

is detected if a mass is released from a certain height. That mass executes an accelerated

free fall motion)

In the case of an electrical charge, it creates a disturbance all around, that spreads and

influences a second charge at a certain distance.

At each point in space the test load reacts by a motion in a well-defined direction, the

field is a vector quantity.

In the electromagnetic field theory, it is based on the presence of an agent that intervenes

in the interaction between the two objects. For the action at distance, the force of

interaction does not require the presence of mechanisms other than the objects and the

space between them, only the existence of objects is sufficient to trigger the action at

distance between them. Just their presence exerts forces at distance that have an

instantaneous effect through the space that separates them, i.e., the action takes place

without the need for another agent other than the objects themselves, and also without

considering any finite speed of the propagation of agent. This is the process of action at

distance. we do not need another transmission agent.

Another conception sees that object, not in direct contact, must exert forces on each other

through the presence of an intervening medium or mechanism that exists in the space

between the objects, i.e., the first object creates a disturbance in the space immediately

𝑭ሬሬ⃗

Test Charge

Q

Action of Point Charge +Q

𝑬ሬሬ⃗
𝑴ሬሬሬ⃗

Q

Fig.24
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surrounding it. This disturbance propagates gradually through this space until it reaches

the area directly surrounding the second object and acts upon it, causing a reaction to

this disturbance. The transmission of the action occurs at a finite speed (in accordance

with the theory of relativity). Thus, the field theory avoids the concept of action at

distance and replaces it with the concept of action through continuous contact. By using

highly sophisticated instruments, something is detected between the interacting and

separated objects. What is detected is a field. This is the modern approach of field theory,

which is the foundation for understanding the approaches to the world around us.

The electric force is an action at distance between charges, but is the instantaneous

response (cause to effect)? Since there is no signal that exceeds the speed of light

(according to the theory of relativity), the response to the action must therefore experience

a delay.

This leads us to introduce the notion of the field. The charge will create a disturbance

that propagates gradually until it is felt by the second charge (test charge) and it will

react.

The field is therefore an entity that acts as a mediating agent of the force by bringing its

action over a distance from one body to another.

Finally, we can say that the action at distance of one charge on other leads us to

difficulties. If this charged, in action, is in motion, it is suddenly moved towards another

charge. Since Coulomb's law varies inversely with the square of the distance separating

them, there is an increase in the interaction force, but this variation is not felt immediately

because there is no signal that goes beyond the finite speed of light. The charge will alter

the space around it by disturbing it. This alteration will propagate for a moment and

reach the target charge and affect it. This disturbance is called an electric field.

3 -2 Electric field due to a charge Q

Let us consider a point charge 𝑸 placed in vacuum, at the origin 𝑶. If we place another

point charge 𝒒𝟎 at a point 𝑷 which we call test charge, where 𝑶𝑷ሬሬሬሬሬሬ⃗  = 𝒓ሬሬ⃗ , then the charge 𝑸

will exert a force on 𝒒𝟎 as per Coulomb’s law. We may ask the question: If charge 𝒒𝟎 is

removed, then what is left in the surrounding? Is there nothing? If there is nothing at the

point 𝑷, then how does a force act when we place the charge 𝒒𝟎 at 𝑷. The answer is given

by introducing the concept of field. According to this, same we say above, that the charge

𝑸 produces an electric field everywhere in the surrounding. When another charge 𝒒𝟎 is

brought at some point 𝑷, the field there acts on it and produces a force. The electric field

produced by the charge 𝑸 at a point 𝒓 is given as
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𝑬ሬሬ⃗ = 𝑙𝑖𝑚
𝒒𝟎→0

ቆ
𝑭ሬሬ⃗
𝒒𝟎

ቇ = 𝑙𝑖𝑚
𝒒𝟎→0

൮

𝟏
𝟒𝝅𝜺𝟎

𝑸
𝒒𝟎𝒓𝟑 𝒓ሬ⃗

𝒒𝟎
൲

𝑬ሬሬ⃗ =
𝟏

𝟒𝝅𝜺𝟎

𝑸
𝒓𝟐 𝒖ሬሬ⃗ 𝒓 =

𝟏
𝟒𝝅𝜺𝟎

𝑸
𝒓𝟑 𝒓ሬ⃗

- Note that the electric field 𝑬ሬሬ⃗  due to 𝑸, is independent of 𝒒𝟎.This means that the field

created at any point of the space surrounding, depends only on the charge itself and

the distance to location or point considered. Thus, the electric field 𝑬ሬሬ⃗  is dependent on

the space coordinate. For different positions over the space, we get different values of

electric field 𝑬ሬሬ⃗ .

- For a positive charge, the electric field will be directed radially outwards from the

charge. On the other hand, if the source charge is negative, the electric field vector, at

each point, points radially inwards.

- The magnitude of the electric field 𝑬ሬሬ⃗ , due to charge 𝑸, depends only on the distance 𝒓

from charge 𝑸. Thus, at equal distances from the charge 𝑸, the magnitude of its electric

field 𝑬ሬሬ⃗  is same. The magnitude of electric field 𝑬ሬሬ⃗  due to a point charge 𝑸 is thus same

on a sphere with the point charge at its center, in other words, it has a spherical

symmetry.

3 -3 Electric field due to a several charges (principle of superposition)

Consider a system of point charges 𝑞1, 𝑞2, ..., 𝑞𝑛 with respective position vectors 𝑟1
′, 𝑟2

′,

..., 𝑟𝑛
′ relative to some origin 𝑶, and 𝑟1, 𝑟2, ..., 𝑟𝑛 with respect to a point P. Like the electric

field at a point in space due to a single charge, electric field at a point in space due to the

system of charges is defined to be the force experienced by a unit positive test charge

placed at that point, without disturbing the original positions of charges 𝑞1, 𝑞2, ..., 𝑞𝑛. We

can use Coulomb’s law and the superposition principle to determine this field at a point

𝑃.

Fig.25-b
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𝑟𝑛

𝐸ሬ⃗ 𝑛−1 𝐸ሬ⃗ 𝑛 𝐸ሬ⃗𝑟2
𝑟𝑛−1
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Each charge produces its own electric field so the net field or the electric field created by

all the charges is equal to the sum of these individual electric fields

𝑬ሬሬ⃗ = ෍
𝟏

𝟒𝝅𝜺𝟎

𝑸𝒊
(𝒓ሬ⃗ − 𝒓ሬ⃗ 𝒊

′)𝟐 𝒖ሬሬ⃗ 𝒓𝒊

𝒏

𝒊=𝟏

=
𝟏

𝟒𝝅𝜺𝟎
෍

𝑸𝒊

𝒓𝒊
𝟑 𝒓ሬ⃗ 𝒊

𝒏

𝒊=𝟏

This formula constitutes the superposition principle.

When more than two charges are interacting in a system of particles then net force on

any given charge is the vector sum of all the individual forces acting on the given charge

by all other charges considered independently

3 -4 Electric field due to a continuous distribution of charge

What is a continuous charge distribution? How can we calculate the electric field at any

point 𝑷 due to continuous charge distribution?

So far, we have dealt with only charged particles, a single particle or a simple collection

of them. The situation in which an object is charged with a huge number of particles,

more than we could ever even count.

The body charged can be a line charge (straight or curved line) in which the charge is

spread with a distribution density of charge 𝝀, or surface charge when this charge is

spread over a surface with a surface density 𝝈. When we deal with the charge that is

spread through a volume, we have a volume distribution with a density 𝝆

- A charge with linear distribution with density 𝝀 = 𝒍𝒊𝒎
𝜟𝑙→0

ቀ𝛥𝑞
𝛥𝑙

ቁ

- A charge with surface distribution with density 𝝈 = 𝒍𝒊𝒎
𝜟𝑠→0

ቀ𝛥𝑞
𝛥𝑠

ቁ

- A charge with volume distribution with density 𝝆 = 𝒍𝒊𝒎
𝜟𝑣→0

ቀ𝛥𝑞
𝛥𝑣

ቁ

To calculate the electric field, of any continuous distributed charge, at any point in the

space, we proceed in the manner as follows

- Take an infinitesimal element (line, surface, volume) of the charged body

- Assign to this element considered, an infinitesimal charge ′𝒅𝑸′.

- Apply the Coulomb’s Law which gives the electric field at the desired point.

- The law gives you the element of field ′𝒅𝑬ሬሬ⃗ ′ that is created by the element of charge 𝒅𝑸

considered as point charge.

- To calculate the whole effect, due to the total charge of the body, we sum those elements

of field ′𝒅𝑬ሬሬ⃗ ′created by each infinitesimal charge ′𝒅𝑸.
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- Because the huge number of these elements. The charge distributed is considered as

continuous, and we use the integral form instead of the discrete sum

3 -4 -1 Line distribution

Let calculate the electric field created by a long thin

rod with a linear distribution of charges with a

density 𝝀

To calculate the electric field du the charged rod. We

take an element - dl - that assigned a charge - dQ -

which produces a field in any point P of the space, by using Coulomb’s Law and the

integrate on the whole element to have the total field in that point.

Worked example

What is the electric field produced, by a very long thin rod, in a point P?

The charge is distributed linearly along the rod oriented

in ‘z’ direction.

Let an element of charge 𝒅𝒒 = 𝝀 𝒅𝒛 located on the ‘z’ axis

at the height ′𝒛′   it is considered point charge, an

infinitesimal electric field ′𝒅𝑬ሬሬ⃗ ′created at point P which is

given by Coulomb’s law as:

𝒅𝑬ሬሬ⃗ =
𝟏

𝟒𝝅𝜺𝟎
 
𝒅𝒒
𝒓𝟐 𝒖ሬሬ⃗ 𝒓

From the geometry of figure, we have: ⟹

𝒓ሬ⃗ = 𝑴𝑷ሬሬሬሬሬሬሬ⃗ = 𝑴𝑶ሬሬሬሬሬሬሬ⃗ + 𝑶𝑷ሬሬሬሬሬሬ⃗ = 𝒚 𝒋 − 𝒛 𝒌ሬሬ⃗ ⟹ 𝒓 = ඥ𝒚𝟐 + 𝒛𝟐

And

𝒖ሬሬ⃗ 𝒓 = 𝒄𝒐𝒔𝜽 𝒋  + 𝒔𝒊𝒏𝜽 𝒌ሬሬ⃗

We can write the element of field 𝒅𝑬ሬሬ⃗  in the cartesian system as:

𝒅𝑬ሬሬ⃗ = 𝒅𝑬ሬሬ⃗ 𝒚 + 𝒅𝑬ሬሬ⃗ 𝒛 =
𝟏

𝟒𝝅𝜺𝟎
 
𝝀 𝒅𝒛

𝒓𝟐 ൫𝒄𝒐𝒔𝜽 𝒋 + 𝒔𝒊𝒏𝜽 𝒌ሬሬ⃗ ൯

To determine the total field, in the point P, due to the whole charge of the rod. We sum

over all the length with very huge number of point charge. This means we will integrate

over that rod.

𝑬ሬሬ⃗ = න
𝟏

𝟒𝝅𝜺𝟎
 
𝝀 
𝒓𝟐 ൫𝒄𝒐𝒔𝜽 𝒋  + 𝒔𝒊𝒏𝜽 𝒌ሬሬ⃗ ൯𝒅𝒛

+∞

−∞
 

𝑬ሬሬ⃗ = ൮න
𝝀

𝟒𝝅𝜺𝟎
 

 𝒄𝒐𝒔(𝜽)

ቀඥ𝒚𝟐 + 𝒛𝟐ቁ
𝟑

𝟐ൗ
𝒅𝒛

+∞

−∞
൲ 𝒋 + ൮න

𝝀
𝟒𝝅𝜺𝟎

 
𝒔𝒊𝒏(𝜽)

ቀඥ𝒚𝟐 + 𝒛𝟐ቁ
𝟑

𝟐ൗ
𝒅𝒛

+∞

−∞
൲ 𝒌ሬሬ⃗

𝝀

Fig.27

𝜽

P (0, y,0)

𝑟

Mdz

x

y

z

dq=λ dz

z
o

𝑑𝐸ሬ⃗

𝒖ሬሬ⃗ 𝒓

Fig.28
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To compute this integral we must use one variable z or θ

From the figure we see that:

𝒕𝒈(𝜽) = 𝒛
𝒚

⟹ (𝟏 + 𝒕𝒈𝟐𝜽)𝒅𝜽 = 𝟏
𝒚

𝒅𝒛

𝒄𝒐𝒔(𝜽) = 𝒚
ඥ𝒚𝟐+𝒛𝟐 and 𝒔𝒊𝒏 (𝜽) = 𝒛

ඥ𝒚𝟐+𝒛𝟐

The integration limits: 𝒛 ⟶ ±∞ ⟹ 𝜽 ⟶ ± 𝝅
𝟐

𝑬ሬሬ⃗ = ൮න
𝝀

𝟒𝝅𝜺𝟎
 

 𝒚

ቀඥ𝒚𝟐 + 𝒛𝟐ቁ
𝟑

𝟐ൗ
𝒅𝒛

+∞

−∞
൲ 𝒋 + ൮න

𝝀
𝟒𝝅𝜺𝟎

 
𝒛

ቀඥ𝒚𝟐 + 𝒛𝟐ቁ
𝟑

𝟐ൗ
𝒅𝒛

+∞

−∞
൲ 𝒌ሬሬ⃗

𝑬ሬሬ⃗ = 𝑰𝟏 𝒋 + 𝐼2 𝒌ሬሬ⃗

The second integral gives straight forward a null result

𝑰𝟏This integral is somehow difficult, we use the angular variable θ

𝑬ሬሬ⃗ =

⎝

⎜⎜
⎛

න
𝝀

𝟒𝝅𝜺𝟎
 

𝒄𝒐𝒔(𝜽)

ቆ𝒚ට𝟏 + ቀ𝒛
𝒚ቁ

𝟐
ቇ

𝟑
𝟐ൗ

𝒅𝒛
+∞

−∞

⎠

⎟⎟
⎞

 𝒋 = න
𝝀

𝟒𝝅𝜺𝟎
 
𝒄𝒐𝒔(𝜽)

𝒚 𝒅𝒛
+𝜋

2

−𝜋
2

The field 𝑬ሬሬ⃗  is oriented in y direction and have the following expression

𝑬ሬሬ⃗ =
𝝀

𝟒𝝅𝜺𝟎𝒚 𝒋

3 -4 -2 Surface distribution

To calculate the field created at point P by certain surface distributed charge with a

density 𝝈. We proceed in the same manner like above. i.e., we take an infinitesimal

element of surface which produces an elementary field in point P. The total effect is the

integration on all surface namely the whole charge.

Worked example

We can compute the field created, by the disc, in the point P

M

N

x

𝑑𝐸ሬ⃗

𝑑𝐸ሬ⃗

𝒅𝑬ሬሬ⃗

Element of field created by the corona

Element of charge du to M and N

α Fig.29
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We can use the element of charge due to the corona. Or the charge of an element of

surface ds containing the charge (M) dq = σ ds and that diametrically opposite (N). So,

the element of the surface ds has the charge dq = σ ds produces an electric field:

𝒅𝑬ሬሬ⃗ =
𝟏

𝟒𝝅𝜺𝟎
 
𝒅𝒒
𝒓𝟐 𝒖ሬሬ⃗ 𝒓 =

𝟏
𝟒𝝅𝜺𝟎

 
𝝈𝒅𝒔

ห𝑴𝑷ሬሬሬሬሬሬሬ⃗ ห
𝟐 𝒖ሬሬ⃗ 𝒓

We see for the two elementary charges in M an N can create a field which is oriented

along the axis of the disc

𝒅𝑬ሬሬ⃗ = ቌ
𝟐

𝟒𝝅𝜺𝟎
 

𝝈

ห𝑴𝑷ሬሬሬሬሬሬሬ⃗ ห
𝟐 𝒄𝒐𝒔(𝜶) 𝒓 𝒅𝒓 𝒅𝜽ቍ 𝒊            ห𝑴𝑷ሬሬሬሬሬሬሬ⃗ ห = ห𝑵𝑷ሬሬሬሬሬሬ⃗ ห

𝟎 ≤ 𝒓 ≤ 𝑹   ;     𝟎 ≤  𝜽 ≤ 𝟐𝝅

𝑬ሬሬ⃗ = න න ቌ
𝟐

𝟒𝝅𝜺𝟎
 

𝝈

ห𝑴𝑷ሬሬሬሬሬሬሬ⃗ ห
𝟐 𝒄𝒐𝒔(𝜶) 𝒓 𝒅𝒓 𝒅𝜽ቍ

𝑹

𝟎

𝟐𝝅

𝟎
𝒊

The expression of electric field due to the total charge is given by:

𝑬ሬሬ⃗ =
𝝈𝒙

𝟐𝝅𝜺𝟎
൬

𝟏
|𝒙|  −

𝟏
√𝒙𝟐 + 𝑹𝟐

൰ 𝒊     ⟹     𝑬ሬሬ⃗ =

⎩
⎪
⎨

⎪
⎧−

𝝈
𝟐𝝅𝜺𝟎

൬𝟏 +
𝒙

√𝒙𝟐 + 𝑹𝟐
൰ 𝒊

𝝈
𝟐𝝅𝜺𝟎

൬𝟏 −
𝒙

√𝒙𝟐 + 𝑹𝟐
൰ 𝒊

       
𝑖𝑓  𝒙 > 𝟎

𝑖𝑓  𝒙 < 𝟎

3 -4 -3 Volume distribution

To calculate the electric field created at

point P by certain volume distributed

charge with a density 𝝆. We proceed in

the same manner like above. i.e., we

take an infinitesimal element of volume

which produces an elementary field 𝒅𝑬ሬሬ⃗

in point P. The total effect is the

integration on all volume, which means

the whole charge.

Let take an element of volume (an infinitesimal sphere or radius dr) which has the charge

dq = ρ dv. This element of charge produces an infinitesimal electric field 𝒅𝑬ሬሬ⃗ at point P.

Where this point is at distance x from the center.

𝒅𝒗    ⟶       𝒅𝒒       ⟶           𝒅𝑬ሬሬ⃗ =
𝟏

𝟒𝝅𝜺𝟎
 
𝒅𝒒
𝒙𝟐  𝒖ሬሬ⃗ 𝒓 =

𝟏
𝟒𝝅𝜺𝟎

 
𝝆 𝒅𝒗

𝒙𝟐  𝒖ሬሬ⃗ 𝒓 

But the element of the volume is: 𝒅𝒗 = 𝟒𝝅𝒓𝟐𝒅𝒓,

Fig.30

z

x

x

R

M

P
𝑑𝐸ሬ⃗

Element of charge dq
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Then the total field created at point P from whole charged sphere is:

𝑬ሬሬ⃗ = න 𝒅𝑬ሬሬ⃗ = න
𝟏

𝟒𝝅𝜺𝟎
 
𝝆 𝟒𝝅𝒓𝟐

𝒙𝟐 𝒅𝒓 𝒖ሬሬ⃗ 𝒓

𝑹

𝒐

3 - 5 Relationship between electric field and electric force

To determine the interaction between charges, the force is calculated between the two

charges. One cannot calculate the effect due to a single charge. Which the electric field

can do. So, the relation that exists between the effect of the charge which create an

electric field (the effect) and the response of another charge in field caused the first one

is then:

𝑭ሬሬ⃗ = 𝑸𝑬ሬሬ⃗

𝑭ሬሬ⃗ : The force experienced by the charge 𝑸

𝑬ሬሬ⃗ : The field created by other charge than 𝑸

𝑸: The charge which feel the electric field

From the figure we see that:

𝑬ሬሬ⃗ 𝟏: The field created by the point charge 𝑸𝟏 at M at the point P

𝑭ሬሬ⃗ 𝟐: The force experienced by the charge 𝑸𝟐 at P due to the point charge 𝑸𝟏 at M

𝑬ሬሬ⃗ 𝟐: The field created by the point charge 𝑸𝟐 at P at the point M

𝑭ሬሬ⃗ 𝟏: The force experienced by the charge 𝑸𝟏 at M due to the point charge 𝑸𝟐 at P

One of the charges create the electric field, the other responds when it is immersed in this

field.

3 -6 Graphic Representation of the Electric Field: Field lines

3 -6 – 1 What is a field line

We have studied electric field in the last section. It is a vector quantity and can be

represented as we represent vectors. Let us try to represent E due to a point charge

pictorially. Let the point charge be placed at the origin. Draw vectors pointing along the

direction of the electric field with their lengths proportional to the strength of the field at

each point. Since the magnitude of electric field at a point decreases inversely as the

square of the distance of that point from the charge, the vector gets shorter as one goes

away from the origin, always pointing radially outward. Figure 31 shows such a picture.

In this figure, each arrow indicates the electric field, i.e., the force acting on a unit positive

charge, placed at the tail of that arrow. Connect the arrows pointing in one direction and

the resulting figure represents a field line. We thus get many field lines, all pointing

outwards from the point charge.

Have we lost the information about the strength or magnitude of the field now, because

it was contained in the length of the arrow? No. Now the magnitude of the field is

r

PM
Fig.31

𝑭ሬሬ⃗ 𝟏

𝑬ሬሬ⃗ 𝟏𝑸𝟏 𝑸𝟐𝑬ሬሬ⃗ 𝟐

𝑭ሬሬ⃗ 𝟐
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represented by the density of field lines. 𝑬ሬሬ⃗  is strong near the charge, so the density of

field lines is more near the charge and the lines are closer. Away from the charge, the

field gets weaker and the density of field lines is less, resulting in well-separated lines.

Another person may draw more lines. But the number of lines is not important. In fact,

an infinite number of lines can be drawn in any region. It is the relative density of lines

in different regions which is important. We draw the figure where we wish to estimate

the density of field lines, one has to consider the number of lines per unit cross-sectional

area, perpendicular to the lines. Since the electric field decreases as the square of the

distance from a point charge and the area enclosing the charge increases as the square

of the distance, the number of field lines crossing the enclosing area remains constant,

whatever may be the distance of the area from the charge. We started by saying that the

field lines carry information about the direction of electric field at different points in space.

Having drawn a certain set of field lines, the relative density (i.e., closeness) of the field

lines at different points indicates the relative strength of electric field at those points. The

field lines crowd or tighten where the field is strong and are spaced apart where it is

weak. Figure 32 shows a set of field lines. We can imagine two equal and small elements

of area placed at points R and S normal to the field lines there. The number of field lines

in our picture cutting the area elements is proportional to the magnitude of field at these

points. The picture shows that the field at R is stronger than at S.

Electric lines of force in an electric eld can be defined as paths, straight or curved, along

which a unit positive charge tends to move, if it is free to do so. These are imaginary lines

that we draw to visualize a real electric eld, which they represent. This concept was

introduced by Michael Faraday

o Fig.32

R

S
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3 -6 – 2 Equation of field line

The lines field are the geometric representation of the electric filed in

different point of the space. The vector electric field is always tangent

to that curve (line). To determine the equation of that line we us this

property, we can then find it.

Let 𝑬ሬሬ⃗  be the electric field

𝑬ሬሬ⃗ = 𝑬𝒙𝒊 + 𝑬𝒚𝒋 + 𝑬𝒛𝒌ሬሬ⃗

And 𝒅𝒍 be the element of displacement along the curve

𝒅𝒍 = 𝒅𝒙 𝒊 + 𝒅𝒚 𝒋 + 𝒅𝒛 𝒌ሬሬ⃗

The vector field 𝑬ሬሬ⃗ is parallel to 𝒅𝒍, so

𝑬ሬሬ⃗  ⋀ 𝒅𝒍 = 𝟎     ⟹   ൫𝑬𝒚𝒅𝒛 − 𝑬𝒛𝒅𝒚൯ 𝒊⃗  − (𝑬𝒙𝒅𝒛 − 𝑬𝒛𝒅𝒙) 𝒋⃗  + ൫𝑬𝒙𝒅𝒚 − 𝑬𝒚𝒅𝒙൯ 𝒌ሬሬ⃗ = 𝟎

      ቐ
𝑬𝒚𝒅𝒛 − 𝑬𝒛𝒅𝒚
𝑬𝒙𝒅𝒛 − 𝑬𝒛𝒅𝒙
𝑬𝒙𝒅𝒚 − 𝑬𝒚𝒅𝒙

⟹

⎩
⎪
⎨

⎪
⎧

𝑬𝒚

𝒅𝒚
= 𝑬𝒛

𝒅𝒛
𝑬𝒙
𝒅𝒙

= 𝑬𝒛
𝒅𝒛

𝑬𝒚

𝒅𝒚
= 𝑬𝒙

𝒅𝒙

𝑬𝒙

𝒅𝒙 =
𝑬𝒚

𝒅𝒚 =
𝑬𝒛

𝒅𝒛

Find the equation of the vector 𝑨ሬሬ⃗  if the field is given by: 𝑨ሬሬ⃗ = 𝟒𝒛 𝒋 − 𝟑𝒚 𝒌ሬሬ⃗

We have 𝑨𝒙 = 𝟎; 𝑨𝒚 = 𝟒𝑧 ; 𝑨𝒛 = −3𝑦

𝑨𝒙 = 𝟎 ⟹ 𝒙 = 𝑪𝒐𝒏𝒔𝒕 = 𝑪𝟏

𝑨𝒚

𝒅𝒚
= 𝑨𝒛

𝒅𝒛
⟹ 𝒛

𝒅𝒚
= − 𝟑𝒚

𝒅𝒛
⟹ 𝟒𝒛 𝒅𝒛 = −𝟑𝒚 𝒅𝒚

The equation of the field line of a vector𝑨ሬሬ⃗   is:
𝒚𝟐

𝟒
 + 𝒛𝟐

𝟑
= 𝑪𝟐 it is the equation of the ellipse

൞

 𝒙 = 𝑪𝒐𝒏𝒔𝒕 = 𝑪𝟏

𝒚𝟐

𝟒  +
𝒛𝟐

𝟑 = 𝑪𝟐

3 -6 – 3 Properties of electric lines of force

The lines of electric have certain properties

1- Every field line of field is a continuous and smooth curve, starting from a positively

charged body and ending on a negatively charged body. If there is a single charge,

they may start or end at infinity.

2- Electric eld lines are generally not closed curves or loops. This follows from the

conservative nature of electric field.

Fig.1-a

𝒅𝒍𝑬ሬሬ⃗

Fig.33

y

z
For each value of 𝑥 = 𝐶1
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3- The tangent to the electric lines at any point gives the direction of the electric eld

intensity.

4- The electric field lines never intersect each other

5- The field lines are closely spaced in the regions of high electric eld intensity and

widely separated in the regions of low electric eld intensity.

6- The magnitude or the intensity of the electric eld in a region, is proportional to the

number of lines per unit cross-sectional area, held perpendicular to the eld lines

(which is the number density of field lines).

7- Where there is a uniform electric eld (i.e., direction is same for all lines and magnitude

of eld intensity is same), the field lines will be represented by parallel lines.

8- The lines of forces are always normal to the surface of a conductor while leaving the

conductor or ending on it.

9- Electric lines of force do not pass through a conductor, as there is no electric eld inside

a conductor due to stationary charges

10- Electric lines of force can pass through an insulator

Field lines for a negative and positive charge

In the expression of the electric field due to a point charge, it depends on the distance

from the charge to the point where it is sensed (considered point). For the positive charge

the field is pointing outwards

𝑬ሬሬ⃗ (𝒓ሬ⃗ ) =
𝟏

𝟒𝝅𝜺𝟎
 
𝑸
𝒓𝟐  𝒖ሬሬ⃗ 𝒓

From the same direction the field decrease in going out of the charge centered on point O

taken as origin. But for the same distance (dashed circle) from the charge, the field is

same in all directions.

There is an elegant way of representing this field in different position. We draw this field

in different point with a smooth curve which we call field lines

Fig.34-a

o

Fig.34-b

𝐸ሬ⃗

Representation of field vector Representation of field lines

𝐸ሬ⃗
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Notice that for the negative point charge, the field is pointing inwards (from the point P to

charge

Field lines for two equals opposite point charges (dipole)

We know from equation of electric field and properties of field line, that the field is

outwards for positive charge and inward for positive charges. So, the line is emanating

from positive charge and arrive on the negative charge.

Notice that the field lines for two same negative point charges is similar to representation

of line field for two equals positive point charges, only the difference is that the direction

of that line or vector field is inwards towards the charge.

Fig.35-a
Representation of field vector

Fig.35-b
Representation of field lines

𝐸ሬ⃗

𝑞 < 0

𝐸ሬ⃗

𝐸ሬ⃗

Fig.36-a

𝐸ሬ⃗

Fig.36-b


