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4 – ELECTROSTATIC POTENTIAL ENERGY AND ELECTRIC POTENTIAL

Electric potential energy is the energy associated with the configuration of charges in

an electric field. It represents the work done to assemble the system of charges or the

work that can be done by the electric field when the configuration of charges changes.

Electric potential energy is a scalar quantity and is measured in joules (J) in the

International System of Units (SI). It plays a crucial role in understanding the behavior of

charged particles in electric fields and is essential in various fields such as

electromagnetism, electronics, and electrochemistry

Electric potential, also known as electric potential energy per unit charge, is a

fundamental concept in physics that describes the electric potential energy associated

with a point in space due to an electric field.

Imagine you have a positively charged object, like a proton, in space. This charged object

creates an electric field around it. Electric potential at any point in space around this

charged object is the amount of electric potential energy that a unit positive charge would

have if placed at that point.

Mathematically, electric potential at a point in space is defined as the work done per unit

charge in bringing a positive test charge from infinity to that point, against the electric

field

Electric potential is a scalar quantity, meaning it only has magnitude and no direction.

However, it provides a useful way to understand the behavior of electric fields and the

interaction between charges in electrostatic systems. In essence, it provides a measure

of how much electric potential energy a charge would possess if it were placed at a

certain point in space relative to a reference point, often taken to be infinity.

The unit of electric potential in the International System of Units (SI) is volts (V), which is

equivalent to one joule per coulomb (J/C).

4 -1 ELECTRIC POTENTIAL ENERGY

4 -1–1 POTENTIAL OF TWO POINT CHARGE

When an external force does work in taking a body from a point to another against a

force like spring force or gravitational force, that work gets stored as potential energy of

the body. When the external force is removed, the body moves, gaining kinetic energy

and losing an equal amount of potential energy. The sum of kinetic and potential energies

is thus conserved. Forces of this kind are called conservative forces. Spring force and

gravitational force are examples of conservative force
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Coulomb force between two (stationary) charges is also a conservative force. This is not

surprising, since both have inverse-square dependence on distance and differ mainly in

the proportionality constants – the masses in the gravitational law are replaced by

charges in Coulomb’s law. Thus, like the potential energy of a mass in a gravitational

field, we can define electrostatic potential energy of a charge in an electrostatic field

Conservative electric field and electric force�⃗�

Let the force vector going from the point ‘a’ to the point ‘b’ through the path I. We try to

calculate the line integral from this vector along that path.

�⃗� ∘  𝑑𝑙
𝑃𝑎𝑡ℎ 𝐼

= �⃗� ∘  𝑑𝑙
𝑏

𝑎

The force is inversely proportional to the squared distance from

the origin, then the force can be expressed as:

𝑭 =
𝜶
𝒓𝟐 𝒖𝒓

�⃗� ∘  𝑑𝑙
𝑏

𝑎
=

𝛼
𝑟2 𝑢𝑟 ∘  𝑑𝑙

𝑏

𝑎

But 𝒅𝒍 = 𝒅𝒓 𝒖𝒓 +  𝒓𝒅𝜽 𝒖𝜽  +  𝒓 𝒔𝒊𝒏𝜽 𝒅𝝋 𝒖𝝋

⟹     
𝜶
𝒓𝟐 𝒖𝒓 ∘  𝒅𝒍 =  

𝜶
𝒓𝟐  𝒅𝒓

⟹    
𝜶
𝒓𝟐  𝒅𝒓

𝑏

𝑎
 = 𝜶

𝟏
𝒓𝒂

−
𝟏
𝒓𝒃

  

We see from this that the integral is same whether the path we take (Path I or Path II).

So, the integral is independent on the path.

�⃗� ∘  𝑑𝑙
𝑃𝑎𝑡ℎ 𝐼

= �⃗� ∘  𝑑𝑙
𝑃𝑎𝑡ℎ 𝐼𝐼

= 𝜶
𝟏
𝒓𝒂

−
𝟏
𝒓𝒃

  

If we start from point ′ 𝒂 ′ and return to the same point (𝒂 ≡ 𝒃), we trace a loop, and the

integral along the loop be zero

�⃗� ∘  𝑑𝑙 = 0

The vector who has this property is said to be conservative

In the same manner we found that the electrostatic field is conservative

y

x

𝑟𝑏

o
𝑑𝑙

�⃗�

b

a

Path II

Path I

𝑟𝑎

z

Fig.37
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𝐸 ∘  𝑑𝑙
𝑃𝑎𝑡ℎ 𝐼

= 𝐸 ∘  𝑑𝑙
𝑃𝑎𝑡ℎ 𝐼𝐼

= 𝜷
𝟏
𝒓𝒂

−
𝟏
𝒓𝒃

  

Where �⃗� = 𝜷
𝒓𝟐 𝒖𝒓

Let ′ 𝑄 ′  be a source charge which produces an

electrostatic field everywhere in the space, and ′ 𝑞0 ′a

positive charge displaced in the field created by the

source charge. To displace the charge ′ 𝑞0 ′ from the point

′𝒂 ′ at position ′ 𝒓𝒂 ′to point ′𝒃′ at position 𝒓𝒃.

The work done by an exterior agent to bring the charge ′ 𝑞0 ′ from the position′𝒂 ′ to the

position ′𝒃′is given by:

𝑾𝒂𝒃 = 𝑭𝒂𝒑𝒑 ∘  𝒅𝒍
𝒃

𝒂

If the displacement is done at constant velocity, then the applied force by the exterior

agent, to bring the charge from 𝒂 is 𝒃, is opposite to electrostatics force

𝑾𝒂𝒃 =
𝟏

𝟒𝝅𝝐𝟎

𝑸𝒒𝟎

𝒓𝟐 ∘  𝒅𝒍
𝒃

𝒂
=

𝑸𝒒𝟎

𝟒𝝅𝝐𝟎

𝒅�⃗�
𝒓𝟐  

𝒃

𝒂
=

𝑸𝒒𝟎

𝟒𝝅𝝐𝟎

𝟏
𝒓𝒃

−
𝟏
𝒓𝒂

The electrical potential energy is equal to the work done by an exterior agent to bring the

charge from a to b

𝑼𝒇 − 𝑼𝒊 = 𝑼𝒃 − 𝑼𝒂 = 𝑾𝒂𝒃 =
𝑸𝒒𝟎

𝟒𝝅𝝐𝟎

𝟏
𝒓𝒃

−
𝟏
𝒓𝒂

We know that the potential energy is computed from certain reference. If we take that

reference as infinity. So, bringing the charge from infinity to any point with position r,

gives:

𝑼(𝒓) − 𝑼∞ = 𝑼(𝒓) =
𝑸𝒒𝟎

𝟒𝝅𝝐𝟎

𝟏
𝒓

4 -2 –2 POTENTIAL ENERGY FOR ASSEMBLY OF POINT CHARGES

Let our system constituted by n charges 𝑞1, 𝑞2, ..., 𝑞𝑛. What is the amount of potential

energy to constitute a specific configuration with this system of charges?

We begin in putting a charge 𝑞1 at any position. The second charge 𝑞2 is

bringing at a distance 𝑟12 from the charge 𝑞1. Then the potential energy

for this system of two point charges is:

�⃗�𝑎𝑝𝑝

Fig.38

o
𝑄 > 0

𝑞0 > 0
𝑟𝑎

𝑟𝑏

𝐸

𝑞1
𝑞2 𝑞𝑛−1

𝑞𝑛
𝑞3

Fig.39
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𝑼𝟏𝟐 =
𝒒𝟏𝒒𝟐

𝟒𝝅𝝐𝟎𝒓𝟏𝟐

In bringing the third charge 𝑞2 at the vicinity of system of the two point charges 𝑞1 and

𝑞2. The charge interacts with this two charges and gives the potential energy:

𝑼𝟑 = 𝑼𝟏𝟑 + 𝑼𝟐𝟑

𝑼𝟏𝟑 =
𝒒𝟏𝒒𝟑

𝟒𝝅𝝐𝟎𝒓𝟏𝟑
;         𝑼𝟐𝟑 =

𝒒𝟐𝒒𝟑

𝟒𝝅𝝐𝟎𝒓𝟐𝟑

If we assemble all the point charges in certain configuration, we get the total potential

energy necessary to constitute this configuration

𝑼 = 𝑼𝟏𝟐 + 𝑼𝟏𝟑 + 𝑼𝟐𝟑+. . . +𝑼𝟏𝒏 + 𝑼𝟐𝒏+. . . +𝑼(𝒏−𝟏)𝒏

𝑼 =
𝟏
𝟐

𝒒𝒊𝒒𝒋

𝟒𝝅𝝐𝟎𝒓𝒊𝒋

𝑛

(𝑖,𝑗)=1

4 -2 ELECTRIC POTENTIAL

The electric potential is the work done to bring a unit charge from infinity to a position r.

Or the work done per unit charge.

𝑽(𝒓) = �⃗� ∘  𝒅𝒍
𝒓

𝒓𝒆𝒇

4 -2 –1 POTENTIAL DUE TO POINT CHARGE

The potential energy is given by

𝑼(𝒓) =
𝑸𝒒𝟎

𝟒𝝅𝝐𝟎

𝟏
𝒓

Then the work done by unit charge is

𝑼(𝒓)
𝒒𝟎

=
𝑸

𝟒𝝅𝝐𝟎𝒓 = 𝑽(𝒓)

The potential depends only on the charge Q itself and the point considered in the space

4 -2 –2 POTENTIAL DUE TO SEVERAL POINT CHARGE

Now we treat the case when we have multiple charge. What is the electric potential

created by this system 𝑞1, 𝑞2, ..., 𝑞𝑛?

The charge 𝑞1 produces a potential 𝑉1 at point P:

         𝑽𝟏 = 1
𝟒𝝅𝝐𝟎𝒓𝟏

The charge 𝑞2 produces a potential 𝑉2 at point P:

𝑽𝟐 = 1
𝟒𝝅𝝐𝟎𝒓𝟐

Until the charge 𝑞𝑛 which produces a potential 𝑉𝑛 at point P:

𝒓𝟑

𝑞1
𝑞2 𝑞𝑛−1

𝑞𝑛
𝑞3

Fig.40
P

𝒓𝟏

𝑟𝑛
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𝑽𝒏 = 1
𝟒𝝅𝝐𝟎𝒓𝒏

The total electric potential is the scalar sum of the all potential that created par each

charge

𝑽 = 𝑽𝒊

𝒏

𝒊=𝟏

=
𝟏

𝟒𝝅𝝐𝟎

𝒒𝒊

𝒓𝒊

𝒏

𝒊=𝟏

4 -2 –3 ELECTRIC POTENTIAL DUE TO CONTINUOUS DISTRIBUTION OF CHARGE

The electric potential at a point A in an electric field is defined as the external work done

in bringing slowly a unit positive test charge against the electric field from infinity to that

point A.

A – LINE DISTRIBUTION WITH LINEAR CHARGE DENSITY

Let a charge which has a charge distributed along a line with linear charge density λ.

We try to found the electric potential created by this distribution in any point of the space.

For this we use a thin rod of length 𝑳 with a uniform linear distribution λ

To calculate the electric potential in the point P due the charge of

the rod, we take a very small piece of rod which has the dimension

dy. This element of length contains a charge 𝒅𝒒 = 𝝀 𝒅𝒚.
That element, treated as point charge produces an infinitesimal

electric potential 𝒅𝑽 given by:

𝒅𝑽 =
𝟏

𝟒𝝅𝝐𝟎

𝒅𝒒
𝒓 =

𝝀
𝟒𝝅𝝐𝟎𝒓 𝒅𝒚

The total potential is equal to the sum of all effect of the whole charge

𝑽(𝑃) =  
𝝀

𝟒𝝅𝝐𝟎𝒓  𝒅𝒚
𝑳
𝟐

−𝑳
𝟐

But the distance 𝒓 is given by:

𝒓 = 𝐌𝐏 = 𝒙𝟐 + 𝒚𝟐

𝑽(𝑃) =  
𝝀

𝟒𝝅𝝐𝟎

𝒅𝒚
𝒙𝟐 + 𝒚𝟐

 
𝑳
𝟐

−𝑳
𝟐

=
𝝀

𝟒𝝅𝝐𝟎
𝑳𝒏 𝒚 + 𝒙𝟐 + 𝒚𝟐

𝑳
𝟐

−𝑳
𝟐

𝑽(𝑃) =
𝝀

𝟒𝝅𝝐𝟎
𝑳𝒏

𝑳
𝟐 + 𝒙𝟐 +

𝑳𝟐

𝟒 − 𝑳𝒏 −
𝑳
𝟐 + 𝒙𝟐 +

𝑳𝟐

𝟒

Fig.41λ
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dy
dq

x
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B – SURFACE DISTRIBUTION WITH SURFACE CHARGE DENSITY

Now, we calculate the electric potential due to a charge distributed on surface with a

charge density σ

To calculate the electric potential in the point P due the charge of the disc. We take a very

small piece of disc which has the dimension ds. This element of length contains a charge

𝒅𝒒 = 𝝈 𝒅𝒔

That element, taken as point charge produces an infinitesimal electric potential 𝒅𝑽 given

by:

𝒅𝑽 =
𝟏

𝟒𝝅𝝐𝟎

𝒅𝒒
𝒓 =

𝝈
𝟒𝝅𝝐𝟎 𝐌𝐏

𝒅𝒔

But the distance 𝐌𝐏  is given by: 𝐌𝐏  = 𝑴�⃗� + 𝑶𝑷 = −𝒓 �⃗�𝒓 + 𝒛 �⃗�

𝐌𝐏 = 𝒓𝟐 + 𝒛𝟐

The element of surface is: 𝒅𝒔 = 𝒓 𝒅𝒓 𝒅𝜽

The total potential is equal to the sum of all effect of the whole charge

𝑽(𝑃) =  
𝝈

𝟒𝝅𝝐𝟎

𝒓
√𝒓𝟐 + 𝒛𝟐

 𝒅𝒓 𝒅𝜽
𝑹

𝟎
= 𝒅𝜽

𝟐𝝅

𝟎

𝟐𝝅

𝟎

𝝈
𝟒𝝅𝝐𝟎

𝒓
√𝒓𝟐 + 𝒛𝟐

  𝒅𝒓 
𝑹

𝟎

𝑽(𝑷) =
𝝈

𝟐𝝐𝟎
 𝒓𝟐 + 𝒛𝟐 𝑅

0 =
𝝈

𝟐𝝐𝟎
𝑹𝟐 + 𝒛𝟐 − |𝒛|

𝑽(𝑷) =
𝝈

𝟐𝝐𝟎

𝑹𝟐 + 𝒛𝟐 + 𝒛

𝑹𝟐 + 𝒛𝟐 − 𝒛
       

𝒊𝒇 𝒛 < 𝟎  

𝒊𝒇 𝒛 > 𝟎

C – VOLUME DISTRIBUTION WITH VOLUMS CHARGE DENSI

If the charge is distributed in the volume with a charge density 𝝆. To calculate the electric

potential at point P in the space. To do this we proceed as follows:

- Take an element of volume dv

- Assign the infinitesimal charge 𝒅𝒒 to that volume element

- Assume that element of charge produces an electric potential at point 𝑃

- Add all element of electric potential. This is done by integration over all charged

volume

Calculate the electric field of a uniformly charged sphere on

volume with density of charge 𝝆 at point 𝑷  exterior to the

sphere.

Let the volume element 𝑑𝑣 = 4𝜋𝑟2𝑑𝑟 whose charge is 𝑑𝑞.

Fig.42

z
zP

R

σ
r

M
ds

𝑢𝑟
o

dq

P

R 𝜌

dv

o

Fig.43
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That charge is equal to: 𝑑𝑞 = 𝜌 𝑑𝑣

This charge, produces an electric potential 𝑑𝑉 given by:

𝒅𝑽 =
𝟏

𝟒𝝅𝝐𝟎

𝒅𝒒
𝑶𝑷

=
𝝆
𝝐𝟎

𝒅𝒗
𝑶𝑷

=
𝝆
𝝐𝟎

𝒓𝟐

𝑶𝑷
𝒅𝒓

To compute the total electric potential due to the whole charge we integrate the expression

above over the sphere with 𝒓 varies between 𝟎 and 𝑹 in taking in count that the reference

is infinity and the potential at that point is zero

𝑽 =
𝝆
𝝐𝟎

𝒓𝟐

𝑶𝑷
𝒅𝒓

𝑹

𝟎
=

𝝆
𝟑𝝐𝟎

𝑹𝟑

𝒓

𝑶𝑷 = 𝒓

In general, to calculate a potential due to a continuous distribution, we take an

element of charge assumed to be point charge. Then find the expression of

potential for that element of charge. Finally, to compute the effect of the whole

charge we integrate over the shape of the distributed charge

𝒅𝒒 →
𝝀 𝒅𝒍
𝝈 𝒅𝒔
𝝆 𝒅𝒗

→ 𝒅𝑽 = 𝟏
𝟒𝝅𝝐𝟎

𝒅𝒒
𝒓

→ 𝑽 =

⎩
⎪
⎨

⎪
⎧ ∫ 𝝀 

𝟒𝝅𝝐𝟎

𝒅𝒍
𝒓

 

∬ 𝝈 
𝟒𝝅𝝐𝟎

𝒅𝒔
𝒓

∭ 𝝆 
𝟒𝝅𝝐𝟎

𝒅𝒗
𝒓

4– 3 GRAPHICAL REPRESENTATIONS OF ELCTRIC POTENTIAL:

 EQUIPOTENTIEL SURFACES

Like a field line, we can represent the electric potential in different point of the space. The

graphics are not a curve but a surface. In such surface it represents the same potential

over all its point which we call equipotential surface

An equipotential surface is a surface on which the electric potential is

the same everywhere. The easiest equipotential surfaces to visualize

are those that surround an isolated point charge. The potential at a

distance 𝑟 from a point charge 𝒒 is 𝑽 =  𝒌𝒒/𝒓. Thus, wherever 𝒓 is the

same, the potential is the same, and the equipotential surfaces are

spherical surfaces centered on the charge. There are an innite

number of such surfaces, one for every value of r. The larger the

distance r, the smaller is the potential of the equipotential surface.

Equipotential Surfaces

Fig.44
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Notice that the equipotential surfaces are represented in the same manner for positive

point charge as well as for a negative point charge.

For two equal opposite charges, the equipotential

surfaces are a deformed circle. They are squeezed

between the charges because the field in that region is

intense.

The field lines are always orthogonal to the

equipotential surfaces

Since the field lines are always orthogonal to the equipotential surfaces, so, we can find

the equation of these surfaces by resolving the following differential equation 𝐸 ∘  𝑑𝑙 = 0.

𝐄 ∘  𝒅𝒍 = 𝑬𝒙𝒅𝒙 + 𝑬𝒚𝒅𝒙 + 𝑬𝒛𝒅𝒛 = 𝟎

4 – 4 RELATIONSHIP BETWEEN ELECTRIC FIELD AND ELECTRIC POTENTIAL

We calculate the curl of the electric field and it was zero. This is due to the conservative

nature.

The vector field for a point charge is: �⃗� = 𝟏
𝟒𝝅𝜺𝟎

𝑸
𝒓𝟐 𝒖𝒓 = 𝜶

𝒓𝟐 𝒖𝒓

𝛁 ⋀ �⃗� =

𝚤 𝚥 �⃗�
𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧
𝐸𝑥 𝐸𝑦 𝐸𝑧

= 𝟎

The vector electrostatics field is irrotational. That property characterizes the conservative

quantity. So, the electric field is conservative

 Another way to express this feature is that its line integral between two points 𝐴 and 𝐵

or its integral along a loop is null

𝐸 . 𝑑𝑙 = 0

Using this fact and the two theorems, gradient theorem and curl (STOKES) theorem.

𝛻
𝑃𝑎𝑡ℎ

𝑓 ∘ 𝑑𝑙 = 𝑑𝑓
𝐵

𝐴
= 𝐹(𝐵) − 𝐹(𝐴)

𝐸 . 𝑑𝑙 = 0 = 𝛻 ⋀ �⃗� ∘ 𝑑𝑠

+ −

𝐸

Equipotential Surfaces

Field lines

Fig.45
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𝛻 ⋀ �⃗� = 𝟎

There is another identity in vector calculus: 𝛻 ⋀ 𝛻𝑓 = 0

𝛻
𝑃𝑎𝑡ℎ

𝑉 ∘ 𝑑𝑙 = 𝑑𝑉 = ∆𝑉 = − 𝐸  ∘  𝑑𝑙 = − 𝛻 ⋀ �⃗� ∘ 𝑑𝑠 = 𝛻 ⋀ 𝛻𝑓
𝑃𝑎𝑡ℎ

∘ 𝑑𝑠

�⃗� = −𝛻𝑉

5 – ELECTRIC DIPOLE

A pair of equal and opposite charges separated by a small distance is called an electric

dipole. The dipole is characterized by its dipole moment which is a vector whose

magnitude is either charge times the separation between the two opposite charges and

the direction is along the dipole axis from the negative to the positive charge.

The dipole moment is given by: 𝑷 = 𝑸. 𝑨𝑩 = 𝑸. 𝒂

5 – 1 ELECTRICAL POTENTIAL AND ELECTRICAL FIELD FOR A DIPOLE

ELECTRICAL POTENTIAL

At point will be created a potential equal to the sum of the potential created by each point

charge

𝑽(𝑴) = 𝑽𝑨 + 𝑽𝑩

𝑽𝑨 =
𝟏

𝟒𝝅𝝐𝟎

− 𝑸
𝒓−

         ,         𝑽𝑩 =
𝟏

𝟒𝝅𝝐𝟎

𝑸
𝒓+

𝑽(𝑴) =
𝑸

𝟒𝝅𝝐𝟎

𝟏
𝒓+

−
𝟏

𝒓−

�⃗�+ = 𝑨𝑶 + 𝑶�⃗� and �⃗�− = 𝑩�⃗� + 𝑶�⃗�

But

𝑨�⃗� = 𝒂
𝟐

 𝒊  + �⃗� and 𝑩𝑴 = �⃗�− = − 𝒂
𝟐

𝒊 + �⃗� with �⃗� = 𝒙 𝒊 +  𝒚 𝒋

Then

𝑨�⃗� = 𝒙 +
𝒂
𝟐  𝒊  + 𝒚 𝒋                 𝑩𝑴 = 𝒙 +

𝒂
𝟐  𝒊  + 𝒚 𝒋

𝑨�⃗� = 𝒓+ = 𝒙 +
𝒂
𝟐

𝟐
+ 𝒚𝟐                𝑩𝑴 = 𝒓− = 𝒙 −

𝒂
𝟐

𝟐
+ 𝒚𝟐               𝒓 = 𝒙𝟐 + 𝒚𝟐

Fig.46

𝑟

𝜃
𝑢𝑟

�⃗�
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𝑽(𝑴) =
𝑸

𝟒𝝅𝝐𝟎
⎝

⎛ 𝟏

𝒙 + 𝒂
𝟐

𝟐
+ 𝒚𝟐

−
𝟏

𝒙 − 𝒂
𝟐

𝟐
+ 𝒚𝟐

⎠

⎞

Which is a general expression of the potential due to two opposite point charges. To

calculate the potential for a dipole the point M is very far away ( 𝒓 >> 𝒂
𝟐

)

In this condition, we have an approximation to do

𝒙 +
𝒂
𝟐

𝟐
+ 𝒚𝟐 = (𝒙𝟐 + 𝒚𝟐) + 𝒂𝒙 +

𝒂
𝟐

𝟐
= 𝒓 𝟏 +

𝒂𝒙
𝒓 +

𝒂
𝟐𝒓

𝟐

Neglecting the term 𝒂
𝟐𝒓

𝟐
for this approximation and use the limited expansion, we get

𝟏
𝒓+

=
𝟏
𝒓 𝟏 +

𝒂𝒙
𝒓

−𝟏
𝟐

=
𝟏
𝒓 𝟏 +

𝒂𝒙
𝒓𝟐

−𝟏
𝟐

=
𝟏
𝒓 𝟏 −

𝟏
𝟐

𝒂𝒙
𝒓𝟐

𝟏
𝒓−

=
𝟏
𝒓 𝟏 −

𝒂𝒙
𝒓

−𝟏
𝟐

=
𝟏
𝒓 𝟏 −

𝒂𝒙
𝒓𝟐

−𝟏
𝟐

=
𝟏
𝒓 𝟏 +

𝟏
𝟐

𝒂𝒙
𝒓𝟐

𝑽(𝑴) =
𝑸

𝟒𝝅𝝐𝟎

𝒂𝒙
𝒓𝟑 =

𝑸
𝟒𝝅𝝐𝟎

𝒂𝒙

(𝒙𝟐 + 𝒚𝟐)𝟑
𝟐

Which can be written in the form

𝑽(𝑴) =
𝟏

𝟒𝝅𝝐𝟎

𝑸𝒂𝒙
𝒓𝟐 =

𝟏
𝟒𝝅𝝐𝟎

(𝑸𝒂)(𝒓 𝒄𝒐𝒔𝜽)
𝒓𝟑 =

𝟏
𝟒𝝅𝝐𝟎

𝑷 ∘ 𝒖𝒓

𝒓𝟐

The potential depends on the inverse of squared distance between midpoint of the dipole

and the point M.

ELECTRICAL FIELD

The electric field is calculated by using the relationship between the potential and the

electric field �⃗� = −𝛻𝑉

We can use the cylindrical coordinate system or cartesian coordinate system

- Cylindrical coordinate system

�⃗� = 𝑬𝒓𝒖𝒓 + 𝑬𝜽𝒖𝜽 + 𝑬𝒛�⃗� = −𝛻𝑉 = −
𝝏𝑽
𝝏𝒓 𝒖𝒓 +

𝟏
𝒓

𝝏𝑽
𝝏𝜽 𝒖𝜽 +

𝝏𝑽
𝝏𝒛 �⃗�

The radial component

𝑬𝒓 = −
𝝏𝑽
𝝏𝒓 = −

𝟏
𝟒𝝅𝝐𝟎

𝝏
𝝏𝒓

𝑷 𝒄𝒐𝒔𝜽
𝒓𝟐 =

𝟏
𝟒𝝅𝝐𝟎

𝟐 𝑷 𝒄𝒐𝒔𝜽
𝒓𝟐

The transverse component
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𝑬𝜽 = −
𝟏
𝒓

𝝏𝑽
𝝏𝜽 = −

𝟏
𝟒𝝅𝝐𝟎

𝟏
𝒓

𝝏
𝝏𝜽

𝑷 𝒄𝒐𝒔𝜽
𝒓𝟐 =

𝟏
𝟒𝝅𝝐𝟎

 𝑷 𝒔𝒊𝒏𝜽
𝒓𝟐

𝑬𝒛 = 𝟎

The electric field has the components

⎩
⎨

⎧𝑬𝒓 = 𝟏
𝟒𝝅𝝐𝟎

𝟐 𝑷 𝒄𝒐𝒔𝜽
𝒓𝟐

𝑬𝜽 = 𝟏
𝟒𝝅𝝐𝟎

 𝑷 𝒔𝒊𝒏𝜽
𝒓𝟐

𝑬𝒛 = 𝟎                

- Cartesian coordinate system

�⃗� = 𝑬𝒙 𝒊 + 𝑬𝒚 �⃗� + 𝑬𝒛 𝒌 = −𝜵𝑽 = −
𝝏𝑽
𝝏𝒙 𝒊 +

𝝏𝑽
𝝏𝒚 𝒋 +

𝝏𝑽
𝝏𝒛 �⃗�

The ‘x’ component

𝑬𝒙 = −
𝝏𝑽
𝝏𝒙 = −

𝟏
𝟒𝝅𝝐𝟎

𝝏
𝝏𝒙

𝑷𝒙

(𝒙𝟐 + 𝒚𝟐)𝟑
𝟐

=
𝑷

𝟒𝝅𝝐𝟎

𝟏

(𝒙𝟐 + 𝒚𝟐)𝟑
𝟐

−
𝟑𝒙𝟐

(𝒙𝟐 + 𝒚𝟐)𝟓
𝟐

The ‘y’ component

𝑬𝒚 = −
𝝏𝑽
𝝏𝒙 = −

𝟏
𝟒𝝅𝝐𝟎

𝝏
𝝏𝒙

𝑷𝒙

(𝒙𝟐 + 𝒚𝟐)𝟑
𝟐

=
𝑷

𝟒𝝅𝝐𝟎

𝟑𝒙𝒚

(𝒙𝟐 + 𝒚𝟐)𝟓
𝟐

The ‘z’ component

𝑬𝒛 = −
𝝏𝑽
𝝏𝒛 = 𝟎

The electric field has the components

⎩
⎪
⎨

⎪
⎧𝑬𝒙 = 𝑷

𝟒𝝅𝝐𝟎

𝟏

𝒙𝟐+𝒚𝟐
𝟑

𝟐
− 𝟑𝒙𝟐

𝒙𝟐+𝒚𝟐
𝟓

𝟐

𝑬𝒚 = 𝑷
𝟒𝝅𝝐𝟎

𝟑𝒙𝒚

𝒙𝟐+𝒚𝟐
𝟓

𝟐
                      

𝑬𝒛 = 𝟎                                                 

5 – 2 A DIPOLE IN UNIFORME ELECTRICAL FIELD

When the dipole is in a uniform electric field �⃗� = 𝑬𝟎 𝒋, each charge experiences a force

The positive charge experiences a force 𝑭+ = 𝑸. �⃗� which

has the same direction as the electric field

The negative charge experiences a force 𝑭− = −𝑸. �⃗�

which has the opposite direction to the electric field

We see that the net force is zero

a
o

�⃗�+

�⃗�−

𝐸

A

B

y

x

z

Fig.47𝜏

𝜃
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𝑭𝒏𝒆𝒕 = 𝑭+ + 𝑭− = 𝟎

The dipole has no translational motion. But the application points of these forces are not

same. So, they produce a rotational motion, about the center of mass of the dipole

characterized by the torque �⃗�

The force 𝑭+ Produces a torque �⃗�+: �⃗�+ = 𝑶𝑨 ⋀ 𝑭+ = 𝑶𝑨 ⋀ 𝑸. �⃗�

The force 𝑭− Produces a torque �⃗�−: �⃗�− = 𝑶�⃗� ⋀ 𝑭− = 𝑶�⃗� ⋀ −𝑸. �⃗� = −𝑶�⃗� ⋀ 𝑸. �⃗�

The net torque that a dipole experience is:

�⃗� = �⃗�+ + �⃗�− = 𝑸 𝑶𝑨 − 𝑶�⃗�  ⋀ �⃗� = 𝑸𝑨𝑩 ⋀ �⃗�

�⃗� = 𝑷 ⋀ �⃗� = −𝑷𝑬 𝒔𝒊𝒏𝜽 𝒌

The torque has the tendency to align the dipole along the direction of the field

In the case of a molecule assimilated to a dipole, point A represents the center of gravity

of the negative charges and point B the center of gravity of the charges

ELECTRICAL POTENTIAL ENERGY

When the torque rotates the dipole, amount of work is done in the system, which is

related to the potential energy

∆𝑼 = 𝑼𝑩 − 𝑼𝑨 = 𝑸(𝑽𝑩 − 𝑽𝑨)

The infinitesimal work done in the system is

𝒅𝑾 = 𝝉. 𝒅𝜽 = 𝑷𝑬 𝒔𝒊𝒏𝜽𝒅𝜽

⟹      𝑾 = −𝑬 𝒔𝒊𝒏𝜽𝒅𝜽
𝜽

𝝅
𝟐

=  −𝑷𝑬 𝒄𝒐𝒔𝜽
𝜽

𝝅
𝟐

= −𝑷𝑬𝒄𝒐𝒔𝜽

𝑼 = −𝑷𝑬𝒄𝒐𝒔𝜽 = −𝑷 ∘ �⃗�

5 – 3 A DIPOLE IN NON-UNIFORM ELECTRICAL FIELD

When the dipole is placed in non-uniform electric field �⃗�(�⃗�), the

forces experienced by the negative and positives are opposites but

not with the same magnitudes. So, the net force in this case will

not be zero. The dipole seems to be in translational motion, in

addition to a rotational motion due to the presence of a torque.

�⃗�+

+

𝐸o

�⃗�−

Fig.48
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6 – ELECTRIC FLUX AND GAUSS’s THEOREM

6 -1 Solid Angle

The plane angle is the surface defined between two lines. If we want to sweep the whole

plane, the angle is 𝟐𝝅 (Fig.49 - a)

We see the arc (curved line) 𝑨𝑩 is subtended by the angle 𝜃

such that its length is 𝑨𝑩 = 𝑹𝜽

If we want to see the surface 𝑺 subtended by a cone from the

point 𝑂 we will sweep an angle in the space, such angle is

called solid angle. The unit is steradian

The solid angle Ω is the angle under which we see the

surface 𝑺 at the distance 𝑹 from the point 𝑶 in all space.

Ω =
𝑺

𝑹𝟐

For an element of surface on the sphere

𝒅𝑺 = 𝒓𝟐 𝒔𝒊𝒏𝜽 𝒅𝜽 𝒅𝝋     ⟹      𝒅Ω =
𝒅𝑺
𝒓𝟐      

𝒅Ω = 𝒔𝒊𝒏𝜽 𝒅𝜽 𝒅𝝋

The total angle subtended by all space is:

Ω = 𝒅Ω = 𝒔𝒊𝒏𝜽 𝒅𝜽 𝒅𝝋 = 𝒔𝒊𝒏𝜽 𝒅𝜽
𝝅

𝟎
 𝒅𝝋

𝟐𝝅

𝟎

Ω = 𝟒𝝅

6 -2 Electric Flux

The flux is the flow of a vector through a cross section, or the number of force lines of

vector that pass normally through that surface (Density of force lines)

Fig.49-aO

A

B

𝜃

Fig.49-B

O

Surface

R

S

Fig.1-a

Fig.50-a

�⃗�𝐴

Surface 𝜃

Fig.50-b

𝐴

�⃗�

Surface

Fig.50-c

𝐴 �⃗�
Surface
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From the figures above (Fig. 50 – a, b, c), one can see that in figure left there is a maximum

of force lines of the vector 𝐴 that pass through the surface 𝑺, which is perpendicular to

the vector field 𝐴 (the two vectors are parallel 𝐴 ∥ 𝑆). When the surface is inclined with an

angle 𝜃 the number of force lines decreases, which become zero when the surface is

parallel to the direction of this force lines.

From that we can see that the flux is maximal when the surface is orthogonal to the

vector field and decrease when this surface is tilted until become null when the surface

become parallel to the vector field. So, the flux is proportional to the number of force lines

(intensity) of the vector field and the surface penetrating by these lines.

We can express the flux as follows:

Ф = 𝑨⊥𝑺

𝐴⊥: is the component of the vector that is orthogonal to the surface 𝑨⊥ = 𝑨 𝒄𝒐𝒔𝜽

𝑆: is the area of the surface 𝑺 = 𝑺 𝒏

The flux Ф is a scalar quantity. We can write the expression in the vector form as:

Ф = 𝑨⊥𝑺 = 𝑨 . 𝒄𝒐𝒔𝜽. 𝑺 = 𝑨 ∘ 𝑺

If the vector 𝐴 is an electric field vector, its flux over a surface 𝑆 is given by:

Ф = �⃗� ∘ 𝑺

The unit of the flux is a WEBER which is 𝑁
𝐶

𝑚2

This expression is given for a uniform vector field. We know in general the field is variable

for one point to another, So, we can define an element of surface 𝒅𝑺, through which pass

a vector field �⃗�, considered constant over that element of surface. And the element that

correspond to that is:

𝒅Ф = �⃗� ∘ 𝒅𝑺

To find the total electrical flux, we must integrate over a whole surface

Ф = 𝒅Ф = �⃗� ∘ 𝒅𝑺
𝒔

Electrical flux through a circular surface (Disc)

A point charge 𝑸 placed at O produces an electric field �⃗�. What is the electric flux through

the circular surface of radius 𝑹 at a distance 𝒍 from the point charge?
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The point charge creates an electric field in all direction in the space. The line field that

passe through the disc of radius R form a cone, and the electric field at different point of

its surface is different. So, we use the form integral to calculate the electric flux through

that surface.

We take an element of surface 𝒅𝑺 which cut a portion of the cone and the flus trough that

surface is 𝒅Ф

𝒅Ф = �⃗� ∘ 𝒅𝑺        ⟹      Ф = �⃗� ∘ 𝒅𝑺 

From the figure we see that

𝒅𝑺 = 𝟐𝝅 𝒓 𝒅𝒓�⃗�

and the electric field on the ring is given by

�⃗� =
𝟏

𝟒𝝅𝜺𝟎

𝑸
(𝒓𝟐 + 𝒍𝟐) 𝒖𝒓

The total electric flux through the disc is given by

Ф = �⃗� ∘ 𝒅𝑺 =
𝟏

𝟒𝝅𝜺𝟎

𝑸
(𝒓𝟐 + 𝒍𝟐) 𝒖𝒓 ∘

𝑹

𝟎
𝟐𝝅 𝒓 𝒅𝒓 𝒌

Ф =
𝑸

𝟒𝜺𝟎

𝒓 𝒅𝒓
(𝒓𝟐 + 𝒍𝟐) 𝒖𝒓 ∘ �⃗�

𝑹

𝟎
=

𝑸
𝟒𝜺𝟎

𝟐𝒓 𝒅𝒓
(𝒓𝟐 + 𝒍𝟐) 𝒄𝒐𝒔 𝜽

𝑹

𝟎

𝒄𝒐𝒔 𝜽 =
𝒍

√𝒓𝟐 + 𝒍𝟐

Ф =
𝑸 𝒍
𝟒𝜺𝟎

𝟐𝒓 𝒅𝒓

(𝒓𝟐 + 𝒍𝟐)𝟑
𝟐

𝑹

𝟎
=

𝑸 
𝟐𝜺𝟎

𝟏 −
𝒍

√𝑹𝟐 + 𝒍𝟐

Fig.51-a

l

R

Q

𝐸
Q

𝐸

x

y

z

Fig.51-b

𝑢𝑟
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Now, let see the electric flux of point charge when it is outside the surface or inside it

- Electric flux of point charge outside a closed the surface

The point charge is outside the surface. The first elementary

surface encountered by the electrical field is at distance 𝒓𝟏

from the point charge and in the opposite direction of the

electric field 𝐸, 𝑑𝑆 = 180° = 𝜋 . The second elementary

surface encountered is at the distance 𝒓𝟐  from the point

charge and is in the same direction as the electric field

𝐸, 𝑑𝑆 = 0°.

The field created at the first surface is:

�⃗�𝟏 =
𝟏

𝟒𝝅𝝐𝟎

𝑸
𝒓𝟏

𝟐 𝒖𝒓

The flux through that surface is:

𝒅Ф𝟏 = �⃗�𝟏 ∘ 𝒅𝑺 =
𝟏

𝟒𝝅𝝐𝟎

𝑸
𝒓𝟏

𝟐 𝒖𝒓 ∘ 𝒅𝑺 = −
𝑸

𝟒𝝅𝝐𝟎

𝒅𝑺
𝒓𝟏

𝟐 = −
𝑸

𝟒𝝅𝝐𝟎
𝒅𝛀

The field created at the first surface is:

�⃗�𝟐 =
𝟏

𝟒𝝅𝝐𝟎

𝑸
𝒓𝟐

𝟐 𝒖𝒓

The flux through that surface is:

𝒅Ф𝟐 = �⃗�𝟐 ∘ 𝒅𝑺 =
𝟏

𝟒𝝅𝝐𝟎

𝑸
𝒓𝟐

𝟐 𝒖𝒓 ∘ 𝒅𝑺 =
𝑸

𝟒𝝅𝝐𝟎

𝒅𝑺
𝒓𝟐

𝟐 =
𝑸

𝟒𝝅𝝐𝟎
𝒅𝛀

The total flux is the sum of all field line through the total surface.

𝒅Ф = 𝒅Ф𝟏 + 𝒅Ф𝟐 = 𝟎

We see that the number of line field penetrating the surface is the same leaving it so the

total flux is zero

- Electric flux of point charge inside a closed the surface

The first elementary surface encountered by the electrical field is

at distance 𝒓  from the charge. In this case whatever is the

element of surface, it is always parallel to the vector field. So, at

each point of the surface the flux is positive. The total flux is the

sum of this elemets who are positve. From the figure the field

lines issue from the charge all leaves the closed surface

𝒅Ф = �⃗� ∘ 𝒅𝑺        ⟹      Ф = �⃗� ∘ 𝒅𝑺

Ф =
𝟏

𝟒𝝅𝝐𝟎

𝑸
𝒓𝟐 𝒖𝒓 ∘ 𝒅𝑺 =

𝑸
𝟒𝝅𝝐𝟎

𝒅𝑆
𝒓𝟐 =

𝑸
𝟒𝝅𝝐𝟎

𝒅𝛀

Solid Angle 𝑑Ω
𝑑𝑆

Fig.52

Q

Fig.53

𝑟

�⃗�

𝐸
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For all space 𝛀 = 𝟒𝛑, then

Ф =
𝑸
𝝐𝟎

6 -3 GAUSS’ Law

In previous calculus, to found electric field due to one., several and continuous density

of charge, is a labor intensive when using Coulomb’s law. An alternative way to do this

in simply few steps, when we exploit the symmetry distribution of the charge. This

relationship for finding the field in this manner is called GAUSS ‘law

Starting from the fact that the flux is independent on the

shape of the closed surface. i.e., all the field lines starting

from the point charge pass through the regular surface 𝑺 ’,

also through the irregular shape 𝑺

Ф = �⃗� ∘ 𝒅𝑺
𝑺 ’

= �⃗� ∘ 𝒅𝑺
𝑺

The electric field created by a point charge is given by

�⃗� =
𝟏

𝟒𝝅𝝐𝟎

𝑸
𝒓𝟐 𝒖𝒓

The element of surface is:

𝒅𝑺 = 𝒅𝑺 �⃗�

𝒖𝒓 = 𝒏

Ф = �⃗� ∘ 𝒅𝑺
𝑺 ’

= 𝑬 𝒅𝑺
𝑺

=
𝑸

𝟒𝝅𝝐𝟎

𝒅𝑺
𝒓𝟐  𝒅𝑺

𝑺

Ф = �⃗� ∘ 𝒅𝑺
𝑺 ’

=
𝑸
𝝐𝟎

GAUSS’ Law

The flux through a surface is equal to the charge enclosed on

the permittivity of the medium

Ф = �⃗� ∘ 𝒅𝑺
𝑺

=
𝑸𝒆𝒏𝒄

𝝐𝟎

𝑸𝒆𝒏𝒄 are the all charges inside the GAUSS surface

Regular Surface S’

Irregular Surface S

Q

𝐸

𝑢𝑟

Fig.54-a

Q

Surface S

𝐸

𝑑𝑆

Fig.54-b

𝑺

Fig.55



60

Some features of Gauss surface

1- Gauss’s law is true for any closed surface, no matter what its shape or size.

2- The term 𝑸𝒆𝒏𝒄  on the right side of Gauss’s law, includes the sum of all charges

enclosed by the surface. The charges may be located anywhere inside the surface.

3- In the situation when the surface is so chosen that there are some charges inside and

some outside, the electric field is due to all the charges, both inside and outside S.

The term 𝑸𝒆𝒏𝒄 on the right side of Gauss’s law, however, represents only the total

charge inside S.

4- The surface that we choose for the application of Gauss’s law is called the Gaussian

surface. You may choose any Gaussian surface and apply Gauss’s law. However,

take care not to let the Gaussian surface pass through any discrete charge. This is

because electric field due to a system of discrete charges is not well defined at the

location of any charge. (As you go close to the charge, the field grows without any

bound.) However, the Gaussian surface can pass through a continuous charge

distribution.

5- Gauss’s law is often useful towards a much easier calculation of the electrostatic field

when the system has some symmetry. This is facilitated by the choice of a suitable

Gaussian surface.

6- Finally, Gauss’s law is based on the inverse square dependence on distance

contained in the Coulomb’s law. Any violation of Gauss’s law will indicate departure

7- The surface should be chosen in such a way that at every point of surface electric

field strength is either parallel or perpendicular to the surface.

8- Flux through Gaussian surface is independent of its shape.

9- Flux through Gaussian surface depends only on total charge present inside Gaussian

surface.

10- Flux through Gaussian surface is independent of position of charges inside Gaussian

surface.

11- Flux due to field lines entering a closed surface is taken as negative and flux due to

field lines leaving a surface is taken as positive. This is because 𝒏 is taken positive

in outward direction.

12- In a Gaussian surface Ф = 𝟎  does not imply 𝑬 = 𝟎 at every point of the surface but

𝑬 = 𝟎 at every point implies Ф = 𝟎  .
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Surface S1

The electric field is outward for all points on the surface. Thus, the

flux of electric field through this surface is positive, and so is the net

charge within the surface

Surface S2

The electric field is inward for all points on the surface. Thus, the flux

of electric field through this surface is negative, and so is the

enclosed charge, as Gauss’ law requires

Surface S3

This surface encloses no charge (𝑸𝒆𝒏𝒄 = 𝟎). Gauss’ law requires that

the net flux of the electric field through this surface be zero. This is

reasonable, because the number of field lines entering from one side

leave it from the other side.

Surface S4

This surface encloses no net charge ( 𝑸𝒆𝒏𝒄 = 𝟎 ), because the enclosed positive and

negative charges have equal magnitudes. Gauss’ law requires that the net flux of the

electric field through this surface be zero. This is reasonable, because there are as many

field lines entering the surface as leaving it.

Worked examples

Example - 01

What is the field in all point of space due to a positive charged particle?

The particle is a point charge, so we have a spherical symmetry. Thus, Gauss law is

powerful to calculate an electric field at any point of space.

Let a point A where we want to calculate the field at distance 𝒓

from the charged particle.

The convenient Gaussian surface is a sphere (spherical

symmetry) whose radius is the distance 𝒓  from the charged

particle, taken as center, to the desired point which is on that

surface.

To calculate the flux through that surface we will define the

direction of the element surface. In this case it is always outward in the radial direction.

The same direction is that of the field at a desired point.

𝒅𝑺 = 𝒅𝑺 𝒏             𝒖𝒓 = 𝒏                    �⃗� = 𝑬 𝒖𝒓

Fig.56

+Q

𝑟

𝑑𝑆

Fig.57
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By applying the Gauss’ law

Ф = �⃗� ∘ 𝒅𝑺
𝑺𝑮

=
𝑸𝒆𝒏𝒄

𝝐𝟎

SG: is the Gaussian surface (sphere)

Qenc: is the charge inside the Gaussian sphere

𝑬: The magnitude of the electric field is constant on the Gaussian surface. Because it

depends only on the distance from the charge, which is the radius of the sphere.

Ф = �⃗� ∘ 𝒅𝑺
𝑺𝑮

= 𝑬 𝒅𝑺 𝒄𝒐𝒔(𝑬, 𝒅𝑺)
𝑺𝑮

�⃗� ∥ 𝒅𝑺             ⟹    𝒄𝒐𝒔(�⃗�, 𝒅𝑺) = 𝟏         

𝑬 𝒅𝑺 𝒄𝒐𝒔(𝑬, 𝒅𝑺)
𝑺𝑮

= 𝑬 𝒅𝑺 
𝑺𝑮

= 𝑬 𝒅𝑺
𝑺𝑮

= 𝑬 𝑺

𝑺 is the surface of sphere: 𝑺 = 𝟒𝝅 𝒓𝟐 and 𝑸𝒆𝒏𝒄 = +𝑸

𝑬 𝑺 = 𝑬 (𝟒𝝅 𝒓𝟐) = +𝑸/𝝐𝟎    ⟹       𝑬 =   
𝑸

𝟒𝝅 𝝐𝟎𝒓𝟐 

Finally, because the electric field is in the radial direction its well defined

�⃗� =   
𝑸

𝟒𝝅 𝝐𝟎𝒓𝟐 𝒖𝒓

Example - 02

A long positively charged wire having a linear charge density 𝝀 uniformly distributed. By

using Gauss’s law, calculate the electric field strength at a point 𝑷 located at distance 𝒓

from the wire.

The convenient Gaussian surface is a cylinder (cylindrical

symmetry) surrounding the line charge with Hight 𝒍  and

radius 𝒓 which is the distance from the charged wire, taken

as axis, to the desired point 𝑷 which is on that surface.

The closed surface is composed by the lateral surface II, the

upper surface I and the lower surface III

Since the distributed charge has a cylindrical symmetry, the

field is in the plane of symmetry. i.e., it is oriented in the radial

direction �⃗� = 𝑬 𝒖𝒓.

𝑟
𝐸

𝑆𝐼

𝑆𝐼𝐼

𝑆𝐼𝐼𝐼

𝑃𝑙
𝑢𝑟

�⃗�

Fig.58
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Gauss’ Law:

Ф = �⃗� ∘ 𝒅𝑺
𝑺𝑮

= �⃗� ∘ 𝒅𝑺
𝑺𝑰

+ �⃗� ∘ 𝒅𝑺
𝑺𝑰𝑰

+ �⃗� ∘ 𝒅𝑺
𝑺𝑰𝑰𝑰

𝒅𝑺𝑰 = 𝒅𝑺 �⃗� 𝒅𝑺𝑰𝑰 = 𝒅𝑺 𝒖𝒓 𝒅𝑺𝑰𝑰𝑰 = − 𝒅𝑺 �⃗�

Ф = 𝑬 𝒅𝑺 𝒄𝒐𝒔(
𝝅
𝟐)

𝑺𝑰

+ 𝑬 𝒅𝑺 𝒄𝒐𝒔(−
𝝅
𝟐)

𝑺𝑰𝑰𝑰

+ 𝑬 𝒅𝑺 𝒄𝒐𝒔(𝟎)
𝑺𝑰𝑰

On the surface of the Gaussian surface (cylinder) the magnitude of the field is constant,

so the flux through the closed surface is:

Ф = 𝑬 𝒅𝑺
𝑺𝑰𝑰

= 𝑬 𝒅𝑺
𝑺𝑰𝑰

= 𝑬𝑺𝑰𝑰

The enclosed charge for that surface is

𝑸𝒆𝒏𝒄 = 𝝀 𝒍

The lateral surface 𝑺𝑰𝑰 has the area:

𝑺𝑰𝑰 = 𝟐 𝝅 𝒍

Finally, the Gauss’ Law gives:

𝑬𝑺𝑰𝑰 = 𝑬(𝟐 𝝅 𝒍) =
𝑸𝒆𝒏𝒄

𝝐𝟎
=

𝝀 𝒍
𝝐𝟎

�⃗� =
𝝀

𝟐 𝝅𝝐𝟎
𝒖𝒓

ABOUT SYMMETRY

We often encounter systems with various symmetries. Consideration of these symmetries

helps one arrive at results much faster than otherwise by a straightforward calculation.

Consider, for example an infinite uniform sheet of charge (surface charge density 𝜎) along

the y-z plane. This system is unchanged if

(a) - translated parallel to the y-z plane in any direction,

(b) - rotated about the x-axis through any angle.

As the system is unchanged under such symmetry operation, so must its properties be.

In particular, in this example, the electric field E must be unchanged.

Translation symmetry along the y-axis shows that the electric field must be the same at

a point (0, 𝑦1, 0) as at (0, 𝑦1, 0). Similarly translational symmetry along the z-axis shows

that the electric field at two point (0, 0, z1) and (0, 0, z2) must be the same. By using
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rotation symmetry around the x-axis, we can conclude that E must be perpendicular to

the y-z plane, that is, it must be parallel to the x-direction.

Try to think of a symmetry now which will tell you that the magnitude of the electric field

is a constant, independent of the x-coordinate. It thus turns out that the magnitude of the

electric field due to a uniformly charged infinite conducting sheet is the same at all points

in space. The direction, however, is opposite of each other on either side of the sheet.

Compare this with the effort needed to arrive at this result by a direct calculation using

Coulomb’s law.

As mentioned earlier, Gauss’s law is useful for determining electric fields when the

charge distribution is highly symmetric. The following examples demonstrate ways of

choosing the gaussian surface over which the surface integral can be simplified and the

electric field determined. In choosing the surface, always take advantage of the

symmetry of the charge distribution so that E can be removed from the integral. The goal

in this type of calculation is to determine a surface for which each portion of the surface

satisfies one or more of the following conditions:

GAUSS LAW IN DIFFERENTIAL FORM

In the above we have used the GAUSS’ Law in its integral form, what is its differential

form that we will deduce in the next.

By using the divergence theorem, which states that the flux of any vector through any

closed surface is equal to the integral of its divergence on the volume delimited by this

closed surface.

Let �⃗� be an electrostatic field due to certain charge 𝑸

�⃗� ∘ 𝒅𝑺 = 𝛁 ∘ �⃗� 𝒅𝒗

GAUSS’ Law in form integral is:

Ф = �⃗� ∘ 𝒅𝑺 =
𝑸𝒆𝒏𝒄

𝝐𝟎

But the enclosed charge is given by

𝑸𝒆𝒏𝒄 = 𝝆 𝒅𝒗

Then

�⃗� ∘ 𝒅𝑺 =
∭ 𝝆 𝒅𝒗

𝝐𝟎
=

𝝆
𝝐𝟎

𝒅𝒗 = 𝛁 ∘ �⃗� 𝒅𝒗

Finally, we deduce that



65

𝝆
𝝐𝟎

= 𝛁 ∘ �⃗�

Which is the GAUSS’ Law in its differential form

LAPLACE EQUATION AND POISSON EQUATION

The procedure for determining the electric field E in the preceding chapters has generally

been to use either Coulomb’s law or Gauss’s law when the charge distribution is known,

or when the potential V is known throughout the region. In most practical situations,

however, neither the charge distribution nor the potential distribution is known. In, we

shall consider practical electrostatic problems where only electrostatic conditions (charge

and potential) at some boundaries are known and it is desired to find E and V throughout

the region. Such problems are usually tackled using Poisson’s or Laplace’s equation or

the method of images, and they are usually referred to as boundary value problems. The

concepts of resistance and capacitance will be covered. We shall use Laplace’s equation

in deriving the resistance of an object and the capacitance of a capacitor.

7 CONDUCTORS AND CAPACITANCE

7 -1 CONDUCTORS AND THEIR PROPERTIES

Conductors (such as metals) possess a large number of free electrons. They are free

within the metal but not free to leave the metal. If there is an electric field, even is very

weak, in the conductor these free charges will experience a force which will set a current

flow. The free electrons form a kind of ‘gas’; they collide with each other and with the

ions, and move randomly in different directions. In an external electric field, they drift

against the direction of the field. When no current flows, the resultant force and the

electric field must be zero. Thus, under this, the conductor is in electrostatic equilibrium

the value of E at all points within a conductor is zero. In contrast insulators such as glass

or paper are materials in which electrons are attached to some particular atoms and

cannot move freely

- In metallic conductors, electrons of outer shells of the atoms are the free charges

while the immobile positive ions are the bound charges.

- In electrolytic conductors, both positive and negative ions are the free charges.

- In insulators, both electrons and the positive ions are the bound charges.

-
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7 -1- 1 CONDUCTORS PROPERTIES

When there is no net motion of charge within a conductor, the conductor is in electrostatic

equilibrium. A conductor in electrostatic equilibrium has the following properties:

1 - Inside a conductor, electrostatic field is zero

Consider a conductor, neutral or charged. There may also

be an external electrostatic field �⃗�𝟎. In the static situation,

when there is no current inside or on the surface of the

conductor, the electric field �⃗� is zero everywhere inside the

conductor. This fact can be taken as the defining property

of a conductor. A conductor has free electrons. As long as

electric field is not zero, the free charge carriers would

experience force and drift. In the static situation

(electrostatic equilibrium), the free charges have so

distributed themselves that the net electric field is zero

everywhere inside. The charges induced create a field �⃗�𝒊𝒏

which opposes the external field. The drift of charges

continues until the induced electric field cancel the external

field and we reach the electrostatic equilibrium

2 - The interior of a conductor can have no excess charge in the electrostatic equilibrium

A neutral conductor has equal amounts of positive and negative charges in every small

volume or surface element. When the conductor is charged, the excess charge can reside

only on the surface in the electrostatic equilibrium.

This follows from the Gauss’s law. Consider any

arbitrary volume element v inside a conductor. On the

closed surface S bounding the volume element v,

electrostatic field is zero. Thus, the total electric flux

through S is zero. Hence, by Gauss’s law, there is no

net charge enclosed by S. But the surface S can be

made as small as you like, i.e., the volume v can be

made vanishingly small. This means there is no net charge at any point inside the

conductor, and any excess charge must reside at the surface.

Ф = 𝑬 𝒅𝑺 = 𝟎
𝑺𝑮

=
𝑸𝒆𝒏𝒄

𝜺𝟎
                ⟹           𝑸𝒆𝒏𝒄 = 𝟎

Fig.59

𝐸0

𝑬𝒊𝒏

𝐸 = 𝐸0 + 𝐸𝑖𝑛

𝐸0 𝐸0

Fig.60
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𝑸𝒆𝒏𝒄 = 𝟎 means that there is no excess charge in the volume delimited by the surface

SG. Then, that excess charge, if it exists, it resides on the surface of the conductor

The field inside the cavity of conductor is also zero

3 - At the surface of a charged conductor, electrostatic field must be normal to the surface

at every point

If �⃗� were not normal to the surface, it would have some non-zero component along the

surface. Free charges on the surface of the conductor would then experience force and

move. To be in the electrostatic equilibrium situation, there is no motion of charges

therefore, �⃗� should have no tangential component. Thus, electrostatic field of a charged

conductor must be normal to the surface at every point. (For a conductor without any

surface charge density, field is zero even at the surface.)

4 - Electric field at the surface of a charged conductor is given by: �⃗� = (𝝈/𝜺𝟎) 𝒏

With 𝝈, the surface charge density and 𝒏 the unit vector normal to the surface in the

outward direction.

To derive the result, choose a short cylinder as the Gaussian

surface about any point P on the surface, as shown in Fig. The

cylinder is partly inside and partly outside the surface of the

conductor. It has a small area of cross section ∆𝑺  and

negligible height.

Just inside the surface, the electrostatic field is zero, just outside, the field is normal to

the surface with magnitude 𝐸. Thus, the contribution to the total flux through the cylinder

comes only from the outside (circular) cross-section of the cylinder. This, equals ± 𝑬 ∆𝑺

(positive for 𝝈 >  𝟎 , negative for 𝝈 <  𝟎 ), since over the small area ∆𝑺 , 𝑬  may be

considered constant and are parallel or antiparallel. The charge enclosed by the cylinder

is 𝝈. ∆𝑺

By Gauss’s law

𝑬 . ∆𝑺 =  
|𝝈| ∆𝑺

𝜺𝟎

𝑬 =  
|𝝈| 
𝜺𝟎

This gives the magnitude of the field and from the property 3 that electric field is normal

to the surface, we get the vector relation

�⃗� = (𝝈/𝜺𝟎)𝒏

Fig.61

𝑺
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This relation is true for both signs of 𝝈. For 𝝈  > 0, the electric

field is normal to the surface outward and for 𝝈   < 0, the

electric field is normal to the surface inward.

5 - Electrostatic potential is constant throughout the volume of the conductor and has the

same value (as inside) on its surface. The conductor is an equipotential volume

This follows from the properties 1 and 2 above. Since �⃗�  =  𝟎 inside the conductor and

has no tangential component on the surface, no work is done in moving a small test

charge within the conductor and on its surface. That is, there is no potential difference

between any two points inside or on the surface of the conductor. Hence, the result. If

the conductor is charged, electric field normal to the surface exists, this means potential

will be different for the surface and a point just outside the surface.

6. Electrostatic shielding

Consider a conductor with a cavity, with no charges inside the cavity. A remarkable

result is that the electric field inside the cavity is zero, whatever be the size and shape

of the cavity and whatever be the charge on the conductor and the external fields in

which it might be placed. We have proved a simple case of this result already: the electric

field inside a charged spherical shell is zero. The proof of the result for the shell makes

use of the spherical symmetry of the shell. But the vanishing of electric field in the

(charge-free) cavity of a conductor is, as mentioned above, a very general result. A related

result is that even if the conductor is charged or charges are induced on a neutral

conductor by an external field, all charges reside only on the outer surface of a conductor

with cavity.

Whatever be the charge and field configuration outside, any cavity in a conductor

remains shielded from outside electric influence: the field inside the cavity is always

zero. This is known as electrostatic shielding. The effect can be made use of in protecting

sensitive instruments from outside electrical influence.

6. The charge on the surface of the conductor are more concentrated in the shape of the

high curvature (small radius of curvature)

Let two conducting spheres, with radius 𝑹𝟏 and 𝑹𝟐 (𝑹𝟏 > 𝑹𝟐) charged on their surfaces

with distributions 𝝈𝟏  and 𝝈𝟐respectively, connected by a conductor wire (the system

-
Fig.59
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Fig.62



69

constitutes a single conductor). From the property of equipotential, the surfaces of these

two spheres and the wire are in the same potential 𝑽𝟐 = 𝑽𝟏

We know that the potential of the sphere at any position 𝒓 is given by:

𝑽(𝒓) =
𝟏

𝟒𝝅𝝐𝟎

𝑸
𝒓           ⟹          𝑽𝟏 =

𝟏
𝟒𝝅𝝐𝟎

𝑸𝟏

𝒓     ;     𝑽𝟐 =
𝟏

𝟒𝝅𝝐𝟎

𝑸𝟐

𝒓  

On the surface, these potentials become:

𝑽𝟏 = 𝟏
𝟒𝝅𝝐𝟎

𝑸𝟏
𝑹𝟏

    ;     𝑽𝟐 = 𝟏
𝟒𝝅𝝐𝟎

𝑸𝟐
𝑹𝟐

Since these spheres are conductor, the charge

resides only on the surface

𝑸𝟏 = 𝝈𝟏𝑺𝟏 = 𝟒𝝈𝟏𝝅𝑹𝟏
𝟐 and 𝑸𝟐 = 𝝈𝟐𝑺𝟐 = 𝟒𝝈𝟐𝝅𝑹𝟐

𝟐

So, 𝑽𝟏 = 𝟏
𝟒𝝅𝝐𝟎

𝟒𝝈𝟏𝝅𝑹𝟏
𝟐

𝑹𝟏
= 𝝈𝟏𝑹𝟏

𝝐𝟎
, and 𝑽𝟐 = 𝟏

𝟒𝝅𝝐𝟎

𝟒𝝈𝟐𝝅𝑹𝟐
𝟐

𝑹𝟐
= 𝝈𝟐𝑹𝟐

𝝐𝟎

But all the system is in the same potential:

𝑽𝟐 = 𝑽𝟏      ⟹       𝝈𝟏𝑹𝟏 = 𝝈𝟐𝑹𝟐  

Now the ration 𝑹𝟏/𝑹𝟐 > 𝟏 ⟹ 𝝈𝟏 < 𝝈𝟐

The small sphere has more concentration of charges than the big sphere

The field in the vicinity of the small sphere is more intense than the big sphere. From the

property of conductor 𝑬 =  𝝈 
𝜺𝟎

, 𝑬𝟐 > 𝑬𝟏

There a relation between the charge 𝑸 of the conductor and the potential on its surface

𝑽. There is some proportionality, more the charge increased more the potential also.

𝑸 = 𝑪. 𝑽

C is the proportionality constant which we call capacitance

𝑪 = 𝑸/𝑽

For a spherical conducting sphere currying a charge 𝑸, the potential on its surface is:

𝑽 =
𝑸

𝟒𝝅𝜺𝟎
            ⟹              𝑪 = 𝑸/𝑽 = 𝟒𝝅𝜺𝟎

The earth is a big conductor with capacitance 𝑪𝒆 ≈  𝟕𝟏𝟎 𝝁𝑭

Consider a parallel plate capacitor with plate area 𝑺. Suppose a positive charge +𝑸 is

given to one plate and negative charge −𝑸 to the other plate. The electric field due to the

plate carrying positive charge is 𝑬 = 𝝈/𝟐𝜺𝟎 = 𝑸/(𝟐𝑺𝜺𝟎) at all points if the plate is large.

𝑉2
𝑉1

Conducting wire𝝈𝟏

𝝈𝟐𝑹𝟏

𝑹𝟐Fig.63
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On the other hand, the plate carrying the negative charge finds itself in the field of the

positive charge. Therefore, it experiences a force 𝑭 = 𝑸𝑬 = 𝑸𝟐/(𝟐𝑺𝜺𝟎), which is attractive.

7 -1- 2 Energy Density (Energy per unit volume)

Consider a plate parallel capacitor, with 𝑆  the area of the plate and d the plate

separation. Let the charge on this capacitor be 𝑄, then the electric field in the region

between the plates is: 𝑬 = 𝝈/𝜺𝟎 = 𝑸/(𝑺𝜺𝟎).

The volume of the capacitor is: 𝒗 = 𝑺. 𝒅

The energy stored in the field is:

Suppose that at a given instant, a charge 𝑞′ has been transferred from one plate of

capacitor to the other. The potential difference 𝑉′ between the plates at that instant

will be q′/C. If an extra increment of charge 𝑑𝑞′ is the transferred, the increment in

the work required will be

𝒅𝑾 = 𝑽′ 𝒅𝒒′ =
𝒒′
𝑪 𝒅𝒒′ 

The work required to bring the total capacitor charge up to a final value Q is

𝑾 =
𝒒′
𝑪 𝒅𝒒 =

𝑸

𝟎

𝟏
𝟐

𝑸𝟐

𝑪

This work is stored as potential energy 𝑼 in the capacitor, so that

𝑼 = 𝑸𝟐/𝟐𝑪 = 𝑸𝟐𝒅/𝟐𝑺𝜺𝟎 = (𝑸/𝑺𝜺𝟎)𝟐 𝟏
𝟐 𝜺𝟎𝑺 . 𝒅

The energy density is: 𝑼/𝒗 = 𝒖 = 𝟏
𝟐

(𝑸/𝑺𝜺𝟎)𝟐𝜺𝟎 = 𝟏
𝟐

𝜺𝟎𝑬𝟐

�⃗�

+𝑄 −𝑄

�⃗�

𝑑

Fig.64
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7 -1- 3 ELECTROSTATIC INFLUENCE

Let A be a neutral conductor, when it is placed in the electric field it will be polarized,

creation a negative and a positive charges separately. The field lines end at the negative

charge, then starts from the positive charge and go to infinity.

Let A be a conductor positively charged, it creates an electric field.

It influences another neutral conductor B put near it.

The conductor B, will be polarized, the facing side is negatively

charged, while the opposite side is negatively charged. The

surfaces of the facing side have the charges equal in

magnitude but opposite.

 Let take the tube with the side surfaces dS1, dS2 and

the lateral surface dS3. We apply the GAUSS’ Law on

this tube of lines of field which is a cylinder

Ф = �⃗� ∘ 𝒅𝑺
𝑺𝑮

= �⃗� ∘ 𝒅𝑺
𝑺𝑰

+ �⃗� ∘ 𝒅𝑺
𝑺𝑰𝑰

+ �⃗� ∘ 𝒅𝑺
𝑺𝑰𝑰𝑰

=
𝑸𝒆𝒏𝒄

𝜺𝟎

�⃗� ∘ 𝒅𝑺𝟏 = −𝑬 𝒅𝑺𝟏

�⃗� ∘ 𝒅𝑺𝟐 = 𝑬 𝒅𝑺𝟐

�⃗� ∘ 𝒅𝑺𝟑 = 𝟎

𝑸𝒆𝒏𝒄 = 𝝈𝑨𝒅𝑺𝟏 + 𝝈𝑩𝒅𝑺𝟐 = 𝑸𝑨 + 𝑸𝑩

Ф = �⃗� ∘ 𝒅𝑺
𝑺𝑮

= −𝑬 𝒅𝑺𝟏
𝑺𝑰

+ 𝑬 𝒅𝑺𝟐
𝑺𝑰𝑰

= 𝟎 =
𝑸𝑨 + 𝑸𝑩

𝜺𝟎

𝑸𝑨 + 𝑸𝑩 = 𝟎       ⟹     𝑸𝑩 = −𝑸𝑨 

Under the influence, the facing sides have equal and opposite charges

If all field lines starting from conductor of positive charge end to the conductor of negative

charge, the influence is called total influence.

If some field lines starting from conductor of positive charge end to the conductor of

negative charge, the influence is called partial influence
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7 -2 CAPACITORS AND CAPACITANCE

Two conductors, called plates, under total influence and separated by an insulator,

constitute a capacitor.

A capacitor is a device in which electric energy can be stored. A capacitor, in general,

consists of two conductors of any size and shape carrying different potentials and

charges, and placed closed together in some definite positions relative to one another.

The advantage of capacitor compared to the battery, is that the capacitor can give us a

high rate of energy compared to the battery which gives low rate.

Why we use two conductors to get a capacitor? Can we have a good capacitance for only

an isolated conductor?

An isolated conductor cannot have a large capacitance. When a conductor holds a large

amount of charge, its potential is also high, the associated electric field becomes high

enough, the atoms or molecules of the surrounding air get ionized. A breakdown occurs

in the insulation of the surrounding medium and the charge put on the conductor gets

neutralized or leaks away. This limits the capacitance of a conductor. Moreover, if we

tend to have a single conductor of large capacitance, it will have practically inconvenient

large size.

To get a high capacitance, we use then, two conductors near each other. If one conductor

is positively charged the other conductor is earthed (grounded), then the capacitance can

be increased. (When an earthed conductor is placed near to a conductor then the

capacitance of the conductor is greatly increased)

The charge on the capacitor is proportional to the potential difference between the two

conductors

𝑸 = 𝑪. 𝑽

𝑽 = 𝑽𝟐 − 𝑽𝟏       ⟹ 𝑪 =
𝑸
𝑽

How to calculate the capacitance?

1- Assume a charge Q of the plates

2- Calculate the electric field �⃗� in term of this charge Q between these two plates

using the GAUSS’ Law.

Ф = �⃗� ∘ 𝒅𝑺
𝑺𝑮

=
𝑸𝒆𝒏𝒄

𝜺𝟎
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3- Knowing the electric field �⃗�, we calculate the potential difference between the two

plates using the relations between the electric field and the potential.

𝑽 = 𝑽𝟐 − 𝑽𝟏 = − �⃗� ∘ 𝒅𝒍
𝟐

𝟏

4- The capacitance is deduced from the quotient 𝑸
𝑽

 between the charge and the

potential difference

- Capacitance of parallel plates capacitor

To calculate the capacitance, we follow the steps mentioned above

1- Let the charge of the plates 𝑸 = 𝝈 𝑨

𝝈: Surface charge density

𝑨: Area of the plates

2- For each plate the field is given by 𝑬 = ±𝝈 /𝟐𝜺𝟎

The field in between the two plates is: 𝑬 = 𝝈 /𝜺𝟎 = 𝑸/(𝜺𝟎𝑨)

3- Calculate the potential difference between the plates

𝑽 = 𝑽𝑨 − 𝑽𝑩 = − �⃗� ∘ 𝒅𝒍
𝑨

𝑩
=

𝑸
𝜺𝟎𝑨

(𝒙𝑩 − 𝒙𝑨) =
𝑸𝒅
𝜺𝟎𝑨

4- The capacitance can be deduced from the quotient 𝑸
𝑽

𝑪 =
𝑸
𝑽 =

𝑸
𝑽𝑨 − 𝑽𝑩

= 𝜺𝟎
𝑨
𝒅

The capacitance depends on the geometry of the plates and the electric properties

(physics properties) of the separation media

- Spherical Capacitor

A Spherical Capacitor is a system of two concentric

shells (or solid sphere surrounded by a concentric

shell) as shown in figure-68. The radii of shells in

this system are 𝒓𝟏 and 𝒓𝟐. To find the capacitance

of this system we calculate the field between the

shells then the potential difference and deduce

this capacitance from the quotient Q/V.

 Let the charge of this capacitor be Q, to determine

the field between these two conductors (𝒓𝟏 < 𝒓 < 𝒓𝟐), we use the GAUSS’ Law

𝑸

+𝑸 −𝑸

Fig.67A B

VA VB

d

x

Fig.68
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𝒓𝟐
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Ф = �⃗� ∘ 𝒅𝑺
𝑺𝑮

=
𝑸𝒆𝒏𝒄

𝜺𝟎

For a spherical symmetry, the convenient Gauss’s Surface is a sphere of radius 𝒓

�⃗� ∘ 𝒅𝑺
𝑺𝑮

= 𝑬. 𝑺 = 𝑬. (𝟒 𝝅 𝒓𝟐) = −
𝑸
𝜺𝟎

       ⟹      �⃗� = −
𝑸

𝟒 𝝅 𝜺𝟎𝒓𝟐 𝒖𝒓  

Now we calculate the potential difference between the conductors using the relation

between the field and the potential

𝑽 = 𝑽+ − 𝑽− = − �⃗� ∘ 𝒅𝒍
𝒓𝟐

𝒓𝟏

=
𝑸

𝟒 𝝅 𝜺𝟎𝒓𝟐 𝒖𝒓 ∘ 𝒅𝒍
𝒓𝟐

𝒓𝟏

=
𝑸

𝟒 𝝅 𝜺𝟎𝒓𝟐 𝑑𝑟
𝒓𝟐

𝒓𝟏

𝑽 =
𝑸

𝟒 𝝅 𝜺𝟎

𝟏
𝒓𝟏

−
𝟏
𝒓𝟐

=
𝑸(𝒓𝟐 − 𝒓𝟏)
𝟒 𝝅 𝜺𝟎𝒓𝟏𝒓𝟐

The capacitance can be deduced from the quotient between the charge Q and the

potential difference V

𝑪 =
𝑸
𝑽 = 𝟒 𝝅 𝜺𝟎

𝒓𝟏𝒓𝟐

𝒓𝟐 − 𝒓𝟏

- Cylindrical Capacitor

A system of two long coaxial cylindrical shells, is called

Cylindrical Capacitor. As the shells are considered to be

very long in this case, we analyze the capacitance per unit

length of such a capacitor. To determine the capacitance of

this system we transfer a charge Q from outer shell B to

inner shell A due to which inner shell will gain a charge + Q

and outer shell with a charge – Q which will be distributed

on the inner surface of outer shell as shown in figure. In this

case the electric field strength in the annular region between

the two cylindrical shells is only due to the inner charge and

it is in radially outward direction. The strength of electric

field in this region at a distance r from the common axis is given using GAUSS’ Law

Cylindrical symmetry, the convenient Gauss’s surface is a cylinder. The field is radial.

�⃗� ∘ 𝒅𝑺
𝑺𝑮

= 𝑬. 𝑺 = 𝑬. (𝟐 𝝅 𝒓 𝒍) =
𝑸𝒆𝒏𝒄

𝜺𝟎
=

𝝀 𝒍
𝜺𝟎

   ⟹      �⃗� =
𝝀

𝟐 𝝅 𝜺𝟎 𝒓 𝒖𝒓

Gauss’s Surface

Fig.69

r

𝒓𝟐
𝒓𝟏
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The potential difference between the conductors is found by using the relation between

the field and the potential

𝑽 = 𝑽+ − 𝑽− = − �⃗� ∘ 𝒅𝒍
𝒓𝟏

𝒓𝟐

=
𝝀

𝟐 𝝅 𝜺𝟎 𝒓 𝒖𝒓 ∘ 𝒅𝒍
𝒓𝟐

𝒓𝟏

𝑽 =
𝝀

𝟐 𝝅 𝜺𝟎 𝒍𝒏(𝒓)
𝒓𝟐

𝒓𝟏

=
𝝀

𝟐 𝝅 𝜺𝟎 𝒍𝒏
𝒓𝟐

𝒓𝟏

The capacitance can be deduced from the quotient between the charge Q and the

potential difference V

𝑪 =
𝑸
𝑽 =

𝟐 𝝅 𝜺𝟎 𝒍

𝒍𝒏 𝒓𝟐
𝒓𝟏

The capacitance by unit of length is

𝑪𝒍 =
𝟐 𝝅 𝜺𝟎 

𝒍𝒏 𝒓𝟐
𝒓𝟏

7 -2 COMBINATION OF CAPACITORS

We can combine several capacitors of capacitance C1, C2, …, Cn to obtain a system with

some effective capacitance C = Ceq. The effective capacitance depends on the way the

individual capacitors are combined. Two simple possibilities are discussed below.

In a circuit, several such capacitors are often wired together and it is then necessary to

calculate the net capacitance of the combination. The simplest ways of wiring capacitors

together are in parallel and in series.

7 – 2 - 1 PARALLEL COMBINATION
In this combination the plates of the same sign of charge, not necessarily

equal, are connected together. Then, the potential difference is same for all

capacitors, but the whole charge in the system will distributed in

dependance of capacity of each condenser.

Let illustrate with a system with two capacitors and then generalize to the

situation when we have a several condensers connected in parallel

When the two condensers are connected to voltage source V0 (fig. 70-a), the charges in

the left plates are distributed in such manner that their potentials are same as the

positive potential of the source. Same thing happens in the right plates, their potentials

V0

C2

−

−
−

+

+

+

+

−
+ −

C1

Fig.70 - a
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become equals to the negative potential of the battery. The potential differences for the

two capacitors are equal to potential difference of the battery.

𝑽𝒐 = 𝑽+ − 𝑽− = 𝑽𝟏 = 𝑽𝟐

The charge Q delivered by the source is shared by both capacitors, but not at equal

proportion, it depends on the capacitance of each condenser

𝑸 = 𝑸𝟏 + 𝑸𝟐

𝑸𝟏 is the charge of the capacitor 𝑪𝟏: 𝑸𝟏 = 𝑪𝟏𝑽𝟏 = 𝑪𝟏𝑽𝟎

𝑸𝟐 is the charge of the capacitor 𝑪𝟐: 𝑸𝟐 = 𝑪𝟐𝑽𝟐 = 𝑪𝟐𝑽𝟎

From the above equations

𝑸 = 𝑪 𝑽𝒐 = 𝑸𝟏 + 𝑸𝟐 = 𝑪𝟏𝑽𝟎 + 𝑪𝟐𝑽𝟎

The equivalent circuit is given by the fig. 70-b

Then the charge delivered by the source is 𝑸 = 𝑪 𝑽𝒐 = 𝑪𝒆𝒒 𝑽𝒐

We deduce that
𝑪 = 𝑪𝒆𝒒 = 𝑪𝟏 + 𝑪𝟐

If we have several capacitors combined in parallel and connected to the source. So, the

potential differences of the condensers are same and the total charge is shared on all

the capacitors, and we get the equivalent capacitance 𝑪𝒆𝒒 as

𝑪 = 𝑪𝒆𝒒 = 𝑪𝟏 + 𝑪𝟐+ . . . +𝑪𝟏 = 𝑪𝒊

𝒏

𝒊=𝟏

The net capacitance, or equivalent capacitance, of the parallel combination is simply the

sum of the individual capacitances.

1- The equivalent capacitance is equal to the sum of the individual capacitances.

2- The equivalent capacitance is larger than the largest individual capacitance.

3- The potential difference across each capacitor is same

4- The charge on each capacitor is proportional to its capacitance.

−

V0
−+

+ −
+

C=Ceq

Fig.70 - b
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7 – 2 - 1 SERIES COMBINATION

In this combination the passively charged is connected to the negative place of the second

capacitor the remaining plates are connected to the battery

The charge in the right plate of C1 induces a same but opposite charge

on the left plate of the same capacitor. This charge creates the same

opposite charge on the left plate of the second capacitor C2 because the

plates in the dashed line constitute a unique conductor

In this configuration, the charge delivered by the source is same. Then

𝑸 = 𝑸𝟏 = 𝑸𝟐

The potential difference of the source is shared between the two capacitors but not in the

same proportion. It depends on the capacitance of the condenser.

𝑽𝟏 = 𝑸𝟏/𝑪𝟏 = 𝑸/𝑪𝟏

𝑽𝟐 = 𝑸𝟐/𝑪𝟐 = 𝑸/𝑪𝟏

But

𝑽𝒐 = 𝑽+ − 𝑽− = 𝑽𝟏 + 𝑽𝟐

The equivalent circuit is given by the fig. 71-b

Then the charge delivered by the source is 𝑸 = 𝑪 𝑽𝒐 = 𝑪𝒆𝒒 𝑽𝒐

𝑽𝒐 =
𝑸

𝑪𝒆𝒒
=

𝑸
𝑪𝟏

+
𝑸
𝑪𝟏

We deduce that

𝟏
𝑪𝒆𝒒

=
𝟏

𝑪𝟏
+

𝟏
𝑪𝟏

If we have a several condensers combined in series, then the equivalent capacitances

given by the relation:

𝟏
𝑪𝒆𝒒

=
𝟏
𝑪𝒊

𝒏

𝒊=𝟏

1. The reciprocal of equivalent capacitance is equal to the sum of the reciprocals of the

individual capacitances.

2.The equivalent capacitance is smaller than the smallest individual capacitance.

3.The charge on each capacitor is same.

−

V0
−+

+ −
+

C=Ceq

Fig.71 - b

Fig.71 - a
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