University of M 'sila

Faculty of: Technology

Common Base

Forth Series Of Exercises - Phys 02

Exercise 01: Fig. 01

A conducting sphere of radius $\boldsymbol{R}_{\mathbf{1}}=\boldsymbol{R}$ centered in O, carry a charge $\mathbf{- 2 0}$ surrounded by a conducting shell with inner radius $\boldsymbol{R}_{\mathbf{1}}=\mathbf{1} . \mathbf{5 R}$ and outer radius $\boldsymbol{R}_{\mathbf{1}}=\mathbf{2 R}$ carrying a charge $-\boldsymbol{Q}$

1/ What is the charge distribution of the shell when it is in electrostatic equilibrium

2/ Using Gauss' Law, find the electric field $\overrightarrow{\boldsymbol{E}}(\boldsymbol{r})$ at everywhere in space.
3/ Deduce the potential $\boldsymbol{V}(\boldsymbol{r})$ at everywhere in space.
4/ Plot $E(r)$ and $V(r)$

Fig . 01

Exercise 02: Fig. 02

4 capacitors $C_{1}=15 \mu F, C_{2}=3 \mu F, C_{3}=6 \mu F$ and $C_{4}=20 \mu F$ are connected to the voltage source of e.m.f $\varepsilon=15 \mathrm{~V}$ in the configuration of fig 02.

1/What is the equivalent capacitance?
2/ Calculate the charge $\boldsymbol{Q}_{\boldsymbol{i}}$ and the potential difference $\boldsymbol{V}_{\boldsymbol{i}}$ for
 each capacitor.

Exercise 03: Fig. 03

Let the circuit of the figure 03. Using the Kirchhoff's Law, 1/ Calculate the current in different branches.

2/ What is the potential difference for each resistor?

Exercise 04: Fig. 04

Let the circuit of the figure 04. Using the Kirchhoff's Law,
1/ Calculate the current in different branches.
2/ Find is the potential difference for each resistor?

Fig . 04

Exercise 05: Additional Fig. 05

In the circuit of the figure $\mathbf{0 5}$, for capacitors $\boldsymbol{C}_{\mathbf{1}}=\boldsymbol{C}_{\mathbf{3}}=\mathbf{1} \boldsymbol{\mu} \boldsymbol{F}$ an $\boldsymbol{C}_{\mathbf{2}}=\boldsymbol{C}_{\mathbf{4}}=\mathbf{2} \boldsymbol{\mu} \boldsymbol{F}$ are connect to the voltage source of e.m.f $\mathcal{E}=\mathbf{2 4} \boldsymbol{V}$

1/ Find the equivalent capacitance, the charge and the protentional difference for each condenser in the following cases:

- Switch \mathbf{S} open
- Swich \mathbf{S} close

Exercise: 06

$\mathcal{E}=24 \mu F$

Fig .05

Five resistors $\boldsymbol{R}_{\mathbf{1}}=\mathbf{1} \boldsymbol{k} \Omega, \boldsymbol{R}_{\mathbf{2}}=\boldsymbol{R}_{\mathbf{4}}=2 \boldsymbol{k} \Omega, \boldsymbol{R}_{\mathbf{3}}=\mathbf{4} \boldsymbol{k} \Omega$, and a variable resistance \boldsymbol{r}, are connected as seen in figure 06

1/ Express the equivalent resistance as function of \boldsymbol{r} (between \mathbf{A} and \boldsymbol{B})
2/ What is the value of \boldsymbol{r} for which the value of equivalent resistance is equal to r ?

Fig . 06

