

- معلومات لنشر مقياس تقنيات المعالجة الاحصائية على منصة التعليم الإلكتروني Moodle
 - · 1- بطاقة التواصل ومعلومات المقياس :
 - إسم ولقب الأستاذ : : فيصل تكركارت
 - البريد الإلكتروني : : faycel.takerkart@univ-msila.dz
 - الكلية : istapsمعهد علوم وتقنيات النشاطات البدنية والرياضية
 - القسم : التربية البدنية
 - المستوى الدراسي : الأولى ماستر
 - السداسي : الثاني
 - المقياس: تقنيات المعالجة الإحصائية. SPSS محاضرات + TP
 - الرصيد: 3
 - المعامل: 2
 - الحجم الساعي: 8ساعة.
 - 3- أهداف المقياس (وفق المنهاج) :
- ...يهدف المقياس الى تعريف الطلبة والباحيين بكيفية استخدام الإحصاء والذي يعد الأساس القاعدي للبحث العلمي في كافة فروع المعرفة المعرفة المعرفة المعرفة المعرفة المعرفة المعرفة المعرفة المعرفة فروع المعرفة المعرفة المعرفة واتساع نطاقها
- و كيفية استعمال الاختبارات الإحصائية الوصفية ومقاييس التشتت ومقايس الشكل والنسبة ..والاستدلال الاحصائي المعلمي واللامعلمي وقياس المكل والنسبة ..والاستدلال الاحصائي المعلمي واللامعلمي وقياس العلاقات والفروق بين المتغيرات والظواهر وقياس الارتباط والانحدار والتنبؤ..والاستقلالية ..وحسن المطابقة في ميدان علوم وقياس العلاقات النشاطات البدنية والرياضية...يدويا وعن طريق البرمجيات والنطبيقات الاحصائية والرياضية ...يدويا وعن طريق البرمجيات والنعدار والتنبؤ..والاستقلالية ..وحسن المطابقة في ميدان علوم وتقياس العلاقات النشاطات البدنية والرياضية...يدويا وعن طريق البرمجيات والتطبيقات الإحصائية الشهيرة في العلوم الاقتصادية والطبية والرياضية ...يدويا وعن طريق البرمجيات والتطبيقات الإحصائية الشهيرة في العلوم الاقتصادية والطبية والاجتماعية والإنسانية والرياضية ...يدويا وعن طريق البرمجيات والتطبيقات الإحصائية الشهيرة في العلوم الاقتصادية والطبية والاجتماعية والإنسانية والرياضية ...يدويا وعن طريق البرمجيات والتطبيقات الإحصائية الشهيرة في العلوم الاقتصادية والطبية والاجتماعية والإنسانية والزياضية ...يدويا وعن طريق البرمجيات والتطبيقات الإحصائية الشهيرة في العلوم الاقتصادية والطبية والاجتماعية والإنسانية والنشاط البدني الرياضي التربوي مثل..حزمة البرامج الإحصائية للعلوم الاجتماعية.
- اذن ماهوالاحصاء؟ماهي مقاييسه وقوانينه ؟ وماهي أخميته وعلاقته بعلوم الرياضة؟وماهي اهم واشهر برمجياته المستخدمة؟وكيف تستعمل؟...تابعوا معنا...

الدرس السابع والثامن والتاسع: الارتباط والانحدار واختبار الفرضيات

1- اختبار T للعينة الواحدة

بشكل عام اختبار الفرضيات تتضمن فرضيتين: - الفرضية المبدئية Ho

- الفرضية البديلة H1

ولقبول هذه الفرضيات أو رفضها فإنه يتم الإعتماد على المعنوية الإحصائية، إذا كانت قيمة Sig أقل أو يساوي من مستوى المعنوية الإحصائية المعتمد وهو فإننا نرفض الفرضية المبدئية ونقبل الفرضية البديلة، وإذا كانت قيمة Sig المحسوبة أكبر تماما من المعنوية الإحصائية المعتمدة فإننا نقبل الفرضية المبدئية ونرفض الفرضية البديلة. ويستخدم إختبار T للعينة الواحدة للحكم على مدى معنوية الفروق بين متوسط عينة ومتوسط مجتمع، وينبغي أن تتوفر شروطا أساسية لإجراء الإختبار T، فالعينة يجب إختيارها عشوائيا ويجب أن تتبع التوزيع الطبيعي.

ويقوم برنامج SPSS باختبار T باتباع الخطوات التالية:

- 1- يجب إختبار البيانات هل تتبع التوزيع الطبيعي أم لا. وذلك باسخدام الأمر Explorer
- من إختبار Explorer لكولموجروف وشابيرو وجدنا أن قيمة Sig أكبر تماما من 0.05 لذا سوف نقبل فرض العدم وهو أن البيانات تتبع التوزيع الطبيعي.

كذلك وجدنا البيانات من التمثيل السابق تتجمع حول المستقيم وبالتالى تتبع التوزيع الخط

مستوى الدخل Normogramme Q-Q des résidus de

2- بما أن حجم العينة 10 أي أقل من 30 لذا فإن إحصاء الاختبار هو T للعينة الواحدة وفق الفرضيات التالية:

- الفرضية المبدئية: HO:u=466
- الفرضية البديلة: H1:u≠466

comparer les نختار الأمر Analyse ذكر -3 Test T pour ثم نضغط على الأمر moyennes فيظهر مربع الحوار التالي:

4- أنقل متغير الدخل إلى المستطيل Variable à tester 5- أكتب أمام Valeur de test القيمة الثابتة المراد المقارنة بها و هي 466.

6- إضغط على Option فيظهر لك مربع الحوار التالي:

🔚 Test T pour échantillon unique : Options 🛛 🔜
Pour <u>c</u> entage de l'intervalle de confiance : 95 %
Valeurs manquantes
Exclure les observations analyse par analyse
Exclure toute observation incomplète
Poursuivre Annuler Aide

يلاحظ من الشكل أعلاه أن مستوى الثقة محدد سلفا بـ 95% و هو قابل للتغيير

7- نضغط على Poursuivre ثم OK فنتحصل على النتائج التالية.

Test-t

[Ensemble_de_données1] C:\Users\tayeb\Documents\DATA1.sav

Statistiques sur échantillon unique Erreur standard

	N	Moyenne	Ecart-type	standard moyenne
مسئوى الاخل	10	476.00	139.300	44.050

Test sur échantillon unique

		Valeur du test = 466						
					Intervalle de confiance 95% de la différence			
	t	ddl	Sig. (bilatérale)	Différence moyenne	Inférieure	Supérieure		
مسئوى الاخل	.227	9	.825	10.000	-89.65-	109.65		

- تشير المخرجات النهائية إلى أن المتوسط الحسابي للعينة قد بلغ 476 بينما كان الإنحراف المعياري 466. - وحيث أن مستوى الدلالة المحسوب هو Sig=0.825 كان أكبر تماما من المعنوية الإحصائية المعتمد عليها وهي Sig=0.025 وبالتالي نقبل الفرضية المبدئية وهو أنه متوسط الدخل للعينة مساوي لمتوسط المجتمع المقدر والفرق الموجود ناتج عن الصدفة وهو مقبول.

2- تحليل الإرتباط

الإرتباط يقيس العلاقة بين الظاهرتين X وy وقيمة معامل الارتباط تتراوح بين -1و1

مثال: لدراسة العلاقة بين حجم المبيعات Y وتكاليف الإشهار X في أحد المؤسسات التجارية تم جمع البيانات التالية:

Y	6	4	5	13	6	10	9	15
Х	2	1	3	7	4	8	5	9

نقوم بإدخال البيانات في برنامج SPSS

1- من القائمة Analyse نضغط على الأمر Corrélation ثم على الأمر Bivariée كما يظهر في الشاشة التالية:

_							
cs	Editeur de	données @					
	<u>A</u> nalyse	<u>Marketing</u> direct	<u>G</u> raphes	Util	itaires	Fenêtre	Aid
	Rap	ports		•		*	-
3	Stati	stiqu <u>e</u> s descriptive	S	•		′⊖ Ⅲ	
	Ta <u>b</u> l	eaux		•			
	Com	parer les moyenne	•	var	,	var	
	Mod	èle linéaire <u>g</u> énéra	I	•			
	Mod	èles linéaires géné	éralisés	•			
	Mod	èles Mi <u>x</u> tes		•			
_	<u>C</u> orr	élation		•	12 8	livariée	_
_	<u>R</u> ég	ression		•	E P	artielle	_
	L <u>o</u> g	Linéaire		•	8 Ir	ndices	-
_	Rés	eaux neuronaux		•		_	
_	Clas	sification		•			
_	Ré <u>d</u>	uction des dimens	ions	•	<u> </u>		
_	Eche	elle		•			
_	Test	s <u>n</u> on paramétriqu	es	•	<u> </u>		
	Prev	isions		•			
	<u>S</u> urv	ie		•			
	Rép	onses m <u>u</u> ltiples		•			
	ジ Anal	yse des valeurs m	anquantes				
	Imp	utation multiple		•			
	Echa	antillons complexes	S	•			
	Con	trôle de <u>q</u> ualité		•			
	🖉 Cou	rbe ROC					

2- عند النقر على الأمر Bivariée يظهر مربع الحوار التالي:

	Corrélations bivariées
	Variables : ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
_	Coefficients de corrélation ✓ Pearson
	Test de signification Bilatéral O Unilatéral
	Repérer les corrélations significatives OK Coller Réinitialiser Annuler Aide

3- نقل المتغيرين Xو Y إلى المستطيل الثاني وفيها يتم تحديد المتغيرات و نوع الارتباط Pearson أو Spearmanأو kendall، ويتم الضغط على Ok فنظهر النتائج التالية:

[Ensemble_de_données3]

Corrélations							
		Y	×				
Υ	Corrélation de Pearson	1	.926**				
	Sig. (bilatérale)		.001				
	N	8	8				
Х	Corrélation de Pearson	.926**	1				
	Sig. (bilatérale)	.001					
	N	8	8				
**. La corrélation est significative au niveau 0.01 (bilatéral).							

نلاحظ أن معامل الإرتباط R=0.92 و هو يعبر عن إرتباط قوي بين XوY عند مستوى معنوية مقدر بـ 1%.

3- نموذج الانحدار البسيط

- لإيجاد نموذج الانحدار بين المتغيرين XوY نتبع الخطوات التالية:
- 1- من قائمة Analyse نختار الأمر Régression ثم نضغط غلى الأمر linéaire
 - فيظهر مربع الحوار التالي:

🍓 Régression linéaire		×
<mark>∢} Y</mark> ♣ X	Dépendant : Bloc 1 de 1 Précédent Variables indépendantes : Variables indépendantes :	<u>Statistiques</u> Diagrammes Enregistrer <u>Options</u> <u>B</u> ootstrap
	Méthode : Entrée Variable de filtrage : Règle Etiquettes d'observation :	
ОК	Poids WLS : Coller <u>R</u> éinitialiser Annuler Aide	

2- ننقل المتغير التابع Y مستطيل Variable dépondant و المتغير المستقل X إلى المستطيل Variable نم نضغط على Ok فنظهر النتائج التالية.

Récapitulatif des modèles

Modèle	R	R-deux	R-deux ajusté	Erreur standard de l'estimation
1	.926ª	.857	.833	1.619

a. Valeurs prédites : (constantes), X

ANOVA^b

Modèle	e	Somme des carrés	ddl	Moyenne des carrés	D	Sig.
1	Régression	94.272	1	94.272	35.963	.001ª
	Résidu	15.728	6	2.621		
	Total	110.000	7			

a. Valeurs prédites : (constantes), X b. Variable dépendante : Y

Coefficients^a

		Coefficients non standardisés		Coefficients standardisés		
+	Modèle	A	Erreur standard	Bêta	t	Sig.
	1 (Constante)	2.331	1.177		1.980	.095
	Х	1.265	.211	.926	5.997	.001

a. Variable dépendante : Y

نلاحظ من النتائج السابقة أن معامل الإرتباط يساوي 0.92 و هو ارتباط قوي بين Y وx. معادلة الانحدار: Y= 2.331+1.265x