Final Exam Machine Learning & Data Mining

Exercice 1 (4 pts): Given a decision tree, you have the option of (a) converting the decision tree to classification rules and then pruning the resulting rules, or (b) pruning the decision tree and then converting the pruned tree to classification rules. What advantage does (a) have over (b)?

Exercice 2 (3 pts): The following table consists of training data from an employee database. The data have been generalized. For example, "31 : : : 35" for *age* represents the age range of 31 to 35. For a given row entry, *count* represents the number of data tuples having the values for *department, status, age*, and *salary* given in that row.

- a- If we want to apply association rules algorithm, what modifications must be made on the dataset?
- b- what is the real size of the dataset (number of tuples)?

Department	Status	age	salary	count
Sales	Senior	3135	46K50K	3
Sales	Junior	2630	26K30K	2
Sales	Junior	3135	31K35K	2
Systems	Junior	2125	46K50K	2
Systems	Senior	3135	66K70K	3
Systems	Junior	2630	46K50K	2
Systems	Senior	4145	66K70K	3
Marketing	Senior	3640	46K50K	1
Marketing	Junior	3135	41K45K	2
Secretary	Senior	4650	36K40K	3
Secretary	Junior	2630	26K30K	2

Exercice 3 (3 pts): With decision trees using Gini Index, we must split numeric attribute to two (02) subsets. Explain how k-means can be used to determine the best point split.

Exercice 4 (10 pts): Consider the following Boolean database with 5 items and 10 transactions:

Run the algorithm a priori with Minimal Support=0.3, taking care not to consider the impossible associations in progress algorithm.

Find all the possible rules.

	X1	X2	X3	X4	X5
t1	0	1	0	0	1
t2	0	0	1	0	1
t3	0	0	1	0	0
t4	1	1	1	1	1
t5	1	1	1	1	1
t6	1	1	1	1	0
t7	1	0	1	1	0
t8	1	0	1	1	0
t9	1	0	0	0	1
t10	1	0	0	0	1

Dr. Tahar Mehenni

Solution of Final Exam

Machine Learning & Data Mining

Exercice 1 (4 pts):

The pruning is reducing the set of rules as well as the size of the tree. However, reducing the set of rules is more easier than reducing the size of the tree.

Exercice 2 (3 pts):

a- If we want to apply association rules algorithm, each tuple will be duplicated the number of times as the value of the attribute *count*. For example, the first tuple is duplicated with the same values of the attributes *department, status, age , salary* 3 times (*count*=3), as follows:

Department	Status	age	salary	count	
Sales	Senior	3135	46K50K	3	

Department	Status	age	salary
Sales	Senior	3135	46K50K
Sales	Senior	3135	46K50K
Sales	Senior	3135	46K50K

b- The final size of the dataset (number of tuples) is 25.

Exercice 3 (3 pts):

With decision trees using Gini Index, we must split numeric attribute to two (02) subsets. We can apply a clustering algorithm like k-means to find the best point split. With k-means, we put k=2, and apply the algorithm after sorting the values of the attribute. The split point is computed as follows:

Split point = (last value in the first cluster + first value in the 2^{nd} cluster) / 2

Exercice 4 (10 pts):

1-itemset (1pt)	Freq	Support
X1	7	0.7
X2	4	0.4
X3	7	0.7
X4	5	0.5
X5	6	0.6

2-itemset (1pt)

	X1	X2	X3	X4	X5
X1		3	5	5	4
X2			3	3	3
X3				5	3
X4					2

3-itemset (2 pts)	X1X2	X1X3	X1X4	X1X5	X2X3	X2X4	X2X5	X3X4	X3X5
X1X2		3	3	2				х	Х
X1X3			3	2		Х	Х		
X1X4				2	Х		Х		Х
X1X5					Х	Х		Х	Х
X2X3						3	2		
X2X4							2		Х
X2X5								Х	
X3X4									2

4-itemset (1 pt)	X1X2X3	X1X2X4	X1X3X4	X2X3X4					
X1X2X	K3	3							
X1X2X									
X1X3X									
X2X3X	(4				_				
Recap (1 pts) 2-items	et X1X2	X1X3	X1X4	X1X5	X2X3	X2X4	X2X5	V3V /	V 2 V 5
3-items		X1X3 X1X2X4	X1X4 X1X3X4	X1XJ X2X3X4	Λ2Λ3	$\Lambda L \Lambda 4$	Λ2Λ3	АЈА4	ЛЗЛЗ
4-items									
RULES	(4 pts)								
X1X2	$X1 \rightarrow X2$	$X2 \rightarrow X1$	X1X2	2X3 X1	\rightarrow X2X3	X2	$2X3 \rightarrow X$	1	
X1X3	$X1 \rightarrow X3$	$X3 \rightarrow X1$		X2	→X1X3	XI	$X3 \rightarrow X2$	2	
X1X4	$X1 \rightarrow X4$	$X4 \rightarrow X1$		X3	\rightarrow X1X2	XI	$X2 \rightarrow X$	3	
X1X5	$X1 \rightarrow X5$	$X5 \rightarrow X1$	X1X2	2X4 X1	\rightarrow X2X4	X2	$2X4 \rightarrow X$	1	
X2X3	$X2 \rightarrow X3$	$X3 \rightarrow X2$		X2	\rightarrow X1X4	XI	$X4 \rightarrow X$	2	
X2X4	$X2 \rightarrow X4$	$X4 \rightarrow X2$		X4	\rightarrow X1X2	XI	$X2 \rightarrow X$	4	
X2X5	$X2 \rightarrow X5$	$X5 \rightarrow X2$	X1X3	3X4 X1	\rightarrow X3X4	X3	$3X4 \rightarrow X$	1	
X3X4	$X3 \rightarrow X4$	$X4 \rightarrow X3$		X3	\rightarrow X1X4	XI	$X4 \rightarrow X3$	3	
X3X5	$X3 \rightarrow X5$	$X5 \rightarrow X3$		X4	\rightarrow X1X3	XI	$1X3 \rightarrow X$	4	
			X2X3	3X4 X2	\rightarrow X3X4	X3	$3X4 \rightarrow X$	2	
				X3	\rightarrow X2X4	X2	$2X4 \rightarrow X$	3	
				X4	\rightarrow X2X3	X2	$2X3 \rightarrow X$	4	
X1X2X3X4	$X1 \rightarrow X2X3X$	X4	X2X3X4 -	→ X1					
	$X2 \rightarrow X1X3X$	X4	X1X3X4 -	→ X2					
	$X3 \rightarrow X1X2X$	X4	X1X2X4 -	→ X3					
	$X4 \rightarrow X1X2X$	X3	X1X2X3 -	→ X4					
	$X1X2 \rightarrow X3X4$		$X3X4 \rightarrow X$	K1X2					
	$X1X3 \rightarrow X2X$	X4	$X2X4 \rightarrow Y$	K1X3					
	$X1X4 \rightarrow X2X$	X3	$X2X3 \rightarrow Y$	K1X4					

Rédigé par T. Mehenni