Final Exam

Machine Learning \& Data Mining

Exercice 1 (4 pts): Given a decision tree, you have the option of (a) converting the decision tree to classification rules and then pruning the resulting rules, or (b) pruning the decision tree and then converting the pruned tree to classification rules. What advantage does (a) have over (b)?

Exercice 2 ($\mathbf{3} \mathbf{~ p t s}$): The following table consists of training data from an employee database. The data have been generalized. For example, "31:: :35" for age represents the age range of 31to 35 . For a given row entry, count represents the number of data tuples having the values for department, status, age, and salary given in that row.
a- If we want to apply association rules algorithm, what modifications must be made on the dataset?
b- what is the real size of the dataset (number of tuples)?

Department	Status	age	salary	count
Sales	Senior	$31 \ldots .35$	$46 \mathrm{~K} \ldots 50 \mathrm{~K}$	3
Sales	Junior	$26 \ldots 30$	$26 \mathrm{~K} . .30 \mathrm{~K}$	2
Sales	Junior	$31 \ldots 35$	$31 \mathrm{~K} . .35 \mathrm{~K}$	2
Systems	Junior	$21 \ldots 25$	$46 \mathrm{~K} \ldots . .50 \mathrm{~K}$	2
Systems	Senior	$31 \ldots 35$	$66 \mathrm{~K} \ldots . .70 \mathrm{~K}$	3
Systems	Junior	$26 \ldots 30$	$46 \mathrm{~K} \ldots . .50 \mathrm{~K}$	2
Systems	Senior	$41 \ldots 45$	$66 \mathrm{~K} \ldots 70 \mathrm{~K}$	3
Marketing	Senior	$36 \ldots 40$	$46 \mathrm{~K} \ldots . .50 \mathrm{~K}$	1
Marketing	Junior	$31 \ldots 35$	$41 \mathrm{~K} \ldots 45 \mathrm{~K}$	2
Secretary	Senior	$46 \ldots . .50$	$36 \mathrm{~K} \ldots 40 \mathrm{~K}$	3
Secretary	Junior	$26 \ldots . .30$	$26 \mathrm{~K} \ldots 30 \mathrm{~K}$	2

Exercice 3 ($\mathbf{3} \mathbf{~ p t s) : ~ W i t h ~ d e c i s i o n ~ t r e e s ~ u s i n g ~ G i n i ~ I n d e x , ~ w e ~ m u s t ~ s p l i t ~ n u m e r i c ~ a t t r i b u t e ~ t o ~ t w o ~ (0 2) ~ s u b s e t s . ~}$ Explain how k-means can be used to determine the best point split.

Exercice 4 ($\mathbf{1 0} \mathbf{~ p t s}$): Consider the following Boolean database with 5 items and 10 transactions:
Run the algorithm a priori with Minimal Support= $=0.3$, taking care not to consider the impossible associations in progress algorithm.

Find all the possible rules.

	X 1	X 2	X 3	X 4	X 5
t 1	0	1	0	0	1
t 2	0	0	1	0	1
t 3	0	0	1	0	0
t 4	1	1	1	1	1
t 5	1	1	1	1	1
t 6	1	1	1	1	0
t 7	1	0	1	1	0
t 8	1	0	1	1	0
t 9	1	0	0	0	1
t 10	1	0	0	0	1

Solution of Final Exam

Machine Learning \& Data Mining

Exercice 1 (4 pts):

The pruning is reducing the set of rules as well as the size of the tree. However, reducing the set of rules is more easier than reducing the size of the tree.

Exercice 2 ($\mathbf{3} \mathbf{~ p t s) : ~}$

a- If we want to apply association rules algorithm, each tuple will be duplicated the number of times as the value of the attribute count. For example, the first tuple is duplicated with the same values of the attributes department, status, age , salary 3 times (count=3), as follows:

Department	Status	age	salary	count						
Sales	Senior	$31 \ldots 35$	$46 \mathrm{~K} \ldots 50 \mathrm{~K}$	3	\rightarrow	Department	Status	age	salary	
:---	:---	:---	:---	:---						
	Sales	Senior	$31 \ldots 35$	$46 \mathrm{~K} \ldots . .50 \mathrm{~K}$						
Sales	Senior	$31 \ldots 35$	$46 \mathrm{~K} \ldots . .50 \mathrm{~K}$							
Sales	Senior	$31 \ldots 35$	$46 \mathrm{~K} \ldots 50 \mathrm{~K}$							

b- The final size of the dataset (number of tuples) is 25 .

Exercice 3 (3 pts):

With decision trees using Gini Index, we must split numeric attribute to two (02) subsets. We can apply a clustering algorithm like k -means to find the best point split. With k -means, we put $\mathrm{k}=2$, and apply the algorithm after sorting the values of the attribute. The split point is computed as follows:

$$
\text { Split point }=\left(\text { last value in the first cluster }+ \text { first value in the } 2^{\text {nd }} \text { cluster }\right) / 2
$$

Exercice 4 (10 pts):

1-itemset (1pt)	Freq	Support
X 1	7	0.7
X 2	4	0.4
X 3	7	0.7
X 4	5	0.5
X 5	6	0.6

2-itemset (1pt)

X 1		X 2	X 3	X 4	X
X 1		3	5	5	4
X 2			3	3	3
X 3				5	3
X 4					2

3-itemset (2 pts)	X1X2	X1X3	X1X4	X1X5	X2X3	X2X4	X2X5	X3X4	X3X5
X1X2		3	3	2				X	X
X1X3			3	2		X	X		
X1X4				2	X		X		X
X1X5					x	X		X	X
X2X3						3	2		
X2X4							2		X
X2X5								X	
X3X4									2

4-itemset (1 pt)
X1X2X3 X1X2X4 X1X3X4
X2X3X4

X1X2X3	X1X2X4	X1X3X4	X2X3X4
	3		

Recap (1 pts)

$\begin{array}{lccccccccc}\text { 2-itemset } & \mathrm{X} 1 \mathrm{X} 2 & \mathrm{X} 1 \mathrm{X} 3 & \mathrm{X} 1 \mathrm{X} 4 & \mathrm{X} 1 \mathrm{X} 5 & \mathrm{X} 2 \mathrm{X} 3 & \mathrm{X} 2 \mathrm{X} 4 & \mathrm{X} 2 \mathrm{X} 5 & \text { X3X4 } & \text { X3X5 } \\ \text { 3-itemset } & \mathrm{X} 1 \mathrm{X} 2 \mathrm{X} 3 & \mathrm{X} 1 \mathrm{X} 2 \mathrm{X} 4 & \mathrm{X} 1 \mathrm{X} 3 \mathrm{X} 4 & \mathrm{X} 2 \mathrm{X} 3 \mathrm{X} 4 & & & & & \\ \text { 4-itemset } & \text { X1X2X3X4 } & & & & & & & & \end{array}$

RULES (4 pts)

X 1 X 2	$\mathrm{X} 1 \rightarrow \mathrm{X} 2$	$\mathrm{X} 2 \rightarrow \mathrm{X} 1$
X 1 X 3	$\mathrm{X} 1 \rightarrow \mathrm{X} 3$	$\mathrm{X} 3 \rightarrow \mathrm{X} 1$
X 1 X 4	$\mathrm{X} 1 \rightarrow \mathrm{X} 4$	$\mathrm{X} 4 \rightarrow \mathrm{X} 1$
X 1 X 5	$\mathrm{X} 1 \rightarrow \mathrm{X} 5$	$\mathrm{X} 5 \rightarrow \mathrm{X} 1$
X 2 X 3	$\mathrm{X} 2 \rightarrow \mathrm{X} 3$	$\mathrm{X} 3 \rightarrow \mathrm{X} 2$
X 2 X 4	$\mathrm{X} 2 \rightarrow \mathrm{X} 4$	$\mathrm{X} 4 \rightarrow \mathrm{X} 2$
X 2 X 5	$\mathrm{X} 2 \rightarrow \mathrm{X} 5$	$\mathrm{X} 5 \rightarrow \mathrm{X} 2$
X 3 X 4	$\mathrm{X} 3 \rightarrow \mathrm{X} 4$	$\mathrm{X} 4 \rightarrow \mathrm{X} 3$
X 3 X 5	$\mathrm{X} 3 \rightarrow \mathrm{X} 5$	$\mathrm{X} 5 \rightarrow \mathrm{X} 3$

X1X2X3X4
$\mathrm{X} 1 \rightarrow \mathrm{X} 2 \mathrm{X} 3 \mathrm{X} 4$
$\mathrm{X} 2 \mathrm{X} 3 \mathrm{X} 4 \rightarrow \mathrm{X} 1$
$\mathrm{X} 2 \rightarrow \mathrm{X} 1 \mathrm{X} 3 \mathrm{X} 4$
$\mathrm{X} 1 \mathrm{X} 3 \mathrm{X} 4 \rightarrow \mathrm{X} 2$
$\mathrm{X} 1 \mathrm{X} 2 \mathrm{X} 4 \rightarrow \mathrm{X} 3$
$\mathrm{X} 1 \mathrm{X} 2 \mathrm{X} 3 \rightarrow \mathrm{X} 4$
$\mathrm{X} 3 \mathrm{X} 4 \rightarrow \mathrm{X} 1 \mathrm{X} 2$
$\mathrm{X} 2 \mathrm{X} 4 \rightarrow \mathrm{X} 1 \mathrm{X} 3$
$\mathrm{X} 2 \mathrm{X} 3 \rightarrow \mathrm{X} 1 \mathrm{X} 4$

$\mathrm{X} 3 \rightarrow \mathrm{X} 1 \mathrm{X} 2 \mathrm{X} 4$
$\mathrm{X} 4 \rightarrow \mathrm{X} 1 \mathrm{X} 2 \mathrm{X} 3$
$\mathrm{X} 1 \mathrm{X} 2 \rightarrow \mathrm{X} 3 \mathrm{X} 4$
$\mathrm{X} 1 \mathrm{X} 3 \rightarrow \mathrm{X} 2 \mathrm{X} 4$
$\mathrm{X} 1 \mathrm{X} 4 \rightarrow \mathrm{X} 2 \mathrm{X} 3$

X1X2X3

$\mathrm{X} 1 \rightarrow \mathrm{X} 2 \mathrm{X} 3$	$\mathrm{X} 2 \mathrm{X} 3 \rightarrow \mathrm{X} 1$
$\mathrm{X} 2 \rightarrow \mathrm{X} 1 \mathrm{X} 3$	$\mathrm{X} 1 \mathrm{X} 3 \rightarrow \mathrm{X} 2$
$\mathrm{X} 3 \rightarrow \mathrm{X} 1 \mathrm{X} 2$	$\mathrm{X} 1 \mathrm{X} 2 \rightarrow \mathrm{X} 3$
$\mathrm{X} 1 \rightarrow \mathrm{X} 2 \mathrm{X} 4$	$\mathrm{X} 2 \mathrm{X} 4 \rightarrow \mathrm{X} 1$
$\mathrm{X} 2 \rightarrow \mathrm{X} 1 \mathrm{X} 4$	$\mathrm{X} 1 \mathrm{X} 4 \rightarrow \mathrm{X} 2$
$\mathrm{X} 4 \rightarrow \mathrm{X} 1 \mathrm{X} 2$	$\mathrm{X} 1 \mathrm{X} 2 \rightarrow \mathrm{X} 4$
$\mathrm{X} 1 \rightarrow \mathrm{X} 3 \mathrm{X} 4$	$\mathrm{X} 3 \mathrm{X} 4 \rightarrow \mathrm{X} 1$
$\mathrm{X} 3 \rightarrow \mathrm{X} 1 \mathrm{X} 4$	$\mathrm{X} 1 \mathrm{X} 4 \rightarrow \mathrm{X} 3$
$\mathrm{X} 4 \rightarrow \mathrm{X} 1 \mathrm{X} 3$	$\mathrm{X} 1 \mathrm{X} 3 \rightarrow \mathrm{X} 4$
$\mathrm{X} 2 \rightarrow \mathrm{X} 3 \mathrm{X} 4$	$\mathrm{X} 3 \mathrm{X} 4 \rightarrow \mathrm{X} 2$
$\mathrm{X} 3 \rightarrow \mathrm{X} 2 \mathrm{X} 4$	$\mathrm{X} 2 \mathrm{X} 4 \rightarrow \mathrm{X} 3$
$\mathrm{X} 4 \rightarrow \mathrm{X} 2 \mathrm{X} 3$	$\mathrm{X} 2 \mathrm{X} 3 \rightarrow \mathrm{X} 4$

X1X3X4

X2X3X4

$$
\mathrm{X} 4 \rightarrow \mathrm{X} 2 \mathrm{X} 3 \quad \mathrm{X} 2 \mathrm{X} 3 \rightarrow \mathrm{X} 4
$$

X1X2X4

