Final Exam
 Programming Tools for Mathematics

Exercise 01: (03pts) What are the results of the following commands:

$$
\begin{array}{lccc}
3 \backslash 6^{*} 4+2^{\wedge} 3, & \operatorname{sqrt}(-9), & \operatorname{conj}(4 * \mathrm{i}-3), & \log 2(4)+3,
\end{array} 0 / 0
$$

Exercise 02: (07pts)

1. Write a Matlab script that takes a student's score as input and outputs their grade classification (Using switch/case statement), based on the following criteria:
Score ≥ 90 : Grade is 'A'; $\quad 70 \leq$ Score <90 : Grade is 'B';
$50 \leq$ Score <70 : Grade is 'C'; Score <50 : Grade is 'D';
If Score <0 or Score >100 the script displays an error message 'Incorrect Score'.
2. Write a Matlab script that takes an integer n and a real x as inputs and outputs the sum S :

$$
S=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7}+\ldots+\frac{x^{n}}{n} .
$$

3. Write a Matlab script that calculates an approximation of π, by using the Gregory-Leibniz series for $N=10^{7}$:

$$
\frac{\pi}{4} \simeq \sum_{k=0}^{N} \frac{(-1)^{k}}{2 k+1}
$$

Exercise 03: (06pts)

1. Write the square matrix \mathbf{A} of order 4 containing integers from 5 to 20 arranged by line.
2. Extract from this matrix the following sub-matrices:

B: the sub-matrix formed by the coefficients $a_{i j}$ for $1<i<4$ and $j=1,2,4$.
C: the sub-matrix formed by the coefficients $a_{i j}$ for $(i ; j) \in\{2,4\}^{2}$.
3. What are the results of the following commands: $\mathbf{A}^{\prime}+\mathbf{A}, \quad \mathbf{A} / \mathbf{A}\left(\mathbf{1}\right.$, end-1), \mathbf{A}^{*} eye(4), A. ${ }^{*}$ ones $(4,2), \quad \mathrm{C}^{*} \mathrm{~B}, \quad \mathrm{~B} * \mathrm{C}$.
4. What is the command that extracts the first column from \mathbf{A} ?
5. What is the command that deletes the last line of \mathbf{A} ?

Exercise 04: (04pts)

Let f and g be two functions defined by: $f(x)=\sin \left(\frac{\pi}{4} x\right)$ and $g(x)=\cos \left(\frac{\pi}{4} x\right)$.
Write a Matlab script to:

1. Create a vector x of 150 points, with values ranging from 0 to 4π.
2. Plot f and g in the same figure in two different ways. Plot the curve of f in solid red line and the curve of g in dashed green line.
3. Add title and legends to the figure.
