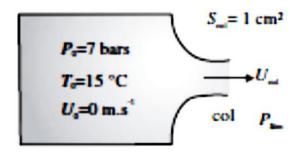
Exercice N°1

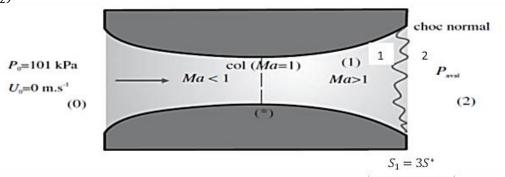

On considère l'écoulement isentropique du dioxyde de carbone dans une tuyère tel représenté sur P_1 = 40 bars la figure ci-contre. À la section (1) de cet écoulement, T_1 = 60 °C la température est T_1 =60 °C et la vitesse V_1 =350 m/s. Déterminer la vitesse V_2 à la section (2) où le nombre de Mach M_{a2} = 2. Calculer alors le rapport des sections S_2/S_1 .

 $Ma_2=2$

 $R\acute{e}p: V_2=500.5 \text{m/s}, S_2/S_1=1.71.$

Exercice N°2

Un gaz idéal à la pression $P_0 = 7$ bars et à la température $T_0 = 15$ °C s'écoule de façon isentropique à partir d'un grand réservoir de stockage à travers une tuyère convergente directement à l'atmosphère. La surface au col du conduit est de 1 cm². Déterminer la pression, température, vitesse et débit-masse du gaz au col du conduit si le gaz est (a) de l'air($\gamma = 1.4$), (b) du dioxyde de carbone($\gamma = 1.3$) et (c) de l'hélium ($\gamma = 1.66$).



 $R\acute{e}p:a) P_{col}=3.7bar, T_{col}=240K, V_{col}=310.5m/s, q_m=0.166kg/s$

- b) $P_{col}=3.82bar$, $T_{col}=250.4K$, $V_{col}=248m/s$, $q_m=0.2kg/s$
- c) $P_{col}=3.41bar$, $T_{col}=213.54K$, $V_{col}=864.7m/s$, $q_m=0.065kg/s$

Exercice N°3

De l'air dans les conditions standards entre dans une tuyère avec une vitesse subsonique et accélère de façon isentropique jusqu'à une vitesse supersonique (voir figure ci-dessous). Si le rapport entre la surface de sortie et celle au col est de 3, déterminer le rapport de la pression aval à la sortie ($P_s = P_{aval}$) à la pression totale à l'entrée($P_0 = P_{01}$) qui résultera à une onde de choc normale à la sortie de la tuyère en déduire P_{aval} . Déterminer aussi la perte de pression totale à travers l'onde de choc normale en kPa($P_{01} - P_{02}$).

$$R\acute{e}p: \frac{P_s}{P_0} = 0.375, P_s = P_{aval} = 37.9kPa, (P_{01} - P_{02}) = 56.1kPa$$

Exercice N°4

Un réservoir contient de l'air comprimé à une pression P_i = 4 bar, supposée pression d'arrêt à l'état initial. L'ouverture d'une vanne dans ce réservoir provoque la détente de l'air vers l'extérieur sous forme d'un jet ayant un diamètre d = 5 mm. Les paramètres extérieurs du jet d'air à l'état final sont :

- Pression P=1 bar,
- Température *T*=250 °C,

On donne $\gamma = 1.4$ et r=287 J/Kg.K.

- 1) Calculer la vitesse du son a à l'extérieur du réservoir en (m/s).
- 2) Déterminer la masse volumique ρ de l'air à l'extérieur du réservoir en (kg/m³). (On suppose que l'air est un gaz parfait.)
- 3) Ecrire l'équation de Saint-Venant, en terme de rapport de pression, entre un point d'arrêt et un point sur le jet d'air.
- 4) En déduire le nombre de Mach M au niveau du jet d'air.
- 5) Quelle est la nature de l'écoulement ?
- 6) Calculer la vitesse d'écoulement V du jet d'air en (m/s).
- 7) En déduire le débit massique q_m (kg/s).

$$R\acute{e}p:1) \ a=346m/s, \ 2)\rho=1.169kg/m^3, \ 3)1+\frac{\gamma-1}{2}M^2=\left(\frac{P_i}{P}\right)^{\frac{\gamma-1}{\gamma}}, \ 4)M=1.558, \ 5) \ \acute{e}coulement \ est \ supersonique, \ 6)V=549.48m/s, \ 7) \ q_m=2.52kg/s.$$

Exercice N°5

En un point d'un écoulement isentropique la température locale est 20°C et la pression 1bar.

- 1. Si V=200m/s, calculer M, T_i , P_i .
- 2. Même question pour V=400m/s.
- 3. Pour V=400m/s il se forme une onde de choc en ce point, calculer P_2 , T_2 , M_2 après l'onde de choc.
- 4. On place une sonde d'arrêt après l'onde de choc, calculer la pression d'arrêt P_r .

```
R\acute{e}p:1) M=0.583, T_i=313K, P_i=1.259bar.
```

- 2) M=1.166, $T_i=373K$, $P_i=2.32bar$.
- $3)P_2=1.419bar$, $M_2=0.864$, $T_2=323.14K$.
- 4) $P_r = 1.617bar$.

Exercice N°6

Une tuyère convergente-divergente alimenter par l'air P_i =3bar et T_i =600 K. Cette tuyère à une section d'entrée S_e =5 cm^2 et une vitesse V_e =146m/s. On constate expérimentalement la présence d'une onde de choc dans une section $S_{O,C}$ =2.53 cm^2 .

1. Calculer P, T, ρ au col et le débit.

- 2. Calculer *P* et *T* avant et après l'onde de choc.
- 3. Calculer *P* et *T* dans la section de sortie où $S_S=2.70cm^2$.

 $R\acute{e}p:1) P_c=1.581bar, T_c=499K, \rho_c=1.107kg/m^3, q_m=0.122kg/s.$

- 2) P_1 =1.235bar, T_1 =465K, P_2 1.87bar, T_2 =525K.
- *3) P*=2.14bar, *T*=546K.

Exercice N°7

On considère une tuyère convergente-divergente ; une onde de choc est située dans le divergent. On note $(.*)_1$ l'état critique associé à l'écoulement isentropique en amont de ce choc droit : $(\rho^*)_1$,

 $(p^*)_1$, $(T^*)_1$, $(u^*)_1$, $(A^*)_1$ sont donc respectivement la densité, la pression, la température, la vitesse et la section critique (ou sonique) en amont du choc.

On introduit similairement (.*)₂, l'état critique associé à l'écoulement en aval du choc. $(\rho^*)_2$, $(p^*)_2$,

 $(T^*)_2$, $(u^*)_2$, $(A^*)_2$ désignent alors respectivement la densité, la pression, la température, la vitesse et la section critique (ou sonique) en aval du choc. On notera également $(p_0)_1$ la pression d'arrêt isentropique associée à l'écoulement avant le choc et $(p_0)_2$ la pression d'arrêt isentropique associée à l'écoulement après le choc.

En écrivant la conservation de la masse entre l'état (.*)₁ et (.*)₂, démontrer la relation :

$$(\rho^*)_1(u^*)_1(A^*)_1 = (\rho^*)_2(\rho^*)_2(\rho^*)_2$$

Exercice N°8

On considère une tuyère convergente-divergente. L'écoulement est supersonique dans le divergent.

Le rapport de section entre la sortie et le col est égal à 10 ; la pression d'arrêt est $p_0 = 10$ atm et la pression ambiante $p_a = 0.04$ atm.

Décrire précisément l'écoulement à la sortie de la tuyère.

 $R\acute{e}p: \theta=5.75^{\circ}$

Exercice N°9

Une tuyère est alimentée à l'amont par de l'air $(\gamma = 1.405, r = 287 \frac{J}{kg.K})$ dont la pression génératrice est P_i =1bar et la température d'arrêt T_i =288 K.

Dans la section d'entrée (S=5 cm²) la vitesse de l'air est 111m/s. la pression dans la section de sortie est 1/3 bar.

- 1. Représenter graphiquement en fonction de x, pour x variant de 0 à l, les rapports $\frac{P}{P_l}$, $\frac{T}{T_l}$, $\frac{S}{S_c}$, M. On utilisera les tables d'écoulement isentropique. Dresser un tableau récapitulatif des valeurs pour l'entrée (x=0) la sortie (x=l) le col et les sections d'abscisse 0.25l, 0.50l, 0.75l. calculer la vitesse de sortie et le débit masse de la tuyère.
- 2. Dans la tuyère ayant le profil défini à la question précédente, on fait varier la pression à l'aval, sans modifier les conditions à l'amont, de façon à obtenir une onde de choc droite située à l'abscisse *x*=0.75*l*. En négligeant la variation de pression d'arrêt à la traversée de l'onde de choc, calculer les pressions, masses volumiques, températures et vitesses de part et d'autre de l'onde de choc et à la sortie de la tuyère.

Compléter dans ce cas la représentation graphique de la première question.

<i>Rép</i> : 1)	х	0	<i>l/4</i>	1/2	Col, 0.672l	31/4	l
	P/F	$P_i = 0.9273$	0.7788	0.6303	0.527	0.4818	0.3333
	T/T	$C_i = 0.9784$	0.930	0.875	0.8316	0.8102	0.728
	S/S	c 1.869	0.176	1.024	1	1.0047	1.0919
	M	0.33	0.61	0.84	1	1.076	1.36
	V_s =.	394.7m/s,	$q_m = 63.5g$	S			
2)	х	Col	31/4 (amon	at) 31/4	(aval) l		
	P/P_i	0.527	0.4818	0	570 0.717	77	
	T/T_i	0.8316	0.8102	0.0	810 0.90	9	
	M	1	1.076	0.5	932 0.70	4	
	V	310.3	329.5	29	22.5 228.	1	