University of M'sila

Faculty of: Technology

Common Base

First Series of exercises

Exercise 01:

Given the vectors $\overrightarrow{\boldsymbol{V}}_{\mathbf{1}}$ and $\overrightarrow{\boldsymbol{V}}_{\mathbf{2}}$ in an orthonormal basis $(\overrightarrow{\boldsymbol{l}}, \overrightarrow{\boldsymbol{\jmath}}, \overrightarrow{\boldsymbol{k}})$ such that:
$\overrightarrow{\boldsymbol{V}}_{\mathbf{1}}=\overrightarrow{\boldsymbol{\imath}}+\mathbf{2} \overrightarrow{\boldsymbol{\jmath}} \quad$ and $\quad \overrightarrow{\boldsymbol{V}}_{2}=\mathbf{2} \overrightarrow{\boldsymbol{\imath}}-\overrightarrow{\boldsymbol{\jmath}}$
$\mathbf{1} \%$ Find the vector sum $\overrightarrow{\boldsymbol{S}}=\overrightarrow{\boldsymbol{V}}_{\mathbf{1}}+\overrightarrow{\boldsymbol{V}}_{2}$, graphically and analytically.
$\mathbf{2 \%}$ Find the vector difference $\overrightarrow{\boldsymbol{D}}=\overrightarrow{\boldsymbol{V}}_{\mathbf{1}}-\overrightarrow{\boldsymbol{V}}_{\mathbf{2}}$ graphically and analytically.
$\mathbf{3} \%$ The vectors $\overrightarrow{\boldsymbol{V}}_{\mathbf{1}}$ and $\overrightarrow{\boldsymbol{V}}_{\mathbf{2}}$ form a parallelogram. What represents graphically, the magnitude of the sum $|\overrightarrow{\boldsymbol{S}}|$ and the magnitude of difference $|\overrightarrow{\boldsymbol{D}}|$ in this parallelogram?

4\% Determine the moduli of the vectors: $\overrightarrow{\boldsymbol{V}}_{1}, \overrightarrow{\boldsymbol{V}}_{2}, \overrightarrow{\boldsymbol{S}}$ and $\overrightarrow{\boldsymbol{D}}$.
Additional questions: If $\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}=\mathbf{5} \overrightarrow{\boldsymbol{\imath}}-\overrightarrow{\boldsymbol{\jmath}}$ and $\overrightarrow{\boldsymbol{B}}-\overrightarrow{\boldsymbol{A}}=\overrightarrow{\boldsymbol{\imath}}+\overrightarrow{\boldsymbol{\jmath}}$
$\mathbf{5 \%}$ Found the moduli of the vectors: $|\overrightarrow{\boldsymbol{A}}|,|\overrightarrow{\boldsymbol{B}}|,|\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}|$ and $|\overrightarrow{\boldsymbol{B}}-\overrightarrow{\boldsymbol{A}}|$?
6% Found the angles formed between: $(\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}) ;(\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$ and $\overrightarrow{\boldsymbol{A}}) ;(\overrightarrow{\boldsymbol{B}}-\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}})$;
$(\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$ and $\overrightarrow{\boldsymbol{B}}-\overrightarrow{\boldsymbol{A}})$
7% Determine the components of $\overrightarrow{\boldsymbol{n}}$ the normal to the plane constituted by the vectors $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$
$\mathbf{8 \%}$ What are the components of $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ along the directions $\overrightarrow{\boldsymbol{u}}=\overrightarrow{\boldsymbol{\imath}}+\overrightarrow{\boldsymbol{\jmath}}$ and $\overrightarrow{\boldsymbol{v}}=\overrightarrow{\boldsymbol{\imath}}-\overrightarrow{\boldsymbol{\jmath}}$?

Exercise 02:

Given the vectors $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ in an orthonormal basis, $(\overrightarrow{\boldsymbol{l}}, \overrightarrow{\boldsymbol{\jmath}}, \overrightarrow{\boldsymbol{k}})$ such that:

$$
\vec{a}=3 \vec{\imath}-5 \vec{\jmath}+\vec{k} \quad \text { and } \quad \vec{b}=2 \vec{\imath}+3 \vec{\jmath}-4 \vec{k}
$$

$\mathbf{1} \%$ Calculate the scalar (dot) product between $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$.
$\mathbf{2 \%}$ What is the angle between $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$. Determine $|\overrightarrow{\boldsymbol{a}}+\overrightarrow{\boldsymbol{b}}|$ and $|\overrightarrow{\boldsymbol{a}}-\overrightarrow{\boldsymbol{b}}|$ in two ways.
3% Determine the projection along the direction $\overrightarrow{\boldsymbol{a}}$ of the vector $\overrightarrow{\boldsymbol{b}}$
If these vectors whose components are given according to the parameters $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ such that

$$
\vec{a}=\alpha \vec{\imath}-\mathbf{2} \vec{\jmath}+\vec{k} \text { and } \vec{b}=\beta \vec{\imath}+\vec{\jmath}+\vec{k}
$$

4% What is the relationship between $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ such that $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ are always perpendicular?

Exercise 03:

Given the vectors $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ in an orthonormal basis $(\overrightarrow{\boldsymbol{i}}, \overrightarrow{\boldsymbol{\jmath}}, \overrightarrow{\boldsymbol{k}})$

$$
\vec{A}=2 \vec{\imath}-3 \vec{\jmath}+4 \vec{k} \quad \text { and } \quad \vec{A}=\vec{\imath}+5 \vec{\jmath}+2 \vec{k}
$$

$\mathbf{1} \%$ Calculate the vector (cross) product between $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$.
$\mathbf{2} \%$ Find the angle between $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$.
3% What is the area constituted by the vectors $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$.
What is the direction of this surface?
If these vectors whose components are given according to the parameters $\boldsymbol{\gamma}$ and $\boldsymbol{\delta}$ such that:

$$
\vec{A}=\gamma \vec{\imath}-3 \vec{\jmath}+4 \vec{k} \quad \text { and } \quad \vec{B}=5 \vec{\imath}+\delta \vec{\jmath}+2 \vec{k}
$$

4% What are the values of $\boldsymbol{\gamma}$ and $\boldsymbol{\delta}$ so that $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ are always collinear?

Exercise 04:

In an orthonormal basis $(\overrightarrow{\boldsymbol{i}}, \overrightarrow{\boldsymbol{\jmath}}, \overrightarrow{\boldsymbol{k}})$, we give the vectors:

$$
\vec{A}(t)=2 t \vec{\imath}+(t+1) \vec{\jmath} \quad \text { and } \vec{B}(t) \quad=4 t \vec{\imath}-3 t \vec{\jmath}+2 \vec{k}
$$

1% Calculate the derivatives $\frac{d \vec{A}}{d t}, \frac{d \vec{B}}{d t}$ of the vectors $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$.
$\mathbf{2 \%}$ Calculate derivatives $\frac{\boldsymbol{d}(\vec{A} \circ \overrightarrow{\boldsymbol{B}})}{\boldsymbol{d t}}$ and $\frac{\boldsymbol{d}(\overrightarrow{\boldsymbol{A}} \wedge \overrightarrow{\boldsymbol{B}})}{\boldsymbol{d t}}$ in two ways.

QCU:

$\mathbf{1} \%$ Let be the vectors $\overrightarrow{\boldsymbol{A}}=\mathbf{3} \overrightarrow{\mathbf{\imath}}+\mathbf{4} \overrightarrow{\boldsymbol{\jmath}}$ and $\overrightarrow{\boldsymbol{B}}=\mathbf{7} \overrightarrow{\mathbf{\imath}}-\mathbf{2 4} \overrightarrow{\boldsymbol{\jmath}}$. The vector having the same modulus as $\overrightarrow{\boldsymbol{B}}$ and the same direction as $\overrightarrow{\boldsymbol{A}}$ is:
a/ $\mathbf{5} \vec{\imath}+\mathbf{2 0} \overrightarrow{\boldsymbol{\jmath}}$
$b / \mathbf{2 0} \overrightarrow{\boldsymbol{\imath}}+\mathbf{1 5} \overrightarrow{\boldsymbol{\jmath}}$
c/ $\mathbf{1 5} \vec{\imath}+\mathbf{1 0} \vec{\jmath}$
$d / \mathbf{1 5} \vec{\imath}+\mathbf{2 0} \vec{\jmath}$
$\mathbf{2 \%}$ Let the vector $\overrightarrow{\boldsymbol{A}}=\mathbf{2} \overrightarrow{\boldsymbol{i}}+\mathbf{3} \overrightarrow{\boldsymbol{\jmath}}$. The angle between $\overrightarrow{\boldsymbol{A}}$ and the axis $\overrightarrow{\boldsymbol{o y}}$ is:
a/ $\arcsin \left[\frac{3}{2}\right] \quad b / \operatorname{arctg}\left[\frac{3}{2}\right] \quad$ c/ $\operatorname{arctg}\left[\frac{2}{3}\right] \quad d / \operatorname{arcos}\left[\frac{3}{2}\right]$
$\mathbf{3} \% \mathbf{5}$ forces, each equal to ${ }^{\prime} \mathbf{1 0 N} N^{\prime}$ and applied at the same point. These forces are coplanar and angles between each two consecutive forces are same. The resultant is:
$a /$ Zéro $\quad b / \mathbf{1 0 N} \quad c / 20 N \quad d / \mathbf{1 0} \sqrt{2} N$

Exercise 05:

In an orthonormal basis $(\overrightarrow{\boldsymbol{\imath}}, \overrightarrow{\boldsymbol{J}})$, we give the vector $\overrightarrow{\boldsymbol{A}}$ such that $\overrightarrow{\boldsymbol{A}}=\overrightarrow{\boldsymbol{\imath}}+\sqrt{3} \overrightarrow{\boldsymbol{J}}$
$\mathbf{1} \%$ Write the unit vector $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{A}}$ of $\overrightarrow{\boldsymbol{A}}$ in the base. $(\overrightarrow{\boldsymbol{i}}, \overrightarrow{\boldsymbol{J}})$

This unit vector $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{A}}$ taken as a vector of the polar basis, $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{A}}=\overrightarrow{\boldsymbol{u}}_{\boldsymbol{\rho}}$
$\mathbf{2 \%}$ Give the expression (in the Cartesian base) of the second vector of this base $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}$.
3% Write the vector $\overrightarrow{\boldsymbol{A}}$ in the polar base.

Given a vector $\overrightarrow{\boldsymbol{B}}$ in the polar basis $\overrightarrow{\boldsymbol{B}}=\boldsymbol{\rho} \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\rho}}+\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta} \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}$
4% Give the expression of $\overrightarrow{\boldsymbol{B}}$ in the Cartesian base

Exercise 06:

Given a vector $\overrightarrow{\boldsymbol{A}}=\overrightarrow{\boldsymbol{\imath}}-\sqrt{\mathbf{3}} \overrightarrow{\boldsymbol{\jmath}}-\mathbf{2} \overrightarrow{\boldsymbol{k}}$
$\mathbf{1} \%$ Give the spherical coordinates of $\overrightarrow{\boldsymbol{A}}$?
$\mathbf{2 \%}$ What is the spherical base $\left(\overrightarrow{\boldsymbol{u}}_{r}, \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}, \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\varphi}}\right)$ for $\overrightarrow{\boldsymbol{A}}$, expressed in the Cartesian basis?
$\mathbf{3} \%$ Do the same thing again for the vector $\overrightarrow{\boldsymbol{A}}$ in the cylindrical base $\left(\overrightarrow{\boldsymbol{u}}_{\boldsymbol{\rho}}, \overrightarrow{\boldsymbol{u}}_{\theta}, \overrightarrow{\boldsymbol{k}}\right)$.

Exercise 07:

In an orthonormal basis $(\overrightarrow{\boldsymbol{i}}, \overrightarrow{\boldsymbol{\jmath}})$, we give the point $\boldsymbol{M}\binom{\sqrt{\mathbf{3}}}{\mathbf{1}}$ on the circle of radius $\boldsymbol{R}=\mathbf{2}$ and center $\boldsymbol{C}(\mathbf{0}, \mathbf{0})$:
$\mathbf{1} \%$ Write the unit vectors of the polar basis $\left(\overrightarrow{\boldsymbol{u}}_{\boldsymbol{\rho}}, \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}\right)$ in the Cartesian basis($\left.\overrightarrow{\boldsymbol{\imath}}, \overrightarrow{\boldsymbol{\jmath}}\right)$.
Given $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{\rho}}$ and $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}$ for the point $\boldsymbol{M}\binom{\sqrt{\mathbf{3}}}{\mathbf{1}}$.
$\mathbf{2} \%$ Write the derivatives $\frac{\boldsymbol{d} \vec{u}_{\rho}}{\boldsymbol{d} \boldsymbol{t}}$ and $\frac{\boldsymbol{d} \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}}{\boldsymbol{d} \boldsymbol{t}}$ of the unit vectors $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{\rho}}, \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}$ in the same polar basis if $\frac{d \theta}{d t}=\dot{\boldsymbol{\theta}}=\boldsymbol{t}$.
$\mathbf{3} \%$ Write the unit vectors of the intrinsic $\left(\overrightarrow{\boldsymbol{u}}_{T}, \overrightarrow{\boldsymbol{u}}_{\boldsymbol{N}}\right)$ basis in the Cartesian basis $(\overrightarrow{\boldsymbol{i}}, \overrightarrow{\boldsymbol{j}})$.
Given $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{T}}$ and $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{N}}$ for the point $\boldsymbol{M}\binom{\sqrt{\mathbf{3}}}{\mathbf{1}}$.
$\mathbf{4 \%}$ Write derivatives $\frac{d \vec{u}_{T}}{d t}$ and $\frac{d \vec{u}_{N}}{d t}$ of the unit vectors in the same intrinsic basis $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{T}}, \overrightarrow{\boldsymbol{u}}_{\boldsymbol{N}}$.
$\mathbf{5} \%$ Represent the polar and intrinsic basis at the point $\mathbf{M}\binom{\sqrt{3}}{\mathbf{1}}$

Exercise 08: (Additional)

Let a vector $\overrightarrow{\boldsymbol{A}}=\mathbf{3} \overrightarrow{\boldsymbol{\imath}}+\mathbf{2} \overrightarrow{\boldsymbol{\jmath}}+\overrightarrow{\boldsymbol{k}}$
$\mathbf{1} \%$ Give the spherical coordinates of $\overrightarrow{\boldsymbol{A}}$?
$\mathbf{2 \%}$ Write the expressions of the spherical base $\left(\overrightarrow{\boldsymbol{u}}_{r}, \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}, \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\varphi}}\right)$, in the Cartesian base
$\mathbf{3} \%$ Do the same thing again for the vector $\overrightarrow{\boldsymbol{A}}$ in the cylindrical base $\left(\overrightarrow{\boldsymbol{u}}_{\boldsymbol{\rho}}, \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}, \overrightarrow{\boldsymbol{k}}\right)$.

Exercise 09: (HW)

$\mathbf{1}^{\circ}$ / Express the Cartesian base $(\overrightarrow{\boldsymbol{\imath}}, \overrightarrow{\mathbf{\jmath}}, \overrightarrow{\boldsymbol{k}})$ in the spherical base $\left(\overrightarrow{\boldsymbol{u}}_{r}, \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}, \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\varphi}}\right)$
$\mathbf{2}^{\circ}$ /Show that the unit vectors of the spherical basis are written as follows:
$\frac{d \vec{u}_{r}}{d t}=\overrightarrow{\boldsymbol{\Omega}}_{\mathbf{1}} \wedge \overrightarrow{\boldsymbol{u}}_{r} \quad \frac{d \overrightarrow{\boldsymbol{u}}_{\theta}}{d t}=\overrightarrow{\boldsymbol{\Omega}}_{\mathbf{2}} \wedge \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}} \quad \frac{d \overrightarrow{\boldsymbol{u}}_{\varphi}}{d t}=\overrightarrow{\boldsymbol{\Omega}}_{3} \wedge \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\varphi}}$.
Give the expression of $\overrightarrow{\boldsymbol{\Omega}}_{\mathbf{1}}, \overrightarrow{\boldsymbol{\Omega}}_{\mathbf{2}}$ and $\overrightarrow{\boldsymbol{\Omega}}_{\mathbf{3}}$.

