# University of M'sila

#### Faculty of: Technology

#### Common base

**Third Series of exercises** 

#### Exercise 01:

Two swimmers leave, in same time, a point  $\mathbf{A}$  on one bank of the river to reach point  $\mathbf{B}$  lying right across on the other bank. One of them crosses the river along the straight-line  $\mathbf{AB}$ , while the other swims at right angle to the stream he reaches the point  $\mathbf{A}$  and then walks the distance that he has been carried away by the stream to get to point  $\mathbf{B}$ .

1°- What was the speed **u** of his walking if both swimmers reached the destination

simultaneously?

[The stream speed is  $v_0 = 2 \ km/h$ , the speed of each swimmer with respect to water are same and equal to  $v_1' = v_2' = 2.5 \ km/h$ ]

#### <u>Exercise 02:</u> (Fig.02)

Two masses  $m_2$  and  $m_3$ , are connected by an inextensible wire to a mass  $m_1$  (Fig. 02-a), which passes through the groove of a massless and frictionless pulley. The system starts from rest.

1 °/ Find the accelerations of the two masses.

2°/ What is the tension in the wire?

A new configuration in which the two masses  $m_2 < m_3$  are connected by an inextensible and massless wire via another movable pulley  $P_2$ which is also connected to a mass  $m_1$  via a fixed pulley  $P_1$ . Pulleys are massless and frictionless (Fig. 02-b).

**3**°/ Find the accelerations of the two masses.

4°/ What are the tensions in the wires?



 $m_1$ 

Fig. 02-a

P1

(0

 $m_2$ 

## Exercise 03 : (Fig.03)

A mass m, is released from rest on frictionless and inclined plane  $\alpha = \pi/_6$ . Starting from the point A on, arrives at B, continues its motion on the horizontal rough plane BC and stops at C.

**1**  $\gamma$  What is its speed  $v_B$  at the point **B**. What will be its speed  $v_D$  at **D** if it falls from **A** to **D**?

What do you conclude? (We take:  $g = 10 \text{ m/s}^2$ ,  $\mu = 0.5$  and AB = 3.6 m)

**2**°/ Determine the distance traveled until it stops. (We take:  $g = 10 \text{ m/s}^2$ ,  $\mu = 0.5$ ).

# <u>Exercise 04: (Fig.04)</u>

Two blocks of masses " $m_1$ " and " $m_2$ " are superimposed and connected by an inextensible massless wire passing through the groove of a pulley of mass "M", radius "r" and moment of inertia "I". Assume that the

coefficient of friction " $\mu$ " between the two masses is the same as that of the supposedly rough table. The force " $\vec{F}$ " applied to  $m_1$  is horizontal.

1 % Represent the free body diagram for each element (forces on each element).

Find the acceleration of the system.

2°/ Find the tensions in the wires.

## Exercise 05: (Fig.05)

A ball follows a rough track of a parabolic form  $''\frac{1}{2}x^2$  ''and coefficient of friction  $\mu = 0.5$ . At the position A(2,2), it acquires speed  $\nu = 5 \text{ m/s.}$  What is the normal force at this point? What will be its tangential acceleration?

(Radius of curvature:  $ho = rac{\left[1+(y')^2
ight]^{3/2}}{y''}$  ;  $y' = rac{dy}{dx}$  ; m=2~kg )

# Exercise 06: (Additional) (Fig.06)

Two masses  $m_1 = 10kg$  and  $m_2 = 20kg$  connected by an inextensible massless rope which passes through the grooves of two massless and frictionless pulleys. The pulley ( $P_2$ ) is movable, the other ( $P_1$ ) is fixe.

**1**°/ Find the accelerations  $a_1$  and  $a_2$  of each of the masses. **2**°/ Find the tension of the rope on each side of the pulleys.



P2







 $m_2$ 

Fia. 06

### Exercise 07:(Additional)

Two masses  $m_1 = 1.5 \, kg$  and  $m_2 = 2 \, kg$ , are connected by an inextensible massless wire, through a massless and frictionless pulley. The pulley ' $P_2$ 'is movable (**fig.07**). **1**°/ Find the accelerations  $a_1$  and  $a_2$  of each mass.

2°/ Find the tensions in the wire on each side of the pulleys

### Exercise 08(D.M): (Fig.08)

A particle of mass, "m", is launched via a compressed spring. Acquires an initial velocity " $v_0 = v_c = \sqrt{2Rg}$ " (The spring is at rest when its length is " $l_0 = CD$ "). It travels along the <u>rough</u> section 'BC = R' of dynamic coefficient of friction " $\mu = 0.5$ ", then begins the <u>smooth</u> section"BA" which is a quarter circle of radius 'R'.

Using intrinsic coordinates system

1 '/ What is its speed at the point 'B '?

2°/ What is its speed at any point in the section

'BA' (' $\theta$ ' is counted from **OB**).

**3**°/ Does it reaches the point 'A' ? Justify. Where does it stops?

4°/At what point does it stops if it resumes its motion? (CD is also smooth).

### Exercise 09: (Additional) (FIG.09)

- A projectile is launched with an initial velocity  $v_0$ at an angle  $\alpha = \frac{\pi}{6}$  to the horizontal  $\overrightarrow{ox}$ . Neglecting the air resistance and applying the fundamental principle of dynamics:
- $1^{\circ}$  Determine the equations of motion x(t) and y(t).
- 2% What is the nature of the trajectory?
- 3°/ What is the maximum Hight and Range?

Is the curve symmetric?









• If, now, the projectile is launched into a liquid under the same conditions, it will experience a frictional force proportional to the velocity  $\vec{R} = -k\vec{v}$ .

**4**°/*Find the equations of motion* x(t) *and* y(t)*.* 

5°/ What is the maximum Hight and Range?

Is the curve symmetric?

#### Exercise 10: (Additional) (FIG.10)

A ball of mass "m "slides frictionlessly inside a cycloid located in the vertical plane "xoy". The cycloid is expressed by the following parametric equations:

$$\begin{cases} x = R(\theta + \sin\theta) \\ y = R(1 - \cos\theta) \end{cases}$$

1°/ Calculate the variation of the abscissa "ds" as a function of

" $R, \theta, d\theta$ ". Deduce  $s = f(R, \theta)$ 

**2°/** Determine the relationship between " $\theta$ " and the angle " $\varphi$ " between the tangent to the curve and the axis " $\overline{ox}$ ".



3°/ Using the fundamental principle of dynamics, show that the abscissa curvilinear obeys

the law: 
$$\frac{d^2s}{dt^2} + \frac{g}{4R}s = 0$$

**4°/** What is the nature of the movement?

Deduct its period.

**5°/** Find its equation of motion s(t).

