University of M'sila

Faculty of: Technology

Common base

Third Series of exercises

Exercise 01:

Two swimmers leave, in same time, a point \boldsymbol{A} on one bank of the river to reach point \mathbf{B} lying right across on the other bank. One of them crosses the river along the straight-line $\mathbf{A B}$, while the other swims at right angle to the stream he reaches the point \boldsymbol{A} and then walks the distance that he has been carried away by the stream to get to point \mathbf{B}.
$\mathbf{1}^{\circ}$ - What was the speed \boldsymbol{u} of his walking if both swimmers reached the destination

Abstract

simultaneously?

[The stream speed is $\boldsymbol{v}_{\mathbf{0}}=\mathbf{2} \mathbf{k m} / \mathbf{h}$, the speed of each swimmer with respect to water are same and equal to $\left.\boldsymbol{v}_{1}{ }^{\prime}=\boldsymbol{v}_{2}{ }^{\prime}=2.5 \mathrm{~km} / \mathrm{h}\right]$

Exercise 02: (Fig.02)

Two masses $\boldsymbol{m}_{\mathbf{2}}$ and \boldsymbol{m}_{3}, are connected by an inextensible wire to a mass \boldsymbol{m}_{1} (Fig. 02-a), which passes through the groove of a massless and frictionless pulley. The system starts from rest.
1% Find the accelerations of the two masses.

$\mathbf{2 \%}$ What is the tension in the wire?

A new configuration in which the two masses $\boldsymbol{m}_{\mathbf{2}}<\boldsymbol{m}_{\mathbf{3}}$ are connected by an inextensible and massless wire via another movable pulley \boldsymbol{P}_{2} which is also connected to a mass $\boldsymbol{m}_{\mathbf{1}}$ via a fixed pulley $\boldsymbol{P}_{\mathbf{1}}$. Pulleys are massless and frictionless (Fig. 02-b).
3% Find the accelerations of the two masses.

4% What are the tensions in the wires?

Exercise 03: (Fig.03)

A mass \boldsymbol{m}, is released from rest on frictionless and inclined plane $\boldsymbol{\alpha}=\boldsymbol{\pi} / \mathbf{6}$. Starting from the point \boldsymbol{A} on, arrives at \boldsymbol{B}, continues its motion on the horizontal rough plane BC and
 stops at C.
$\mathbf{1} \%$ What is its speed $\boldsymbol{v}_{\boldsymbol{B}}$ at the point \boldsymbol{B}. What will be its speed $\boldsymbol{v}_{\boldsymbol{D}}$ at \boldsymbol{D} if falls from \boldsymbol{A} to \boldsymbol{D} ?

What do you conclude? (We take: $\boldsymbol{g}=\mathbf{1 0} \mathrm{m} / \mathrm{s}^{2}, \boldsymbol{\mu}=\mathbf{0} .5$ and $A \boldsymbol{B}=\mathbf{3 . 6} \mathbf{m}$)
$\mathbf{2 \%}$ Determine the distance traveled until it stops. (We take: $\boldsymbol{g}=\mathbf{1 0} \mathbf{m} / \mathbf{s}^{\mathbf{2}}, \boldsymbol{\mu}=\mathbf{0} .5$).

Exercise 04:(Fig.04)

Two blocks of masses " $\boldsymbol{m}_{\mathbf{1}}{ }^{\text {" }}$ and " $\boldsymbol{m}_{\mathbf{2}}$ " are superimposed and connected by an inextensible massless wire passing through the groove of a pulley

Fig. 04 of mass " $\boldsymbol{M}^{\prime \prime}$, radius " \boldsymbol{r} " and moment of inertia " \boldsymbol{I} ". Assume that the coefficient of friction " $\boldsymbol{\mu}$ "between the two masses is the same as that of the supposedly rough table. The force ${ }^{\prime \prime} \overrightarrow{\boldsymbol{F}}^{\prime \prime}$ applied to $\boldsymbol{m}_{\mathbf{1}}$ is horizontal.
1% Represent the free body diagram for each element (forces on each element).
Find the acceleration of the system.
2% Find the tensions in the wires.

Exercise 05: (Fig.05)

A ball follows a rough track of a parabolic form " $\frac{1}{2} x^{2}$ " and coefficient of friction $\boldsymbol{\mu}=\mathbf{0} .5$. At the position $\mathbf{A}(\mathbf{2}, 2)$, it acquires speed $\boldsymbol{v}=\mathbf{5} \boldsymbol{m} / \boldsymbol{s}$. What is the normal force at this point? What will be its tangential acceleration?

Fig. 05 (Radius of curvature: $\boldsymbol{\rho}=\frac{\left[1+\left(y^{\prime}\right)^{2}\right]^{3 / 2}}{y^{\prime \prime}} ; \boldsymbol{y}^{\prime}=\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}} ; \boldsymbol{m}=\mathbf{2} \boldsymbol{k g}$)

Exercise 06: (Additional) (Fig.06)

Two masses $\boldsymbol{m}_{\mathbf{1}}=\mathbf{1 0} \mathbf{k g}$ and $\boldsymbol{m}_{\mathbf{2}}=\mathbf{2 0} \mathbf{k g}$ connected by an inextensible massless rope which passes through the grooves of two massless and frictionless pulleys. The pulley $\left(\boldsymbol{P}_{\mathbf{2}}\right)$ is movable, the other $\left(\boldsymbol{P}_{\mathbf{1}}\right)$ is fixe.
$\mathbf{1} \%$ Find the accelerations $\boldsymbol{a}_{\mathbf{1}}$ and $\boldsymbol{a}_{\mathbf{2}}$ of each of the masses.

$\mathbf{2 \%}$ Find the tension of the rope on each side of the pulleys.

Exercise 07:(Additional)

Two masses $\boldsymbol{m}_{\mathbf{1}}=1.5 \mathbf{k g}$ and $\boldsymbol{m}_{\mathbf{2}}=\mathbf{2 k g}$, are connected by an inextensible massless wire, through a massless and frictionless pulley. The pulley ${ }^{\prime} \boldsymbol{P}_{2}$ 'is movable (fig.07).
$\mathbf{1} \%$ Find the accelerations $\boldsymbol{a}_{\mathbf{1}}$ and $\boldsymbol{a}_{\mathbf{2}}$ of each mass.

Exercise 08(D.M):(Fig.08)

A particle of mass, " $\boldsymbol{m}^{\prime \prime}$, is launched via a compressed spring. Acquires an initial velocity " $\boldsymbol{v}_{\mathbf{0}}=$ $\boldsymbol{v}_{\boldsymbol{C}}=\sqrt{\mathbf{2 R g}}{ }^{\prime \prime}$ (The spring is at rest when its length is ${ }^{\prime \prime} \boldsymbol{l}_{\mathbf{0}}=\boldsymbol{C D}{ }^{\prime \prime}$). It travels along the rough section ${ }^{\prime} \boldsymbol{B C}=\boldsymbol{R}^{\prime}$ of dynamic coefficient of friction ${ }^{\prime \prime} \boldsymbol{\mu}=\mathbf{0} . \mathbf{5}^{\prime \prime}$, then begins the smooth section" $\boldsymbol{B A}^{\prime \prime}$ which is a quarter circle of radius ' \boldsymbol{R}^{\prime}.

Using intrinsic coordinates system
$\mathbf{1} \%$ What is its speed at the point ${ }^{\prime} \boldsymbol{B}^{\prime}$?
2% What is its speed at any point in the section
' $\boldsymbol{B} \boldsymbol{A}^{\prime}\left(^{\prime} \boldsymbol{\theta}^{\prime}\right.$ is counted from $\mathbf{O B}$).

Fig. 08
$\mathbf{3} \%$ Does it reaches the point ${ }^{\prime} \boldsymbol{A}^{\prime}$? Justify. Where does it stops?
4\%At what point does it stops if it resumes its motion? (CD is also smooth).

Exercise 09: (Additional) (FIG.09)

- A projectile is launched with an initial velocity $\boldsymbol{v}_{\mathbf{0}}$ at an angle $\boldsymbol{\alpha}=\frac{\pi}{6}$ to the horizontal $\overrightarrow{\boldsymbol{o x}}$. Neglecting the air resistance and applying the fundamental principle of dynamics:

$\mathbf{1} \%$ Determine the equations of motion $\boldsymbol{x}(\boldsymbol{t})$ and $\boldsymbol{y}(\boldsymbol{t})$.
2% What is the nature of the trajectory?
3% What is the maximum Hight and Range?
Is the curve symmetric?
- If, now, the projectile is launched into a liquid under the same conditions, it will experience a frictional force proportional to the velocity $\overrightarrow{\boldsymbol{R}}=-\boldsymbol{k} \overrightarrow{\boldsymbol{v}}$.
4% Find the equations of motion $\boldsymbol{x}(\boldsymbol{t})$ and $\boldsymbol{y}(\boldsymbol{t})$.
5% What is the maximum Hight and Range?
Is the curve symmetric?

Exercise 10: (Additional) (FIG. 10)

A ball of mass " \boldsymbol{m} "slides frictionlessly inside a cycloid located in the vertical plane "xoy". The cycloid is expressed by the following parametric equations:

$$
\left\{\begin{array}{l}
x=R(\theta+\sin \theta) \\
y=R(1-\cos \theta)
\end{array}\right.
$$

$\mathbf{1}^{\circ} /$ Calculate the variation of the abscissa " $\boldsymbol{d s}$ "as a function of
" $\boldsymbol{R}, \boldsymbol{\theta}, \boldsymbol{d} \boldsymbol{\theta}{ }^{\prime \prime}$. Deduce $\boldsymbol{s}=\boldsymbol{f}(\boldsymbol{R}, \boldsymbol{\theta})$
$\mathbf{2}^{\circ}$ / Determine the relationship between " $\boldsymbol{\theta}$ " and the angle " $\boldsymbol{\varphi}$ " between the tangent to the curve and the axis " $\overrightarrow{\boldsymbol{o x}}$ ".
$3^{\circ} /$ Using the fundamental principle of dynamics, show that the abscissa curvilinear obeys the law: $\quad \frac{d^{2} s}{d t^{2}}+\frac{g}{4 R} s=0$
4° / What is the nature of the movement?
Deduct its period.
$\mathbf{5}^{\circ} /$ Find its equation of motion $\boldsymbol{s}(\boldsymbol{t})$.

