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A‐ Errors, measurements and representation	

1‐	Unit	

 All physical quantities are quantified, these quantities are characterized by units 

that are suitable for their measurements.  

 In the international system (MKSA), we have 7 main units, the rest follows 

from that.  

‐  M               meter (length).                       - N            mole (number of particles) 

- K                kilogram (mass).                    - K            Kelvin (temperature) 

- S                second (time).                        - Cd           Candela (luminous Intensity)     

- A              Ampère (electrical intensity). 

                                                                                   

2‐	Scientific	notation	

When quantifying physical quantities, some of them are very large or too small, for 

this, notation is used to write them. which is called scientific notation 

𝒗.𝟏𝟎𝒏   
∗  𝒗: 𝒓𝒆𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓      𝟏  𝒗 𝟗

∗  𝒏: 𝑰𝒏𝒕𝒆𝒈𝒆𝒓 𝒏𝒖𝒎𝒃𝒆𝒓                     
	

 Example:  

 The earth mass: " 6 followed by 24 zeros "                     𝒎 𝟔  𝟏𝟎𝟐𝟒𝒌𝒈 

 The electron mass: " 9.11 preceded by 30 zero "        𝒎 𝟗.𝟏𝟏  𝟏𝟎 𝟑𝟏𝒌𝒈 

3‐	Measurement,	errors	and	significant	figures	

3.1	Measurements	

There are two types of measures 



a‐	Direct	measurements	

This is the operation of reading or sampling directly from the measuring instrument 

(length, time, current, ...). 

b‐	Indirect	measurements	

The desired quantity is expressed mathematically as a function of other quantities 

measured directly (area, volume, density, …) 

3.2	Errors	

a‐	Notions	of	error	and	uncertainty	

- Error:  

Is the difference between the real and measured value of the physical quantity.            

This difference can be positive or negative. 

There are two types of errors: 

- systematic errors:  

Those repeated each time in the same way (error of the instrument, ...)  

- Incidental errors:  

Those that appear each time but in a random or unpredictable way (reading, 

temperature change, ...) 

 - Uncertainty: is the maximum absolute value that the error can take. 

b‐	Determination	of	uncertainty	

- If "𝒙" is the real value of the physical quantity, while the measured value of the same 

quantity is "𝒙𝟎", then the error is:   

𝒆  𝒙 𝒙𝟎	

Note: The error may be negative or positive  𝒆 0 𝑜𝑢 𝑒 0  

- The absolute value of the error is: the absolute error 

𝜹𝒙 |𝒆|  |𝒙 𝒙𝟎|	

- The absolute uncertainty is given by: 



∆𝒙 𝒎𝒂𝒙 𝜹𝒙  

Note: we always have     ∆𝒙 𝜹𝒙 

 If the error is positive ( 𝒆 0  : 

|𝒙 𝒙𝟎| 𝒙 𝒙𝟎    ⟹  ∆𝒙 𝜹𝒙  𝒙 𝒙𝟎     ⟹ 𝒙 𝒙𝟎 ∆𝒙 	

 If the error is negative ( 𝒆 0  : 

|𝒙 𝒙𝟎| 𝒙 𝒙𝟎   ⟹  ∆𝒙 𝜹𝒙  𝒙𝟎 𝒙    ⟹ 𝒙 𝒙𝟎 ∆𝒙 	

 The real value can finally be written: 

																																																																																					𝒙 𝒙𝟎 ∆𝒙	

 Determination of uncertainty 

- If the quantity is measured directly, the error made is on the smallest digit of 

the instrument. (Graduated rule in millimeters: the error made is in the mm). 

- If the quantity is given by indirect measurement, the error is expressed as a     

  function of the errors of the quantities measured directly (𝑥 𝐹 𝑎, 𝑏, 𝑐. .  

 * Sum: 

𝒙 𝒂 𝒃 𝒄 ⋯	

∆𝒙 ∆𝒂 ∆𝒃 ∆𝒄 ⋯	

* Product: 

𝒙𝟎 𝒂.𝒃. 𝒄	

∆𝒙 𝒃. 𝒄 ∆𝒂 𝒂. 𝒄 ∆𝒃 𝒂.𝒃 ∆𝒄	

              And    
∆𝒙

𝒙𝟎

∆𝒂

𝒂

∆𝒃

𝒃

∆𝒄

𝒄
⟹ ∆𝒙

∆𝒂

𝒂

∆𝒃

𝒃

∆𝒄

𝒄
𝒙𝟎              

            finally:         𝒙 𝒙𝟎 ∆𝒙 

	

 

Examples: 

1°- Perimeter of a rectangle: 𝑳 is the length and 𝒍 is the width 

𝑷 𝟐. 𝑳 𝒍 ⟹ ∆𝑷 𝟐 ∆𝑳 ∆𝒍 	

2°- Surface of this rectangle:  



𝑺 𝑳. 𝒍     ⟹       ∆𝑺 𝒍.∆𝑳 𝑳.∆𝒍      ⟹           
∆𝑺
𝑺

∆𝑳
𝑳

∆𝒍
𝒍
	

⟹			∆𝑺 ∆𝑳
𝑳

∆𝒍
𝒍
𝑺 

4‐	Signifiant	figures	

During the measurement, we write the quantified quantity in scientific notation, the 

figures that express this quantity are said to be significant. 

Note: "13" and "13.0" have the same value, but their meanings are different i.e., the 

error of the second is 10 times less than the first  

Generally: 

 Non-zero figures are always significant (3.1415        5 significant digits).  

 All zeros that come at the end are significant (0.4500         4 significant digits). 

 The zeros between the significant digits are significant (0.104       3 significant 

digits).  

 The zeros used to move the comma are not meaningful 

(0.00125=1.25 10-5            3 significant digits).  

Some rules on significant numbers	

5‐	Data	and	graphs	

5.1‐	Data	

These are the values that a physical quantity can take in different states 

5.2‐	Graphs	

The dependence that exists between two or more physical quantities is expressed by 

a function that can be represented by a curve or a graph.  

There are several types of functions: 

- Linear functions: 

   𝒚 𝒂𝒙 𝒃 , express the dependence between 𝑦 𝑒𝑡 𝑥. 

‐ Quadratic functions: 



 𝒚 𝒂𝒙𝟐 𝒃𝒙 𝒄 (Parabola of the 2nd order as well as that of the 3rd order and so on) 

‐ Inverse functions: 

      𝒚 𝒌

𝒙
	

‐ Exponential and logarithmic functions: 

   𝒚 𝒂𝒆𝒖 𝒙 , 𝒚 𝐥𝐧 𝒗 𝒙     𝑜ù 𝒖 𝒙  𝑒𝑡 𝒗 𝒙  are any numeric functions 

‐ Circular or trigonometric functions: 

   𝒚 𝒂. 𝒔𝒊𝒏 𝒖 𝒙 , 𝒚 𝒃. 𝒄𝒐𝒔 𝒖 𝒙 , 𝒚 𝒕𝒈 𝒖 𝒙 … 

‐ Hyperbolic functions: 

   𝒚 𝒂. 𝒔𝒊𝒏𝒉 𝒖 𝒙 , 𝒚 𝒃. 𝒄𝒐𝒔𝒉 𝒖 𝒙 , 𝒚 𝒕𝒈𝒉 𝒖 𝒙 … 

‐ Special functions. 

   



B‐ Vectors	

1‐	Notion	of	vector	

1.1‐	Definition:	

A vector is a mathematical entity that represents an element of a vector space 𝔼  

associated with an affine space (point), ℝ  where a direction, modulus, and point of 

application are defined. 

‐ "𝑶" point of application 

‐ "∆"  line of action 

‐ In the orthonormal basis ,⃗ ,⃗𝒌  ,) and in Euclidean geometry: 

   The modulus of the vector �⃗�  is: 

�⃗� |𝑶𝑨|⃗ 𝑥 𝑦 𝑧  

‐ From O to A is the direction 

1.2‐Types	of	vectors	

1.2.1‐	Free	vector	

It is a vector where the application point can be transferred to any point in space. 

1.2.2‐	Sliding	vector	

It is a vector where the application point can move along its line of action 

1.2.3‐	Bound	vector	

It is a vector where the point of application is fixed and defined by the coordinates of 

its origin 

 

 

      Free vector                           Sliding vector                                Bound vector  

𝐴 
𝑉 

∆  

𝑂 

𝑉   𝑉  

𝑉  

𝑉  𝑂 

𝑉  

�⃗�  

∆   



2‐	Operation	on	vectors	

2.1‐	Sum	of	vectors	(resultant):		

Relative to an orthonormal ,⃗ ,⃗𝒌  basis, the sum of two vectors is a vector, where the 

components are added two to two respectively 

�⃗�𝟏 𝒙𝟏⃗ 𝒚𝟏 ⃗ 𝒛𝟏𝒌           and      �⃗�𝟐 𝒙𝟐⃗ 𝒚𝟐 ⃗ 𝒛𝟐𝒌	

																																			⟹							�⃗� �⃗�𝟏 �⃗�𝟐 𝒙𝟏 𝒙𝟐 ⃗ 𝒚𝟏 𝒚𝟐 ⃗ 𝒛𝟏 𝒛𝟐 𝒌	

	

 

 

 

Note:  

For multiple vectors, the sum of the respective components added together represents the 

components of the resultant vector. 

�⃗� �⃗�𝟏 �⃗�𝟐 ⋯ �⃗�𝒏 𝒙𝟏 𝒙𝟐 ⋯ 𝒙𝒏 ⃗ 𝒚𝟏 𝒚𝟐 ⋯ 𝒚𝒏 ⃗ 𝒛𝟏 𝒛𝟐 ⋯ 𝒛𝒏 𝒌	

�⃗� 𝒙⃗ 𝒚⃗ 𝒛𝒌	

	

	

	

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝒙 𝒙𝒍

𝒏

𝒍 𝟏

𝒚 𝒚𝒍

𝒏

𝒍 𝟏

𝒛 𝒛𝒍

𝒏

𝒍 𝟏

	

𝑉  

𝑉  

𝑉  

𝑉⃗ 

𝑽𝟐 
�⃗�𝟐 

�⃗� 

�⃗�𝟏 



2.2‐	Product	of	vectors:	

								a- Scalar product and projection: 

The scalar product of two vectors �⃗�  and �⃗�𝟐  , is a scalar denoted �⃗�𝟏 ∘ �⃗�𝟐 , which is 

equal to the sum of the products of the corresponding components taken pairwise. 

�⃗�𝟏 𝒙𝟏⃗ 𝒚𝟏 ⃗ 𝒛𝟏𝒌       and        �⃗�𝟐 𝒙𝟐⃗ 𝒚𝟐 ⃗ 𝒛𝟐𝒌 

                                     ⟹                𝑽  �⃗�𝟏 ∘ �⃗�𝟐 𝒙𝟏.𝒙𝟐 𝒚𝟏.𝒚𝟐 𝒛𝟏. 𝒛𝟐  

Note: 

- For the unit vectors of the orthonormal basis, we have: 

⃗ ∘ ⃗ ⃗ ∘ ⃗ 𝒌 ∘ 𝒌 𝟏

⃗ ∘ ⃗ ⃗ ∘ 𝒌 ⃗ ∘ 𝒌 𝟎
 

- The square of the modulus of the vector is:  

�⃗� ∘ �⃗� 𝒙.𝒙 𝒚.𝒚 𝒛. 𝒛 𝒙𝟐 𝒚𝟐 𝒛𝟐 𝑽𝟐 

⟹ �⃗� 𝑽 𝒙𝟐 𝒚𝟐 𝒛𝟐	

- The scalar product can also be defined as follows: 

�⃗�𝟏 ∘ �⃗�𝟐 �⃗�𝟏 . �⃗�𝟐 𝒄𝒐𝒔 �⃗�𝟏, �⃗�𝟐 �⃗�𝟏 . �⃗�𝟐 𝒄𝒐𝒔 𝜽 	

- The square of the modulus of a vector can be given by:  

�⃗�𝟏 ∘ �⃗�𝟏 �⃗�𝟏 . �⃗�𝟐 𝒄𝒐𝒔 �⃗�𝟏, �⃗�𝟏 𝑽𝟏
𝟐	

Properties: 

- The scalar product is commutative 

�⃗�𝟏 ∘ �⃗�𝟐 �⃗�𝟐 ∘ �⃗�𝟏	

 

- The scalar product is distributive with respect to addition 

�⃗�𝟏 ∘ �⃗�𝟐 �⃗�𝟑 �⃗�𝟏 ∘ �⃗�𝟐 �⃗�𝟏 ∘ �⃗�𝟑	

- The scalar product geometrically represents the projection of one vector onto 

the direction of another 

𝑉  

�⃗�  
𝜃 



    
�⃗� ∘ ⃗ 𝒙⃗ 𝒚⃗ 𝒛𝒌 ∘ ⃗ 𝒙

�⃗� ∘ ⃗ 𝒙⃗ 𝒚⃗ 𝒛𝒌 ∘ ⃗ 𝒚

�⃗� ∘ 𝒌 𝒙⃗ 𝒚⃗ 𝒛𝒌 ∘ 𝒌 𝒛

	

- The scalar product is zero if: 

�⃗�𝟏 𝟎,  �⃗�𝟐 0 or �⃗�𝟏 ⊥ �⃗�𝟐 

												b‐	Vector	product	and	oriented	surface:	

The cross product of two vectors, �⃗�𝟏 and �⃗�𝟐, is a vector denoted  �⃗�𝟏 ∧ �⃗�𝟐 and given by:  

�⃗�𝟏 ∧ �⃗�𝟐

⃗ ⃗ 𝒌

𝒙𝟏 𝒚𝟏 𝒛𝟏

𝒙𝟐 𝒚𝟐 𝒛𝟐

𝒚𝟏. 𝒛𝟐 𝒚𝟐. 𝒛𝟏 ⃗ 𝒙𝟏. 𝒛𝟐 𝒙𝟐. 𝒛𝟏 ⃗ 𝒙𝟏.𝒚𝟐 𝒙𝟐.𝒚𝟏 𝒌 

Also defined as follows: 

�⃗�𝟏 ∧ �⃗�𝟐 �⃗�𝟏 . �⃗�𝟐 𝐬𝐢𝐧 �⃗�𝟏, �⃗�𝟐 �⃗� �⃗�𝟏 . �⃗�𝟐 𝐬𝐢𝐧 𝜽 �⃗�	

�⃗�  : is a unit vector 

�⃗� ⊥ �⃗�𝟏𝒆𝒕 �⃗�𝟐  

 

Properties: 

- The vector product is noncommutative (anticommutative) 

�⃗�𝟏 ∧ �⃗�𝟐 �⃗�𝟐 ∧ �⃗�𝟏	

- The vector product is distributive with respect to the addition 

�⃗�𝟏 ∧ �⃗�𝟐 �⃗�𝟑 �⃗�𝟏 ∧ �⃗�𝟐 �⃗�𝟏 ∧ �⃗�𝟑 

- The resulting vector of the cross product is always perpendicular to the operand 

vectors. 

- The vector product obeys the rule of circular permutation 

⃗ ∧ ⃗ 𝒌

⃗ ∧ 𝒌 ⃗

𝒌 ∧ ⃗ ⃗

                  and  ⃗ ∧ ⃗ ⃗ ∧ ⃗ 𝒌 ∧ 𝒌 𝟎	

𝑢 

𝑉 ∧ 𝑉  

𝜽  𝑉  

𝑉  



- The vector product is zero if: 

                                                     �⃗�𝟏 𝟎 , �⃗�𝟐 0 or �⃗�𝟏 ∥ �⃗�𝟐 

- The cross product geometrically represents the area of the oriented surface 

formed by operand vectors.  

								c‐	Triple	product:	

 The scalar triple product 

  The scalar triple product, is a scalar defined as: 

                                �⃗�𝟏 ∘ �⃗�𝟐 ∧ �⃗�𝟑 𝑾	

 

Properties:  

- The scalar triple product is invariant by cyclic permutation 

�⃗�𝟏 ∘ �⃗�𝟐 ∧ �⃗�𝟑 �⃗�𝟑 ∘ �⃗�𝟏 ∧ �⃗�𝟐 �⃗�𝟐 ∘ �⃗�𝟑 ∧ �⃗�𝟏 	

- The scalar triple product is zero if:  

                �⃗�𝟏 𝟎  �⃗�𝟐 𝟎 𝑽𝟑 𝟎,       or �⃗�𝟏, �⃗�𝟐 and �⃗�𝟑 are coplanar 

- Geometrically, the scalar triple product represents the volume formed by the 

operand vectors.  

 The vector triple product 

 The vector triple product is a vector defined by the following relation: 

�⃗�𝟏 ∧ �⃗�𝟐 ∧ �⃗�𝟑 �⃗�𝟏 ∘ �⃗�𝟑 �⃗�𝟐 �⃗�𝟏 ∘ �⃗�𝟐 �⃗�𝟑 𝜶�⃗�𝟐 𝜷�⃗�𝟑 𝑾	

Remark:  

             The multiplication of a vector by a scalar is a vector (it is a homothety) 

𝝀�⃗� 𝑾	

	

�⃗�𝟐 ∧ �⃗�𝟑 

�⃗�𝟏 

�⃗�𝟐 

�⃗�𝟑 𝒉 



3‐	Rule	of	sines	

							�⃗�   �⃗�𝟏 �⃗�𝟐	

					 �⃗� �⃗�𝟏 �⃗�𝟐 ∘ �⃗�𝟏 �⃗�𝟐 |𝑽𝟏| |𝑽𝟐| 𝟐|𝑽𝟏| ∘ |𝑽𝟐|	

	

	

	

	

	

‐ The triangles 𝑨𝑩𝑪 and 𝑶𝑩𝑪 give: 

𝒔𝒊𝒏 𝜶
𝑩𝑪
𝑶𝑪

          

𝒔𝒊𝒏 𝝅 𝜷
𝑩𝑪
𝑨𝑪

         ⟹       𝑶𝑪. 𝒔𝒊𝒏 𝜶 𝑨𝑪. 𝒔𝒊𝒏 𝜷    ⟹   
�⃗�

𝒔𝒊𝒏 𝜷
�⃗�𝟐

𝒔𝒊𝒏 𝜶
  	

‐ The triangles 𝑶𝑨𝑫 and give:𝑨𝑪𝑫 

𝐬𝐢𝐧 𝜶
𝑨𝑫
𝑶𝑨

𝐬𝐢𝐧 𝜸
𝑨𝑫
𝑨𝑪

             ⟹    𝑶𝑨. 𝐬𝐢𝐧 𝜶 𝐀𝐂. 𝐬𝐢𝐧 𝜸    ⟹   
�⃗�𝟏

𝒔𝒊𝒏 𝜸
�⃗�𝟐

𝒔𝒊𝒏 𝜶
	

4‐	Derived	from	a	vector	

In a Cartesian orthonormal basis, the vector is expressed �⃗� by: 

�⃗� 𝒙⃗ 𝒚⃗ 𝒛𝒌	

If it is variable, its derivative comes down to differentiating these components. 

𝒅�⃗�
𝒅𝒕

𝒅𝒙
𝒅𝒕

⃗
𝒅𝒚
𝒅𝒕

⃗
𝒅𝒛
𝒅𝒕

𝒌	

 

‐ The derivative of the sum of the vectors is equal to the sum of the derivatives of 

these vectors 

𝐷 

𝐶 

𝑂 
𝐵 𝐴 𝑉  

𝑉  

𝛾 

𝛼 
𝛽 �⃗� 

⟹  
𝑽

𝒔𝒊𝒏 𝜷

𝑽𝟐
𝒔𝒊𝒏 𝜶

𝑽𝟏
𝒔𝒊𝒏 𝜸



𝒅 �⃗� 𝒃
𝒅𝒕

𝒅�⃗�
𝒅𝒕

𝒅�⃗�
𝒅𝒕
	

‐ The derivative of the product of the vectors is equal to 

𝒅 �⃗� ∘ �⃗�
𝒅𝒕

�⃗� ∘
𝒅�⃗�
𝒅𝒕

�⃗� ∘
𝒅�⃗�
𝒅𝒕

                      𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡	

𝒅 �⃗� ∧ �⃗�
𝒅𝒕

�⃗� ∧
𝒅�⃗�
𝒅𝒕

𝒅�⃗�
𝒅𝒕

  ∧  �⃗�                  𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑟𝑜𝑠𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 

  



I ‐ Coordinate systems	

1‐	Introduction	

‐ Two vectors are linearly dependent if one vector can be expressed in terms of 

the other. 

�⃗� 𝝀�⃗�                                                 where"𝝀"  is a real 

 

‐ Two vectors are linearly independent if any of the vectors cannot be expressed 

in terms of the other. 

Remarks:  

‐ In a plane, a vector can be expressed as a linear combination of two linearly 

independent vectors.                            

�⃗� 𝜶�⃗� 𝜷�⃗� 

‐ The case can be generalized to three 

dimensions and more 

�⃗� 𝜶�⃗� 𝜷�⃗� 𝜸�⃗� ⋯	

‐ The three vectors �⃗�, �⃗�, �⃗� form a basis if they are linearly independent. 

 If they are pairwise orthogonal, they form an orthogonal basis. 

 If they are normalized, the basis is called orthonormal. 

  

𝝅 

�⃗� 

𝒂 

𝒃 

𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑙𝑖𝑛𝑒𝑎𝑖𝑟𝑙𝑦 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑡 

𝒂 

𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑡 



2‐	Representation	in	the	plan	

					2.1‐	Cartesian	(Rectangular)coordinates	 𝒙,𝒚 → ,⃗ ⃗ 	

In the plane we choose an orthonormal basis  ,⃗ ⃗  where the coordinates of the point 

"𝑴" are  𝒙,𝒚  

Location of "𝑴" : 

The point 𝑴 position is given by the vector 𝑶𝑴 such that: 

𝑶𝑴 �⃗� 𝒙⃗ 𝒚  ⃗

The module is: 

                                                         𝑶𝑴 |𝒓| 𝒙𝟐 𝒚𝟐 

2.2‐	Polar	coordinates 𝝆,𝜽 → �⃗�𝝆, �⃗�𝜽 	

If we choose a local base  �⃗�𝝆, �⃗�𝜽 . "𝑶"  taken arbitrarily as the pole. The unit vector  �⃗�𝝆  

is oriented along the vector 𝑶𝑴. The direction passing through the pole "𝑶" is the polar 

axis, taken as a reference to define the angle (coordinate) "𝜽".  The other coordinate "𝝆" 

is the magnitude of the vector 𝑶𝑴. 

𝑶𝑴 𝝆�⃗�𝝆 

The module is: 

𝑶𝑴 𝝆 

      

							2.3‐	Intrinsic	coordinates		 �⃗�𝑵, �⃗�𝑻 	

We cannot represent the point in the intrinsic coordinate system 

unless we know the curve "𝓒" of the trajectory, which is taken as the 

axis. Equipped with an origin, the distance 𝒐𝑴 is denoted as "𝒔". 

𝒐𝑴 𝒔   and   𝑶𝑴 �⃗�	

𝑴 

 ⃗

 ⃗

𝒚 

𝒙 
𝑶 

𝒖𝑵 𝒖𝑻

𝜽 

𝒔 

𝓒 𝑴 

𝑶 

𝒐 

�⃗� 

𝒚 

𝒙 

𝜽 

𝒖𝝆 

𝒖𝜽 

Polar axis 
𝑶 

𝝆 𝑶𝑴   𝑴 



2.4‐	Relationship	between	the	coordinates	of	the	different	systems	

            ‐ In Cartesian coordinates:   𝑶𝑴 �⃗� 𝒙⃗ 𝒚 	⃗

            ‐ In Polar coordinates:   𝑶𝑴 𝝆�⃗�𝝆  	

            ‐ If we make a choice such that the polar axis is  

           superimposed with the 𝒐𝒙 axis 	

               We will have:    

�⃗�𝝆 𝒄𝒐𝒔 𝜽 ⃗ 𝒔𝒊𝒏 𝜽  ⃗ 

 �⃗�𝜽 𝒔𝒊𝒏 𝜽 ⃗ 𝒄𝒐𝒔 𝜽 ⃗
	

															Then:																				𝑶𝑴 �⃗� 𝒙⃗ 𝒚⃗ 𝝆�⃗�𝝆 𝝆 𝒄𝒐𝒔 𝜽 ⃗ 𝝆 𝒔𝒊𝒏 𝜽 	⃗

              By comparison we will get: 

𝒙 𝝆 𝒄𝒐𝒔𝜽
𝒚 𝝆𝒔𝒊𝒏𝜽     ⟺     

𝝆 𝒙𝟐 𝒚𝟐     
𝜽 𝒂𝒓𝒄𝒕𝒈 𝒚 𝒙⁄

 

Note:  

Polar coordinates and intrinsic coordinates should not be merge (confused). 

3‐	Representation	in	space	

					3.1‐	Cartesian	(Rectangular)coordinates	 𝒙,𝒚, 𝒛 → ,⃗ ,⃗𝒌 	

In space, the location of the point "𝑴" is expressed 

by the 𝒙,𝒚, 𝒛  coordinates in an orthonormal basis 

,⃗ ,⃗𝒌 .  in such a way that: 

𝑶𝑴 �⃗� 𝒙⃗ 𝒚⃗ 𝒛𝒌 

𝑶𝑴 : is the position vector of the point 𝑴 

 The module is: 

𝑶𝑴 |�⃗�| 𝒙𝟐 𝒚𝟐 𝒛𝟐	

	

𝑶 

𝒖𝝆 

 Polar axis  ⃗

𝒙 

𝑶 

𝒚 

𝜽 

𝝆 
𝑴 

𝒖𝜽 

 ⃗

𝒛 

𝒚 

𝑴 

 ⃗�⃗� 



𝒙 : is the projection of 𝑶𝑴 on the direction   ⃗	

𝒚 : is the projection of 𝑶𝑴 on the direction   ⃗

𝒛 : is the projection of 𝑶𝑴 on the direction 𝒌 

				3.2‐	Coordinates	cylindrical	 𝝆,𝜽, 𝒛 → �⃗�𝝆, �⃗�𝜽,𝒌 							

To locate a point "𝑴"  in space, instead of using a Cartesian 

system, other systems can be used. Among these, the cylindrical 

system. In this system, we imagine that point  "𝑴"  is on the 

surface of a cylinder with axis 𝑶𝒁, radius 𝝆, and "some" base.    

The projection of 𝑶𝑴 , on the base of the cylinder is located by 

𝝆,𝜽 .	

                                  So          		𝑶𝑴 �⃗� 𝝆�⃗�𝝆 𝒛𝒌 

                                And         𝑶𝑴 |�⃗�| 𝝆𝟐 𝒛𝟐	

				

					3.3‐	Spherical	coordinates		 𝒓,𝜽,𝝋 → �⃗�𝒓, �⃗�𝜽, �⃗�𝝋 	

Another system allows us to locate a point "𝑴" in space. In this system, it is imagined 

that point "𝑴" is on the surface of a sphere with radius "𝒓"  and center "𝑶" . This center 

is taken as the origin, and called pole. It is located in the equatorial plane.  

In spherical coordinates, a point "𝑴" is characterized by 

the linear variable "𝒓", and the angular variables "𝝋,𝜽". 

 "𝜽" polar angle: Angle between the polar axis taken 

arbitrarily and the direction 𝑶𝑴.  

"𝑶" is the center of this sphere. 

 The projection of  "𝑴"  on the Equatorial plane is 

"𝑴′  ". It is located by the azimuthal angle "𝝋" with 

respect to an arbitrary direction axis (azimuthal 

direction) in that plane. 

𝒖𝝋 

𝒖𝒓 

⃗

𝑎𝑥
𝑒 
𝑝𝑜
𝑙𝑎
𝑖𝑟
𝑒 

𝝋 

𝑴 

𝑴

𝒖𝝆 

𝒛 

𝒖𝜽 
�⃗� 

𝑴 

�⃗� 

𝜽 

�⃗� 



𝑶𝑴 �⃗� |�⃗�|�⃗�𝒓 

 �⃗�𝒓 : radial unit vector (in the direction of the radius 𝑶𝑴) 

 �⃗�𝜽 : unit vector tangent to the great circle (all circles of  radius 𝑶𝑴 ). 

 �⃗�𝝋 : unit vector tangent to parallels (circles parallel to the equator). 

3.4‐	Relationship	between	the	coordinates	of	the	different	systems	

3.4‐	1	Relationship	between	Cartesian	coordinates	and	cylindrical	coordinates 

‐ In Cartesian coordinates:         𝑶𝑴 �⃗� 𝒙⃗ 𝒚⃗ 𝒛𝒌	

‐ In cylindrical coordinates:         𝑶𝑴 𝝆�⃗�𝝆 𝒛𝒌 	

                                      With         		�⃗�𝝆 𝒄𝒐𝒔𝜽 ⃗ 𝒔𝒊𝒏𝜽 	⃗

𝑶𝑴 �⃗� 𝒙⃗ 𝒚⃗ 𝒛𝒌  𝝆𝒄𝒐𝒔𝜽 ⃗ 𝝆 𝒔𝒊𝒏𝜽 ⃗ 𝒛𝒌	

⎩
⎪
⎨

⎪
⎧
𝒙 𝝆𝒄𝒐𝒔𝜽

𝒚 𝝆 𝒔𝒊𝒏𝜽

𝒛 𝒛            

						⟺								
𝝆 𝒙𝟐 𝒚𝟐     

𝜽 𝒂𝒓𝒄𝒕𝒈 𝒚 𝒙⁄
 

  

3.4‐	2	Relationship	between	Cartesian	and	spherical	coordinates	 

‐ In Cartesian coordinates:      𝑶𝑴 �⃗� 𝒙⃗ 𝒚⃗ 𝒛𝒌	

‐ In spherical coordinates:       𝑶𝑴 |�⃗�|�⃗�𝒓 𝒓�⃗�𝒓	

                                                 With         �⃗�𝒓 𝒔𝒊𝒏𝜽 𝒄𝒐𝒔𝝋 ⃗ 𝒔𝒊𝒏𝜽 𝒔𝒊𝒏𝝋 ⃗ 𝒄𝒐𝒔𝜽𝒌 

                              So: 

⎩
⎪
⎨

⎪
⎧
𝒙 𝒓𝒔𝒊𝒏𝜽 𝒄𝒐𝒔𝝋

𝒚 𝒓𝒔𝒊𝒏𝜽 𝒔𝒊𝒏𝝋

𝒛 𝒓 𝒄𝒐𝒔𝜽            

								⟺					

⎩
⎪
⎨

⎪
⎧ 𝒓 𝒙𝟐 𝒚𝟐 𝒛𝟐                 

𝝋 𝒂𝒓𝒄𝒕𝒈 𝒚 𝒙⁄                        

𝜽 𝒂𝒓𝒄𝒐𝒔 𝒛

𝒙𝟐 𝒚𝟐 𝒛𝟐
            

	

 

𝜽 



II – Kinematics 

0- Some words on kinematics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kinematics is a branch of physics that studies the motion of objects without 

considering the causes behind that motion. It focuses on describing the position, 

velocity, and acceleration of particles or objects in motion. By studying kinematics, 

scientists can analyze the relationship between these variables and understand how 

an object moves and changes over time. 

One of the fundamental concepts in kinematics is displacement. Displacement refers 

to the change in position of an object or particle from its initial position to its final 

position. It is a vector quantity as it has both magnitude and direction. By calculating 

the displacement, one can determine how far an object has moved and in which 

direction it has traveled. 

Another important concept in kinematics is velocity. Velocity is the rate at which an 

object moves in a certain direction. It is calculated by dividing the displacement of an 

object by the time taken to travel that distance. Velocity is also a vector quantity and 

is dependent on both the magnitude and direction of displacement. It provides 

information about the speed of an object and the direction in which it is moving. 

Overall, kinematics plays a pivotal role in understanding the basics of motion. By 

studying displacement and velocity, scientists can analyze an object's movement and 

describe it accurately. Whether it is calculating the displacement of a ball rolling down 

the slope or analyzing the velocity of a car in a race, kinematics helps provide insights 

into the motion of objects, enhancing our understanding of the physical world. 

Kinematics is a branch of physics that deals with the motion of objects without 

considering what causes that motion. It focuses on describing the position, velocity, 

and acceleration of an object as it moves through space and time. Kinematics helps us 

understand how objects move and allows us to predict their future positions and 

velocities based on their initial conditions. 

When studying kinematics, it is essential to know the basic terms used to describe 

motion. The position of an object refers to its location relative to a chosen reference 

point. Velocity is the rate at which an object's position changes, while acceleration is 

the rate at which its velocity changes. It is important to note that velocity and 

acceleration are vector quantities which means they have both a magnitude and a 

direction.  



 

 

 

 

 

1- Concept of frame of reference

Let ,⃗ ,⃗𝒌  be an orthonormal basis, placed at a point chosen as the origin, which is 

used to locate a point " M ". It constitutes a reference frame. (Frame of Reference = 

origin + basis) 

- If this point M is moving, it depends on time.

𝑶𝑴 𝒕 �⃗� 𝒕 𝒙 𝒕  ⃗ 𝒚 𝒕  ⃗ 𝒛 𝒕  𝒌 t  : is time 

- The Concept of motion is relative according to the observer (rest, moving

independently or with the mobile M . The observer is the witness of time.

" To describe the motion of a material point, a reference frame is necessary, that we 

affect (bind or link) an observer to it, which leads us to define a frame of reference " 

For example, the observer on earth say that path of moon is almost circular. But the 

observer siting on the sun sees the trajectory of the moon (same object) is a line wave 

path. 

To analyze motion, kinematics uses mathematical equations and graphs. The three 

equations of motion, often referred to as the kinematic equations, are commonly used 

to solve various kinematics problems. The equations involve the initial and final 

velocities, acceleration, displacement, and time intervals. Graphs, such as position-time 

or velocity-time graphs, can provide a visual representation of an object's motion, 

enabling us to analyze its behavior more easily. 

In summary, kinematics is a fundamental concept in physics that helps us understand 

the motion of objects. It involves studying the position, velocity, and acceleration of 

objects without considering the forces that cause them to move. By utilizing 

mathematical equations and graphs, kinematics allows us to predict and analyze the 

motion of objects accurately. Understanding kinematics is crucial for further exploring 

more complex topics in physics, such as dynamics and mechanics in general. 



A reference frame is a platform from where a physical phenomenon, such as motion, 

is being observed 

2- Equation of motion and trajectory equation

The change in position of the point, produce a motion. That motion is characterized 

by several parameters which are the displacement, distance, velocity and acceleration. 

 2.1- Position vector 

The motion of a particle is described in some frame of reference. Starting first with 

locating it (position vector), then give its nature. 

In an orthonormal coordinate system (cartesian) 𝑶, ,⃗ ,⃗ 𝒌⃗  the position vector is given 

by: 

𝑶𝑴 �⃗� 𝒙 ⃗ 𝒚 ⃗ 𝒛 𝒌	

2.2- Displacement and distance 

2.2-1: Displacement 

The shortest distance joining the points A and B of 

the curve i.e., the line 𝑨𝑩 which called displacement. 

It expresses how far is B from A. 

Notice that the line 𝑨𝑩 has a direction from 𝑨  to 𝑩. 

So, the displacement: 

- It is a vector quantity and is independent of the choice of origin

- It is unique for any kind of motion between two points

- It is always concealing (cover) about the actual track followed by the particle’s

motion between any two points, i.e. It doesn’t give information about a path.

- It can be positive, negative and even be zero.

- The magnitude of the displacement is always less than or equal to the distance

for particle’s motion between two points

- A body may have finite distance travelled for zero displacement

Distance 

𝑨  

𝑩  

𝑩  

𝑨  

𝑪  

- Displacement: vector 𝑨�⃗� (Red line)

- Distance: length of the curve ACB (Blue Dashed)

Displacement 



2.2-2: Distance 

The distance express how long is the path from 𝑨 to 𝑩 passing through a point 𝑪.  

- The distance is a scalar quantity

- The distance is always positive i.e., it only increases.

- The distance is always greater or equal to the magnitude of the displacement.

2.3- Equation of motion

The equation of motion expresses the manner of change of motion

or how the motion is changing in time by giving its kinematic 

parameters which are the displacement, velocity and acceleration.

Example: Free fall    

𝒚 𝒕
𝟏
𝟐
𝒈𝒕𝟐 𝒗𝟎𝒕 𝒚𝟎	

The distance 𝒚 traveled by the point M is given as a function of time. 

y t  is the time equation of motion 

Note:  

The coordinates of the point, M (𝒙 𝒕  , 𝒚 𝒕 𝒛 𝒕 ), are the parametric equations 

2.4- Trajectory equation (Path equation) 

- Since the vector position 𝑶𝑴 changes, i.e., the point 𝑴 change its position as time 

is varying, then we have:

    
𝒙 𝒙 𝒕
𝒚 𝒚 𝒕
𝒛 𝒛 𝒕

               𝒙 𝒕 , 𝒚 𝒕 , and 𝒛 𝒕  are called parametric equations of motion. 

- The trajectory (path) is the curve which traces the locations occupied by the

mobile in space during the variations of time (as the time is changing).

- To find the equation of the trajectory, we eliminate the time from the parametric

equations, and find the form: 𝒇 𝒙,𝒚, 𝒛 𝟎

�⃗� 

𝒚 

𝑶 

𝑴

𝒙



 

Example: Motion in the plane 

          
𝒙 𝒂𝒄𝒐𝒔 𝝎𝒕
𝒚 𝒂𝒔𝒊𝒏 𝝎𝒕

        ⟹								
𝒙𝟐 𝒂𝟐𝒄𝒐𝒔𝟐 𝝎𝒕
𝒚𝟐 𝒂𝟐𝒔𝒊𝒏𝟐 𝝎𝒕

            ⟹						𝒙𝟐 𝒚𝟐 𝒂𝟐	

This is an equation of circle with radius 𝑹 𝒂   centered on the point C 0,0  called the 

center of this circle. 

3- Concept of velocity and speed

3.1-1: Average velocity 

The average velocity is the ratio of the displacement between two points A  and B  to 

the travel time without taking into account the nature of the motion (the way in 

which the section 𝑨𝑩 is traveled). 

- In one direction (one dimension)

Let the motion along the straight-line “ox ”. The point “A” is the initial position and 

“B” is the final point, so the average velocity is defined as �⃗� �⃗�𝒎𝒐𝒚 such that: 

�⃗� �⃗�𝒎𝒐𝒚
𝒙𝒇  𝒙𝒊 

𝒕𝒇  𝒕𝒊
⃗

𝒙𝑩  𝒙𝑨 
𝒕𝑩  𝒕𝑨

⃗
∆𝒙 
∆𝒕

⃗ 

- In all space (three dimensions):

The initial point is: 𝑨 𝒙𝑨,𝒚𝑨, 𝒛𝑨

and the final point is: 𝑩 𝒙𝑩,𝒚𝑩, 𝒛𝑩

The displacement is then: ∆�⃗� �⃗�𝑩  �⃗�𝑨

So, the average velocity is:

�⃗�  �⃗�𝒎𝒐𝒚
∆�⃗� 

∆𝒕

𝒓𝒇  𝒓𝒊 

𝒕𝒇  𝒕𝒊
          ⟹        �⃗�  �⃗�𝒎𝒐𝒚

𝒙𝑩  𝒙𝑨
𝒕𝑩  𝒕𝑨

⃗ 𝒚𝑩  𝒚𝑨
𝒕𝑩  𝒕𝑨

⃗ 𝒛𝑩  𝒛𝑨
𝒕𝑩  𝒕𝑨

𝒌

Note:  

The average velocity, geometrically, is the slope of the secant that join the final and the 

initial positions in the curve which represents the variation of position with time (x-t 

curve).  

 ⃗

𝒙 
𝒕𝑩 𝒕𝑨 

𝒙𝑨,𝒗𝑨 𝒙𝑩,𝒗𝑩 

𝒛 

�⃗�

 ⃗ ⃗

𝑩  

𝑨  

𝒚



3.1-2: Average speed 

The average speed is the ratio of the distance traveled between two points A and B to 

the travel time of duration of trip  

𝑺  𝑺𝒎𝒐𝒚
𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒄𝒐𝒗𝒆𝒓𝒆𝒅 

𝒕𝒊𝒎𝒆 𝒕𝒂𝒌𝒆𝒏

The path A≡1-2-3-4-5≡B has the distance d, so the average speed defined as the 

distance of the journey on the time duration of the trip  

If a particle starts from′𝑨 ≡ 𝟏′ to the point ′𝑩′. Let ′𝒅𝟏𝟐′ be the distance covered by the 

particle to go from position ′𝟏′ to ′𝟐′, and ′𝒅𝟐𝟑′ that covered from position ′𝟐′ to ′𝟑′ and 

so on, until this particle arrives to the final position ′𝟓 ≡ 𝑩′. The average speed is: 

𝑺𝒎𝒐𝒚
𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒄𝒐𝒗𝒆𝒓𝒆𝒅 

𝒕𝒊𝒎𝒆 𝒕𝒂𝒌𝒆𝒏
𝒅𝟏𝟐 𝒅𝟐𝟑 . . . 𝒅𝟒𝟓
𝒕𝟏𝟐 𝒕𝟐𝟑 . . . 𝒕𝟒𝟓

3.1-2-1: Average speed in case when the time is divided in equal intervals 

Let the actual path from 𝑨 to 𝑩, be divided in several intervals not equal, each traversed 

with in the same lapse of time but with different speeds. To compute the average 

speed, we proceed as follows: 

𝑺𝒎𝒐𝒚
𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒄𝒐𝒗𝒆𝒓𝒆𝒅 

𝒕𝒊𝒎𝒆 𝒕𝒂𝒌𝒆𝒏
𝒅𝟏 𝒅𝟐 . . . 𝒅𝒏
𝒕𝟏 𝒕𝟐 . . . 𝒕𝒏

∑ 𝒅𝒊
𝒏
𝟏

∑ 𝒕𝒊𝒏
𝟏

 

But  𝒅𝟏 𝒔𝟏. 𝒕𝟏 , …., 𝒅𝟏 𝒔𝒏. 𝒕𝒏 

Since the lapse of time are equal: 𝒕𝟏 𝒕𝟐 . . . 𝒕𝒏 𝒕 𝒏  with ′𝒕′ the time taken during

the trip 

𝑺𝒎𝒐𝒚
𝒗𝟏

𝒕
𝒏 𝒗𝟐

𝒕
𝒏 . . . 𝒗𝒏

𝒕
𝒏

𝒕𝟏 𝒕𝟐 . . . 𝒕𝒏

𝒕
𝒏 𝒗𝟏 𝒗𝟐 . . . 𝒗𝒏

𝒕

∑ 𝒗𝒊
𝒏
𝟏

𝒏

So, we observe that when an interval is divided into n equal time parts, then the 

average speed ′𝑺𝒎𝒐𝒚′ is simply the arithmetic mean of the speeds in the respective 

intervals. 

 ⃗

𝒙 

𝒕𝑩 𝒕𝑨 

𝒙𝑨,𝒗𝑨 𝒙𝑩,𝒗𝑩 

𝟏 

𝟐 

𝟑 

𝟒 

𝟓 



𝑺𝒎𝒐𝒚
𝟏
𝒏

𝒗𝒊

𝒏

𝟏

 

3.1-2-2: Average speed in case when the length is divided in equal intervals 

In the same manner, the distance will be divided in equal intervals 

𝒅𝟏 𝒅𝟐 . . . 𝒅𝒏 𝒅 𝒏 ,

But  𝒅𝟏 𝒗𝟏𝒕𝟏  and 𝒅𝟐 𝒗𝟐𝒕𝟐 , …, 𝒅𝒏 𝒗𝒏𝒕𝒏  

So  𝒕𝟏
𝒅𝟏
𝒗𝟏

𝒅 𝒏
𝒗𝟏

, …, 𝒕𝒏
𝒅𝒏
𝒗𝒏

𝒅 𝒏
𝒗𝒏

𝑺𝒎𝒐𝒚
𝒅𝟏 𝒅𝟐 . . . 𝒅𝒏
𝒕𝟏 𝒕𝟐 . . . 𝒕𝒏

𝒅 𝒏 𝒅 𝒏 . . . 𝒅 𝒏
𝒅𝟏
𝒗𝟏

. . .
𝒅𝒏
𝒗𝒏

𝒅
𝒅
𝒏𝒗𝟏

. . . 𝒅
𝒏𝒗𝒏

𝒏
𝟏
𝒗𝟏

. . . 𝟏
𝒗𝒏

The average speed ′𝑺𝒎𝒐𝒚′ is simply n time the reciprocal of the harmonic mean of the 

speeds in the respective intervals. 

3.2- Instantaneous velocity and instantaneous speed 

Instantaneous velocity is the velocity that the material point will have at every moment 

on the trip. The velocity, in an infinitely small lapse of time, in the corresponding 

infinitesimal displacement, doesn’t change. 

�⃗�  𝒕  𝐥𝐢𝐦
∆𝐭→𝟎

∆�⃗� 
∆𝒕

𝒅�⃗� 
𝒅𝒕

𝒅𝒙 
𝒅𝒕

⃗
𝒅𝒚 
𝒅𝒕

⃗
𝒅𝒛 
𝒅𝒕

𝒌

�⃗�  𝒕  𝒗𝒙 ⃗ 𝒗𝒚 ⃗ 𝒗𝒛 𝒌	

The magnitude of the velocity is given by: 

|�⃗�  𝒕  | 𝒗𝒙𝟐 𝒗𝒚𝟐 𝒗𝒛𝟐	

Note:  

1- The instantaneous speed is equal to the magnitude of the instantaneous velocity

𝒗  

𝒛

𝒚 



2- The instantaneous velocity, geometrically, is the slope of the tangent to the curve

that represents the change in position with time (x-t curve).

4- Concept of acceleration

4.1- Average acceleration

- Acceleration is the rate of change of velocity over time.

- The average acceleration is the rate of change in velocity between the initial ′′A'' 

and final points B, regardless of how the path is traversed.

- In one direction only

�⃗�  �⃗�𝒎𝒐𝒚
∆�⃗� 
∆𝒕

�⃗�𝒇  �⃗�𝒊 

𝒕𝒇  𝒕𝒊

𝒗𝑩  𝒗𝑨 
𝒕𝑩  𝒕𝑨

 ⃗

- In all space (three dimensions)

The initial velocity is: �⃗�𝑨 𝒗𝒙𝑨,𝒗𝒚𝑨,𝒗𝒛𝑨

The final velocity is: �⃗�𝑩 𝒗𝒙𝑩,𝒗𝒚𝑩,𝒗𝒛𝑩

The variation of velocity is then: ∆�⃗� �⃗�𝑩  �⃗�𝑨

So, the average acceleration is:

�⃗�  �⃗�𝒎𝒐𝒚
∆�⃗� 
∆𝒕

�⃗�𝒇  �⃗�𝒊 

𝒕𝒇  𝒕𝒊

�⃗�𝒎𝒐𝒚
𝒗𝒙𝑩  𝒗𝒙𝑨 
𝒕𝑩  𝒕𝑨

⃗
𝒗𝒚𝑩  𝒗𝒚𝑨 

𝒕𝑩  𝒕𝑨
⃗

𝒗𝒛𝑩  𝒗𝒛𝑨 
𝒕𝑩  𝒕𝑨

𝒌	

4.2- Instantaneous acceleration 

Instantaneous acceleration is the rate of change of velocity 

in time at each moment. In an infinitely small lapse of time, 

on the corresponding infinitesimal change in velocity, the 

acceleration doesn’t change. 

𝒂  𝒗
𝒛 

𝒗𝒚 



�⃗�  𝒕  𝐥𝐢𝐦
∆𝐭→𝟎

∆�⃗� 
∆𝒕

𝒅�⃗� 
𝒅𝒕

𝒅𝒗𝒙 
𝒅𝒕

⃗
𝒅𝒗𝒚 

𝒅𝒕
⃗

𝒅𝒗𝒛 
𝒅𝒕

𝒌

- The hodograph of motion is the curve described by the end of the velocity vector

- Note:

The instantaneous acceleration, geometrically, is the slope of the curve (hodograph) 

which represents the variation of the velocity over time. 

�⃗�  𝒕 
𝒅
𝒅𝒕

𝒅�⃗� 
𝒅𝒕

𝒅𝟐�⃗� 
𝒅𝒕𝟐

𝒅𝟐𝒙 
𝒅𝒕𝟐

⃗
𝒅𝟐𝒚 
𝒅𝒕𝟐

⃗
𝒅𝟐𝒛 
𝒅𝒕𝟐

𝒌	

�⃗�  𝒕  𝒂𝒙 ⃗ 𝒂𝒚 ⃗ 𝒂𝒛 𝒌

5- Position, velocity and acceleration in the different coordinate systems

5.1- Derivative of unit vectors 

- Polar basis 𝒖𝝆,𝒖𝜽

𝜽 𝒕  and 𝝆 𝒕   change in time �⃗�𝝆, �⃗�𝜽 changes also and are written in the Cartesian base 

as follows: 

           
 �⃗�𝝆 𝒄𝒐𝒔 𝜽  ⃗ 𝒔𝒊𝒏 𝜽   ⃗  

 �⃗�𝜽 𝒔𝒊𝒏 𝜽  ⃗ 𝒄𝒐𝒔 𝜽  ⃗
	

 �⃗�𝝆  and  �⃗�𝜽	are a composite function, so we apply the chain rule  

- If we have a function 𝒇 𝑭 𝒖 𝒙  which depend on the

variable 𝒖 who depends also on the other variable 𝒙. Then

the derivative of this this function with respect to the

variable 𝒙 is given by:

𝒅𝒇
𝝏𝒇
𝝏𝒖

.
𝝏𝒖
𝝏𝒙

⟹						

𝒅𝒖𝝆
𝒅𝒕

𝒅𝒖𝝆
𝒅𝜽

𝒅𝜽

𝒅𝒕
𝒔𝒊𝒏 𝜽  ⃗ 𝒄𝒐𝒔 𝜽   ⃗ 𝒅𝜽

𝒅𝒕
𝒅𝒖𝜽
𝒅𝒕

𝒅𝒖𝜽
𝒅𝜽

𝒅𝜽

𝒅𝒕
𝒄𝒐𝒔 𝜽  ⃗ 𝒔𝒊𝒏 𝜽   ⃗ 𝒅𝜽

𝒅𝒕

𝜽 
𝒖𝜽 

𝒖𝝆  ⃗

 ⃗

𝑴 



 
⟹		   

𝒅𝒖𝝆
𝒅𝒕

𝜽 𝒄𝒐𝒔 𝜽 𝝅

𝟐
⃗ 𝒔𝒊𝒏 𝜽 𝝅

𝟐
⃗   

 𝒅𝒖𝜽
𝒅𝒕

𝜽 𝒔𝒊𝒏 𝜽 𝝅

𝟐
⃗ 𝒄𝒐𝒔 𝜽 𝝅

𝟐
⃗

        ⟹											
�⃗�𝝆

𝒅𝒖𝝆
𝒅𝒕

𝜽 �⃗�𝜽     

�⃗�𝜽
𝒅𝒖𝜽
𝒅𝒕

𝜽 �⃗�𝝆

To find the derivative of a unit vector, we make a rotation anti-clockwise of 𝝅
𝟐

Note:  

The cylindrical basis gives similar results as the polar basis by adding the z 

coordinate.  

‐	Spherical base	𝒖𝒓,𝒖𝜽,𝒖𝝋	

From the figure, the unit vectors �⃗�𝒓, �⃗�𝜽 and �⃗�𝝋 are given by: 

�⃗�𝒓 𝒔𝒊𝒏𝜽 𝒄𝒐𝒔𝝋 ⃗ 𝒔𝒊𝒏𝜽 𝒔𝒊𝒏𝝋 ⃗ 𝒄𝒐𝒔𝜽𝒌

�⃗�𝜽 𝒄𝒐𝒔𝜽 𝒄𝒐𝒔𝝋 ⃗ 𝒄𝒐𝒔𝜽 𝒔𝒊𝒏𝝋 ⃗ 𝒔𝒊𝒏𝜽 𝒌
�⃗�𝝋 𝒔𝒊𝒏𝝋 ⃗ 𝒄𝒐𝒔𝝋 ⃗

	

If we use the differential form of the function that depend on 

many variables: 

𝒇 𝒙,𝒚, 𝒛      ⟹       𝒅𝒇 𝝏𝒇

𝝏𝒙
𝒅𝒙 𝝏𝒇

𝝏𝒚
𝒅𝒚 𝝏𝒇

𝝏𝒛
𝒅𝒛    

⟹       𝒅𝒇
𝒅𝒕

𝝏𝒇

𝝏𝒙

𝒅𝒙

𝒅𝒕
 𝝏𝒇

𝝏𝒚

𝒅𝒚

𝒅𝒕

𝝏𝒇

𝝏𝒛

𝒅𝒛

𝒅𝒕

�⃗�𝒓 𝒇 𝜽,𝝋  and  �⃗�𝒓 𝒉 𝜽,𝝋          ⟹		

⎩
⎪
⎨

⎪
⎧ 𝒅�⃗�𝒓

𝝏𝒖𝒓
𝝏𝜽

.𝒅𝜽 𝝏𝒖𝒓
𝝏𝝋

.𝒅𝝋

𝒅�⃗�𝜽
𝝏𝒖𝜽
𝝏𝜽

.𝒅𝜽 𝝏𝒖𝜽
𝝏𝝋

.𝒅𝝋 

𝒅�⃗�𝝋
𝒅𝒖𝝋
𝒅𝝋

.𝒅𝝋

Finally 

⟹							

⎩
⎪
⎨

⎪
⎧ �⃗�𝒓

𝒅𝒖𝒓
𝒅𝒕

𝝏𝒖𝒓
𝝏𝜽

. 𝒅𝜽
𝒅𝒕

𝝏𝒖𝒓
𝝏𝝋

. 𝒅𝝋
𝒅𝒕

𝜽 �⃗�𝜽 𝝋 𝒔𝒊𝒏𝜽 �⃗�𝝋 

�⃗�𝜽
𝒅𝒖𝜽
𝒅𝒕

𝝏𝒖𝜽
𝝏𝜽

. 𝒅𝜽
𝒅𝒕

𝝏𝒖𝜽
𝝏𝝋

. 𝒅𝝋
𝒅𝒕

𝜽 �⃗�𝒓 𝝋𝒄𝒐𝒔𝜽 �⃗�𝝋

�⃗�𝝋
𝒅𝒖𝝋
𝒅𝒕

𝒅𝒖𝝋
𝒅𝝋

. 𝒅𝝋
𝒅𝒕

𝝋 𝒔𝒊𝒏𝜽 �⃗�𝒓  𝒄𝒐𝒔𝜽 �⃗�𝜽      

														

⟹							

⎩
⎨

⎧�⃗�𝒓 𝜽 �⃗�𝜽 𝝋 𝒔𝒊𝒏𝜽 �⃗�𝝋

�⃗�𝜽 𝜽 �⃗�𝒓 𝝋𝒄𝒐𝒔𝜽 �⃗�𝝋

�⃗�𝝋 𝝋 𝒔𝒊𝒏𝜽 �⃗�𝒓  𝒄𝒐𝒔𝜽 �⃗�𝜽

𝝋 

𝜽 
𝒖𝒓 

𝒖𝝋 

𝒖𝜽 

�⃗�

 ⃗

 ⃗



 

				5.2- Polar coordinates 

a- Position vector

As we have already seen that the position vector in the polar basis is:

𝑶𝑴 �⃗� 𝝆�⃗�𝝆 ⟹ 𝑶𝑴 𝝆	

b- velocity vector

According to the definition:

     �⃗�  𝒕  𝒅𝑶𝑴

𝒅𝒕

𝒅�⃗�

𝒅𝒕

𝒅 𝝆𝒖𝝆
𝒅𝒕

𝝆�⃗�𝝆 𝝆
𝒅𝒖𝝆
𝒅𝒕

              But       𝒅𝒖𝝆
𝒅𝒕

𝜽 �⃗�𝜽	

          Then      �⃗� 𝐭 𝝆 �⃗�𝝆 𝝆𝜽 �⃗�𝜽 �⃗�𝝆 �⃗�𝜽               

           Where       
�⃗�𝝆 𝝆    

|�⃗�𝜽| 𝝆𝜽

⟹									|�⃗� 𝐭 | 𝒗𝝆𝟐 𝒗𝜽
𝟐 𝝆𝟐 𝝆𝜽

𝟐
	

c- acceleration vector

According to the definition:                �⃗�𝝆  �⃗�𝜽

�⃗�
 

𝒅�⃗�
𝒅𝒕

𝒅
𝒅𝒕

𝒅�⃗�
𝒅𝒕

𝒅
𝒅𝒕

𝝆 �⃗�𝝆 𝝆𝜽 �⃗�𝜽

⟹      		�⃗�
 
𝝆 �⃗�𝝆 𝝆�⃗�𝝆 𝝆𝜽 �⃗�𝜽 𝝆𝜽 �⃗�𝜽 𝝆𝜽 �⃗�𝜽	

�⃗�
 

𝝆 𝝆𝜽𝟐  �⃗�𝝆 𝟐𝝆𝜽 𝝆𝜽  �⃗�𝜽 �⃗�𝝆 �⃗�𝜽

               Where      
�⃗�𝝆 𝝆 𝝆𝜽𝟐    

|�⃗�𝜽| 𝟐𝝆𝜽 𝝆𝜽

⟹								|�⃗� 𝐭 | 𝒂𝝆𝟐 𝒂𝜽
𝟐 𝝆 𝝆𝜽𝟐

𝟐
𝟐𝝆𝜽 𝝆𝜽

𝟐
	



5.3- Intrinsic coordinates (Natural coordinates) 

The coordinate is the distance "s " traveled along the trajectory such that: 

𝒔 𝒐𝑴 

The position vector is given by: 

𝑶𝑴 �⃗� 𝒙 ⃗ 𝒚 ⃗ .	

If the mobile moves from the point M to the point M', then	

�⃗� �⃗� 𝑴𝑴         			⇒           �⃗� �⃗� 𝑴𝑴 𝒅�⃗� 𝒅𝒙 ⃗ 𝒅𝒚 	⃗

The segment "ds" of the curve is related to the variation of Cartesian coordinates in 

such a way that: 

𝒅𝒔 𝒅𝒙𝟐 𝒅𝒚𝟐 𝒅�⃗� 	

b- velocity vector

According to the definition:

�⃗� 𝐭
𝒅𝑶𝑴
𝒅𝒕

𝒅�⃗�
𝒅𝒕

𝑴𝑴
𝒅𝒕

𝑴𝑴
𝒅𝒕

�⃗�𝑻	

    Since the limit    𝒅𝒔 𝑴𝑴 𝒅�⃗�  

Then:						�⃗� 𝒕
𝑴�⃗�

𝒅𝒕
�⃗�𝑻

𝒅𝒔

𝒅𝒕
�⃗�𝑻 𝒗. �⃗�𝑻	

    The velocity vector is oriented along the tangent to the curve 

c- acceleration vector

According to the definition:

�⃗�
𝒅�⃗�
𝒅𝒕

𝒅
𝒅𝒕

𝒅�⃗�
𝒅𝒕

𝒅
𝒅𝒕

𝒗. �⃗�𝑻
𝒅
𝒅𝒕

𝒗 . �⃗�𝑻 𝒗.
𝒅
𝒅𝒕

�⃗�𝑻 	

According to the previous figure “ �⃗�𝑻 "  is tangent to the curve and “ �⃗�𝑵 "oriented 

towards the concavity 

�⃗�𝑻 𝒄𝒐𝒔𝝋 ⃗ 𝒔𝒊𝒏𝝋  ⃗   
�⃗�𝑵 𝒔𝒊𝒏𝝋 ⃗ 𝒄𝒐𝒔𝝋 ⃗

	

𝒖𝑵 

𝒖𝑻 

𝑴  ⃗

 ⃗

𝝋 

𝝋 

𝒖𝑵 

𝝋 

𝒓′⃗ 

𝒖𝑻 

𝒅𝝋 
𝑴′ 

𝑶 

𝑴

𝑜 �⃗� 

𝓒

 ⃗

 ⃗

𝒖𝑵 

𝒖𝑻 



⇒				
�⃗�𝑻

𝒅𝒖𝑻
𝒅𝒕

𝒅𝝋

𝒅𝒕
𝒔𝒊𝒏𝝋 ⃗ 𝒄𝒐𝒔𝝋 ⃗ 𝝋 �⃗�𝑵    

�⃗�𝑵
𝒅𝒖𝑵
𝒅𝒕

𝒅𝝋

𝒅𝒕
𝒄𝒐𝒔𝝋⃗ 𝒔𝒊𝒏𝝋⃗ 𝝋 �⃗�𝑻

	

      Then: 

�⃗�
𝒅
𝒅𝒕

𝒗 . �⃗�𝑻 𝒗.𝝋 �⃗�𝑵	

      But  𝑴𝑴 𝒅𝒔 𝝆𝒅𝝋	

									ρ  is a curvature radius  

𝒅𝒔
𝒅𝒕

𝝆
𝒅𝝋
𝒅𝒕

𝒗	

⇒			𝝋 𝒗/𝝆	

        Finally 

�⃗�
𝒅𝒗
𝒅𝒕

. �⃗�𝑻 𝒗.
𝒗
𝝆
�⃗�𝑵

𝒅𝒗
𝒅𝒕

. �⃗�𝑻
𝒗𝟐

𝝆
�⃗�𝑵 �⃗�𝑻 �⃗�𝑵	

�⃗� �⃗�𝑻 �⃗�𝑵	

�⃗�𝑻   𝑖𝑠 𝑡ℎ𝑒 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑 𝑚𝑜𝑑𝑢𝑙𝑢𝑠       
�⃗�𝑵  𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑 

 

		

	5.4- Cylindrical coordinates 

													a- Position vector 

             The position vector is given by: 

𝑶𝑴 𝝆 �⃗�𝝆 𝒛 𝒌 ⟹ 𝑶𝑴 𝝆𝟐 𝒛𝟐	

														b- velocity vector 

                 Based on definition: 

�⃗� 𝐭
 

𝒅𝑶�⃗�
𝒅𝒕

𝒅�⃗�
𝒅𝒕

𝒅 𝝆 �⃗�𝝆 𝒛 𝒌
𝒅𝒕

𝝆 �⃗�𝝆 𝝆
𝒅�⃗�𝝆
𝒅𝒕

𝒛 𝒌 

                  But    
𝒅𝒖𝝆
𝒅𝒕

𝜽 �⃗�𝜽	



																					�⃗� 𝒕 𝝆 �⃗�𝝆 𝝆𝜽 �⃗�𝜽 𝒛 𝒌 �⃗�𝝆 �⃗�𝜽 �⃗�𝒛                  

                    With  
�⃗�𝝆 𝝆    

|�⃗�𝜽| 𝝆𝜽
|�⃗�𝒛| 𝒛   

	

                   ⟹     |�⃗� 𝐭 | 𝒗𝝆𝟐 𝒗𝜽
𝟐 𝒗𝒛𝟐

 

𝝆𝟐 𝝆𝜽
𝟐

𝒛𝟐	

             c- acceleration vector 

                        According to the definition: 

�⃗�
 

𝒅�⃗�
𝒅𝒕

𝒅
𝒅𝒕

𝒅�⃗�
𝒅𝒕

𝒅
𝒅𝒕

𝝆 �⃗�𝝆 𝝆𝜽 �⃗�𝜽 𝒛 𝒌 	

	

⟹         �⃗�
 
𝝆 �⃗�𝝆 𝝆 �⃗�𝝆 𝝆𝜽 �⃗�𝜽 𝝆𝜽 �⃗�𝜽 𝝆𝜽 �⃗�𝜽 𝒛 𝒌	

�⃗� 𝝆 𝝆𝜽𝟐  �⃗�𝝆 𝟐𝝆𝜽 𝝆𝜽  �⃗�𝜽 𝒛 𝒌	

	

																																																						�⃗�
 
�⃗�𝝆 �⃗�𝜽 �⃗�𝒛              With          

�⃗�𝝆 𝝆 𝝆𝜽𝟐      

|�⃗�𝜽| 𝟐𝝆𝜽 𝝆𝜽    
|�⃗�𝒛| 𝒛                       

	

									     ⟹           |�⃗� 𝐭 | 𝒂𝝆𝟐 𝒂𝜽
𝟐 𝒂𝒛𝟐

 

𝝆 𝝆𝜽𝟐
𝟐

𝟐𝝆𝜽 𝝆𝜽
𝟐

𝒛 𝟐	

5.5- Spherical coordinates 

             a- Position vector 

                   The position vector is given by: 

𝑶𝑴 𝒓 �⃗�𝒓							⟹      𝑶𝑴 𝒓	

             b- velocity vector 

                   According to the definition: 



 

      �⃗� 𝒕 𝒅𝑶𝑴

𝒅𝒕

𝒅�⃗�

𝒅𝒕
𝒓 �⃗�𝒓 𝒓 �⃗�𝒓                         

                            But      �⃗�𝒓 𝜽 �⃗�𝜽 𝝋 𝒔𝒊𝒏𝜽 �⃗�𝝋.	

																												⟹								�⃗� 𝐭
 

𝒓 �⃗�𝒓 𝒓𝜽 �⃗�𝜽 𝒓𝝋𝒔𝒊𝒏𝜽 �⃗�𝝋 �⃗�𝒓 �⃗�𝜽 �⃗�𝝋	

                                           With   
|�⃗�𝒓| 𝒓            
|�⃗�𝜽| 𝒓𝜽         
�⃗�𝝋 𝒓𝝋𝒔𝒊𝒏𝜽

	

                                    ⟹    |�⃗� 𝐭 | 𝒗𝒓𝟐 𝒗𝜽
𝟐 𝒗𝝋𝟐

 

𝒓𝟐 𝒓𝜽
𝟐

𝒓𝝋𝒔𝒊𝒏𝜽 𝟐	

             c- acceleration vector 

                  According to the definition: 

�⃗�
 

𝒅�⃗�
𝒅𝒕

𝒅
𝒅𝒕

𝒅�⃗�
𝒅𝒕

𝒅
𝒅𝒕

𝒓 �⃗�𝒓 𝒓𝜽 �⃗�𝜽 𝒓𝝋 𝒔𝒊𝒏𝜽 �⃗�𝝋 	

	

⟹  �⃗�
 
𝒓𝒖𝒓 𝒓𝒖𝒓 𝒓𝜽𝒖𝜽 𝒓𝜽𝒖𝜽 𝒓𝜽 �⃗�𝜽 𝒓𝝋 𝒔𝒊𝒏𝜽 𝒖𝝋 𝒓𝝋 𝒔𝒊𝒏𝜽 𝒖𝝋 𝒓𝝋𝜽 𝒄𝒐𝒔𝜽 𝒖𝝋 𝒓𝝋 𝒔𝒊𝒏𝜽𝒖𝝋	

      Knowing also that:    

 

  �⃗�𝜽
𝒅𝒖𝜽
𝒅𝒕

𝝏𝒖𝜽
𝝏𝜽

. 𝒅𝜽
𝒅𝒕

𝝏𝒖𝜽
𝝏𝝋

. 𝒅𝝋
𝒅𝒕

𝜽 �⃗�𝒓 𝝋𝒄𝒐𝒔𝜽 �⃗�𝝋             

  �⃗�𝝋
𝒅𝒖𝝋
𝒅𝒕

𝒅𝒖𝝋
𝒅𝜽

. 𝒅𝜽
𝒅𝒕

𝝋 𝒔𝒊𝒏𝜽 �⃗�𝒓  𝒄𝒐𝒔𝜽 �⃗�𝜽                    
	

	

⟹   �⃗�
 

𝒓 𝒓𝜽
𝟐

𝒓𝝋𝟐𝒔𝒊𝒏𝟐𝜽 𝒖𝒓 𝒓𝜽 𝟐𝒓𝜽 𝒓𝝋𝟐𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝜽 𝒖𝜽 𝒓𝝋𝒔𝒊𝒏𝜽 𝟐𝒓𝝋𝜽𝒄𝒐𝒔𝜽 𝟐𝒓𝝋𝒔𝒊𝒏𝜽 𝒖𝝋	

					�⃗�
 
�⃗�𝒓 �⃗�𝜽 �⃗�𝝋          With       

|�⃗�𝒓| 𝒓 𝒓𝜽𝟐 𝒓𝝋𝟐𝒔𝒊𝒏𝟐𝜽                          
|�⃗�𝜽| 𝒓𝜽 𝟐𝒓𝜽 𝒓𝝋𝟐𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝜽              
�⃗�𝝋 𝒓𝝋𝒔𝒊𝒏𝜽 𝟐𝒓𝝋𝜽𝒄𝒐𝒔𝜽 𝟐𝒓𝝋𝒔 𝒏𝜽

	

   

 Since   |�⃗� 𝐭 | 𝒂𝒓𝟐 𝒂𝜽
𝟐 𝒂𝝋𝟐

 

      ⟹	

|𝒂| 𝒓 𝒓𝜽𝟐 𝒓𝝋𝟐𝒔𝒊𝒏𝟐𝜽
𝟐

𝒓𝜽 𝟐𝒓𝜽 𝒓𝝋𝟐𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝜽
𝟐

𝒓𝝋𝒔𝒊𝒏𝜽 𝟐𝒓𝝋𝜽𝒄𝒐𝒔𝜽 𝟐𝒓𝝋𝒔 𝒏𝜽  𝟐	
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	7-Special motions 

In general, we meet in nature 3 types of motion 

 The translational motion. 

 The rotational motion. 

 Vibrational motion 

We will limit ourselves to certain particular motions of each type. 

      6.1-Rectilinear motion 

When the trajectory of the mobile M is a line, the motion is said to be rectilinear. 

              a- Uniform rectilinear motion (motion at constant velocity) 

If the motion is done at constant velocity �⃗� 𝟎 , the motion is said to be 

uniform 

∆𝒗 𝒗 𝒗𝟎   Since 𝒗 is constant      

 ⟹       𝒗 𝒗𝟎     and  𝒂 ∆𝒗

∆𝒕
𝟎	

The route or the path can be obtained as follows: 

𝒗
∆𝒙
∆𝒕

    ⟹      ∆𝒙 𝒙𝒇 𝒙𝒊 𝒗 𝒕𝒇 𝒕𝒊 	

If 𝒙𝒊 𝟎   and 𝒕𝒊 𝟎      then 

 

𝒙 𝒗𝒕   . 

 𝑇ℎ𝑖𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑟𝑒𝑐𝑡𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑡𝑖𝑜𝑛.	

	

The same result is given by the integral form because: 

𝒗 𝒅𝒙
𝒅𝒕  ⟹    𝒅𝒙 𝒗𝒅𝒕     

𝒅𝒙
𝒙𝒇

𝒙𝒊

𝒗𝒅𝒙
𝒕𝒇

𝒕𝒊

 

⟹    𝒙𝒇 𝒙𝒊 𝒗 𝒕𝒇 𝒕𝒊  

    



19 

 

	b- Uniformly varied rectilinear motion (motion done at constant acceleration) 

If the motion has (is done with) a constant acceleration, it is said to be 

uniformly varying. 

               Example: free fall 

               - Let a motion that done on to the direction 𝒐𝒙	

 

�⃗�𝒎𝒐𝒚
∆�⃗� 
∆𝒕

�⃗�𝒇  �⃗�𝒊 

𝒕𝒇  𝒕𝒊

𝒗𝑩  𝒗𝑨 
𝒕𝑩  𝒕𝑨

	⃗

               When the motion is uniformly varying 𝒂 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒	

𝒂𝒎𝒐𝒚 𝒂 ⟹ ∆𝒗 𝒗𝑩 𝒗𝑨 𝒂 𝒕𝑩 𝒕𝑨 	

 

If 𝒕𝑩 𝒕 any time and  𝒕𝑨 𝒕𝟎  

as  𝒗𝑩 𝒗  and 𝒗𝑨 𝒗𝟎  

also 𝒙𝑩 𝒙  and  𝒙𝑨 𝒙𝟎	

              Then: 

𝒗𝑩 𝒗 𝒂 𝒕  𝒕𝟎 𝒗𝟎	

              Likewise, 

�⃗�𝒎𝒐𝒚
∆�⃗� 
∆𝒕

𝒙𝒇  𝒙𝒊 

𝒕𝒇  𝒕𝒊
⃗

𝒙𝑩  𝒙𝑨 
𝒕𝑩  𝒕𝑨

 ⃗	

⟹            𝒗𝒎𝒐𝒚
𝒙  𝒙𝟎 

𝒕  𝒕𝟎
 

             We know that the average value is given by: 

 𝑿𝒎𝒐𝒚 𝑿
∑ 𝒙𝒍
𝒏
𝒍 𝟏   
𝒏

⟹ 𝒗𝒎𝒐𝒚
𝒗  𝒗𝟎 

𝟐
	

 ⃗
𝒙 

𝒕𝑩 𝒕𝑨 

𝒙𝑨,𝒗𝑨  𝒙𝑩,𝒗𝑩 
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Hence        𝒗𝒎𝒐𝒚
𝒙  𝒙𝟎 

𝚫𝒕

𝒗  𝒗𝟎 

𝟐
 t 

Since         𝒗 𝒂 𝒕  𝒕𝟎 𝒗𝟎	

		

⟹          𝒙 𝒙𝟎
𝒂 𝒕  𝒕𝟎 𝒗𝟎 

𝟐
𝒕  𝒕𝟎

𝒗𝟎 

𝟐
𝒕 𝒕𝟎 	

	

𝒙  
𝒂 
𝟐

𝒕  𝒕𝟎 𝟐 𝒗𝟎 𝒕  𝒕𝟎   𝒙𝟎  	

                   𝐼𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑟𝑒𝑐𝑡𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑡𝑖𝑜𝑛	

                  Note: The same result can be found using the integral form. 

                      If the acceleration is constant 

𝒂
𝑑𝑣
𝑑𝑡

⟹ 𝒅𝒗 𝒂𝒅𝒕 ⟹ 𝒅𝒗
𝒗

𝒗𝟎

𝒂𝒅𝒕
𝒕

𝒕𝟎

 

⟹           𝒗 𝒗𝟎 𝒂 𝒕 𝒕𝟎             ⟹               𝒗 𝒗𝟎 𝒂 𝒕 𝒕𝟎  

                                Since     𝒗 𝒅𝒙

𝒅𝒕
          ⟹    𝒅𝒙 𝒗𝒅𝒕	

⟹ 𝒅𝒙
𝒙

𝒙𝟎

𝒗𝒅𝒕
𝒕

𝒕𝟎

𝒗𝟎 𝒂 𝒕 𝒕𝟎 𝒅𝒕
𝒕

𝒕𝟎

	

𝒙 𝒙𝟎
𝟏
𝟐
𝒂 𝒕 𝒕𝟎 𝟐 𝒗𝟎 𝒕 𝒕𝟎 	

𝒙
𝟏
𝟐
𝒂 𝒕 𝒕𝟎 𝟐 𝒗𝟎 𝒕 𝒕𝟎 𝒙𝟎	
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7.2- Curvilinear motion 

When the trajectory of the mobile M is any curve, the movement is said to 

be curvilinear. 

														7.2.1‐	Circular	motion	

 The trajectory of the mobile M is a circle 

a‐Uniform	circular	motion	(𝜽 𝝎	is	constant)	

 when the motion of the mobile M is done at constant 

angular velocity. 

The distance traveled is the arc 𝒐𝑴 𝒔, it is 

expressed as a function of radius R and the angle 

θ as follows: 

𝒔 𝑹𝜽	

  The position vector is: 

𝑶𝑴 �⃗� 𝑹 �⃗�𝝆	

 Angular velocity and linear velocity 

 The angular velocity is given by the derivative of the angle θ with respect to 

time.     𝒅𝜽
𝒅𝒕

𝜽 𝝎	

 The linear velocity is given by the derivative of a displacement with respect 

to time. 	

𝒅�⃗�
𝒅𝒕

�⃗�
𝒅 𝑹�⃗�𝝆
𝒅𝒕

𝑹 �⃗�𝝆 𝑹 �⃗�𝝆	

                      since R is constant (circular motion).    ⟹     𝑹 𝟎 

                      we have    �⃗�𝝆 𝜽�⃗�𝜽	

																																					⟹														�⃗�  𝑹 �⃗�𝝆 𝑹𝜽 �⃗�𝜽	

           So                           |�⃗�| 𝒗 𝑹𝜽 𝑹𝝎  ,    

o 

𝑴 

𝒖𝝆 𝒖  

 ⃗

 ⃗ 𝜽 

O 

𝑹 
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And
|𝒅�⃗�|

𝒅𝒕
|�⃗�| 𝒅𝒔

𝒅𝒕

          The linear velocity is tangential to the curve (to the trajectory) 

							Angular acceleration and linear acceleration 

- The angular acceleration is given by the derivative of the angular velocityθ

with respect to time.

𝜺 𝜽
𝒅 𝜽

𝒅𝒕
               

For a uniform circular motion    𝜺 𝒐	

- Linear acceleration is given by the derivative of velocity with respect to time.

𝒅�⃗�
𝒅𝒕

�⃗�
𝒅 𝑹𝜽 �⃗�𝜽

𝒅𝒕
𝑹𝜽 �⃗�𝜽 𝑹𝜽 �⃗�𝜽 𝑹𝜽 �⃗�𝜽	

Since R and θ are constants (uniform circular motion) 

 ⟹     𝑹 𝟎 and 𝜽 𝟎 

We have also   �⃗�𝜽 𝜽�⃗�𝝆       

⟹     �⃗� 𝑹𝜽 𝜽�⃗�𝝆 𝑹𝜽𝟐�⃗�𝝆	

The linear acceleration is radial and directed towards the center (centripetal) 

b- Uniformly varied circular motion	(𝜺 𝜽	is constant)

We have 𝜺 𝜽 𝒅𝜽

𝒅𝒕
      ⟹ 𝒅𝜽 𝜺𝒅𝒕

⟹    𝜽𝒇 𝜽𝒊 𝜺 𝒕𝒇 𝒕𝒊⟹         

If we take 𝒕𝒊 𝒕𝟎 as an initial time and 𝒕𝒇 𝒕 any time during the motion, with,

           𝜽𝒇 𝜽  ;   𝜽𝒊 𝜽𝟎 

        then:	
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𝜽 𝜺 𝒕 𝒕𝟎 𝜽𝟎	

	            We have:    

𝒅𝜽
𝒅𝒕

𝜽 𝝎  

⟹        𝒅𝜽 𝝎𝒅𝒕            ⟹ 𝒅𝜽
𝜽𝒇

𝜽𝒊

𝝎𝒅𝒕
𝒕𝒇

𝒕𝒊

 

                                                  ⟹									𝜽𝒇 𝜽𝒊
𝟏

𝟐
𝜺 𝒕𝒇 𝒕𝒊

𝟐
𝜽𝒊 𝒕𝒇 𝒕𝒊 	

               If we take:     𝜽𝒇 𝜽 ,  𝜽𝒊 𝜽𝟎       

                                                   ⟹          𝜽 𝜽𝟎
𝟏

𝟐
𝜺 𝒕𝒇 𝒕𝟎

𝟐
𝜽𝟎 𝒕𝒇 𝒕𝟎  

⟹           𝜽
𝟏
𝟐
𝜺 𝒕 𝒕𝟎 𝟐 𝜽𝟎 𝒕 𝒕𝟎 𝜽𝟎	

 

 Vectorial expression between linear velocity and angular velocity 

Since linear velocity has as magnitude 𝒗 𝑹𝝋 and direction �⃗�𝑻	

 So:                                               �⃗� 𝑹𝝋�⃗�𝑻	

 As shown in the figure: 

                                                      �⃗� 𝝎𝒌 

  But: 

⎩
⎪
⎨

⎪
⎧
𝒗 𝑹𝝋  𝑹𝝎                         

|�⃗�⋀�⃑�| |�⃗�||�⃗�|𝒔𝒊𝒏𝜽                  

𝑹 |�⃗�|𝒔𝒊𝒏𝜽𝒆𝒕�⃗�𝑻 ⊥ �⃗�, �⃑�     

 

                                                ⟹            �⃗� 𝑹𝝋�⃗�𝑻 𝝎𝒓𝒔𝒊𝒏𝜽�⃗�𝑻 �⃗�⋀�⃗� 

�⃗� 𝝎⋀�⃗�	

which	is	an	important	result	

𝒖𝑻 

�⃗� 

 ⃗
 ⃗

�⃑� 

𝝋 𝑹

𝜽 
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c – General motion 

When the point moves from A to B, it traverses the arc  

                          𝒔 𝑨𝑩.	

The position vector is given by r⃗ , so the displacement is:  

                         ∆�⃗� �⃗�𝑩 𝒓𝑨 

For elementary variations (𝑨 → 𝑩), the sector 𝒅𝒓 overlay the magnitude of 

displacement 𝒅𝒓  

𝒅�⃗� |𝒅�⃗�|�⃗�𝑻 𝒅𝒔�⃗�𝑻	

 Velocity 

We know that: 

 �⃗�
𝒅�⃗�
𝒅𝒕

𝒅𝒔
𝒅𝒕

�⃗�𝑻 |�⃗�| �⃗�𝑻 𝒗 �⃗�𝑻	

                                 Linear velocity is always tangential to the curve 

 Acceleration 

                              By definition:   �⃗� 𝒅�⃗�

𝒅𝒕
 

                     So  �⃗� 𝒅 𝒗𝒖𝑻
𝒅𝒕

𝒅𝒗

𝒅𝒓
�⃗�𝑻 𝒗 𝒅𝒖𝑻

𝒅𝒕
 

                                But  
�⃗�𝑻 𝒄𝒐𝒔 𝝋  ⃗ 𝒔𝒊𝒏 𝝋   ⃗ 

 
�⃗�𝑵 𝒔𝒊𝒏 𝝋  ⃗ 𝒄𝒐𝒔 𝝋  ⃗

 

																																		Then 

⟹     

⎩
⎪
⎨

⎪
⎧
𝒅�⃗�𝑻
𝒅𝒕

𝒅�⃗�𝑻
𝒅𝝋

.
𝒅𝝋
𝒅𝒕

𝝋 𝒔𝒊𝒏 𝝋  ⃗ 𝒄𝒐𝒔 𝝋   ⃗

𝒅�⃗�𝑵
𝒅𝒕

𝒅�⃗�𝑵
𝒅𝝋

.
𝒅𝝋
𝒅𝒕

𝝋 𝒄𝒐𝒔 𝝋  ⃗ 𝒔𝒊𝒏 𝝋   ⃗

      

𝑶 

∆𝝋

𝑨 𝑩 

𝝋 
�⃗�𝑩 

�⃗�𝑨 

𝒖𝑵 𝒖𝑻 

𝓒 

𝓡 
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⟹         
�⃗�𝑻 𝝋 �⃗�𝑵

 

�⃗�𝑵 𝝋 �⃗�𝑻

             ⟹												�⃗� 𝒅𝒗

𝒅𝒓
�⃗�𝑻 𝒗 𝝋 �⃗�𝑵 	

We have seen in the circular motion that:  

𝒗 𝝆
𝒅𝝋
𝒅𝒕

𝝆𝝋 

ρ is the radius of curvature of C     ⟹      𝝋 𝒗

𝝆

          Finally: 

�⃗�
𝒅𝒗
𝒅𝒓

�⃗�𝑻
𝒗𝟐

𝝆
 �⃗�𝑵 �⃗�𝑻 �⃗�𝑵	

⎩
⎪
⎨

⎪
⎧𝒂𝑻

𝒅𝒗
𝒅𝒓

   𝒅𝒖𝒆 𝒕𝒐 𝒕𝒉𝒆 𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝒕𝒉𝒆 𝒎𝒐𝒅𝒖𝒍𝒖𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝒗𝒆𝒄𝒕𝒐𝒓: 𝒕𝒂𝒏𝒈𝒆𝒏𝒕𝒊𝒂𝒍 𝒂𝒄𝒄𝒆𝒍𝒆𝒓𝒂𝒕𝒊𝒐𝒏

𝒂𝑵
𝒗𝟐

𝝆
 𝒅𝒖𝒆 𝒕𝒐 𝒕𝒉𝒆 𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝒕𝒉𝒆 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒕𝒉𝒆 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚:𝒏𝒐𝒓𝒎𝒂𝒍 𝒂𝒄𝒄𝒆𝒍𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 

7.3‐	Harmonic	motion	

If the motion of the particle is along a line with back and forth the motion is 

said to be rectilinear harmonic. 

 Temporary	equation

           The temporary equation of motion is a circular function of form:  

          where 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝒙 𝒕  𝒙𝟎 𝐬𝐢𝐧 𝝎𝒕  𝝋  

𝒙𝟎   is the 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 of motion

𝝎 𝟐𝝅

𝑻
is the 𝑝𝑢𝑙𝑠𝑎𝑡𝑖𝑜𝑛 of motion
 𝑻 is the 𝑝𝑒𝑟𝑖𝑜𝑑𝑒  of motion  

  

𝝎𝒕  𝝋 is the phse of the motion

 𝝋 is the 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 phase
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 Velocity	

We know that the velocity is given by the derivative of the position vector with respect 

to time.  

𝒗
𝒅𝒙
𝒅𝒕

𝝎𝒙𝟎 𝐜𝐨𝐬 𝝎𝒕 𝝋 𝝎𝒙𝟎 𝐬𝐢𝐧 𝝎𝒕 𝝋
𝝅
𝟐
	

	

The phase difference between velocity and abscissa is π
2
. They are said to be in 

quadrature 

 Acceleration	

 We know that acceleration is given by the derivative of velocity with respect to time. 

𝒂
𝒅𝒗
𝒅𝒕

𝝎𝟐𝒙𝟎 𝐬𝐢𝐧 𝝎𝒕 𝝋 𝝎𝟐𝒙𝟎 𝐬𝐢𝐧 𝝎𝒕 𝝋 𝝅 𝝎𝟐𝒙	

The phase difference between velocity and acceleration is "𝝅". They are said to be in 

phase opposition. 

Remark:  

 From the expression of acceleration one can deduce the equation of harmonic 

motion.     

𝒂
𝒅𝒗
𝒅𝒕

𝒅𝟐𝒙
𝒅𝒕𝟐

𝝎𝟐𝒙 ⟹ 𝒙 𝝎𝟐𝒙 𝒐	

It is a second-order differential equation 

 

𝒙 𝒕  𝒙 𝒕  𝒙 𝒕  
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In general case 

𝒅𝒗𝟐

𝒅𝒕
𝟐�⃗� ∘ 𝒅�⃗�

𝒅𝒕
𝟐�⃗� ∘ �⃗� 𝟐|�⃗�||�⃗�|𝒄𝒐𝒔𝜶 

- If there is movement, speed 𝒗 𝟎 

* Uniform motion: 

 
𝒅𝒗𝟐

𝒅𝒕
𝟎 ⟹

𝒂 𝟎   

𝜶
𝝅
𝟐

 

⟹

𝒂 𝟎    𝑟𝑒𝑐𝑡𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑒 𝑚𝑜𝑡𝑖𝑜𝑛                  
 

𝜶
𝝅
𝟐

       𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑒 𝑚𝑜𝑡𝑖𝑜𝑛 �⃗� ⊥ �⃗�
 

	

* Uniform varied motion 

- The movement is accelerated if the norm of speed is an increasing function of 

time 

𝒅𝒗𝟐

𝒅𝒕
0  ⟹   𝟐|�⃗�||�⃗�|𝒄𝒐𝒔𝜶 0 

⟹    𝒄𝒐𝒔𝜶 0     ⟹   𝟎 𝛼 𝝅

𝟐
	

- Movement is delayed if:	

𝒅𝒗𝟐

𝒅𝒕
𝟎      ⟹   𝟐|�⃗�||�⃗�|𝒄𝒐𝒔𝜶 0    

⟹     𝒄𝒐𝒔𝜶 0    ⟹ 𝝅

𝟐
𝛼 𝜋	

	

𝜶 

𝒗 

�⃗� 
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8	Relative	motion	

					8.1‐	Change	of	basis‐	System	transform	

* In an orthonormal basis 𝑶, ,⃗ ⃗ , the vector 𝑶𝑴  is written as: 

𝑶𝑴 �⃗� 𝒙 ⃗ 𝒚 	⃗

* In another orthonormal basis 𝑶𝟏, ⃗𝟏, ⃗𝟏 , the vector 𝑶𝟏𝑴  is written: 

𝑶𝟏�⃗� �⃗�𝟏 𝒙𝟏⃗𝟏 𝒚𝟏⃗𝟏	

	

Question: How to write the coordinates of one basis according to the other basis? 

The relationship between the two position vectors is 

𝑶𝑴 𝑶𝑶𝟏 𝑶𝟏�⃗� 

               ⟹          𝒙⃗ 𝒚⃗ 𝒙𝑶𝟏⃗ 𝒚𝑶𝟏⃗ 𝒙𝟏⃗𝟏 𝒚𝟏 ⃗𝟏  

 

The passage of 𝑶𝑴 to 𝐎𝟏𝑴 is called basis change (transform) 

8.2‐	Motion	of	a	reference	frame	𝓡𝟏	with	respect	to	reference	frame	𝓡	

Let 𝑶, ,⃗ ,⃗𝒌  and 𝑶𝟏, ⃗𝟏, ⃗𝟏,𝒌𝟏  be two orthonormal bases assigned to both 𝓡 and R1 

which are fixed and mobile reference frame respectively.	

								8.2.1‐	Position	vector	

     Position vectors are written in both reference frames as follows: 

- In the fixed frame of reference 

             𝑶𝑴/𝓡 �⃗� 𝒙 ⃗ 𝒚 ⃗ 𝒛 𝒌	

-  In the mobile frame of reference 

𝑶𝟏𝑴/𝓡𝟏
�⃗�𝟏 𝒙𝟏⃗𝟏 𝒚𝟏 ⃗𝟏 𝒛𝟏𝒌	

M	

T

 ⃗
�⃗� 

 ⃗

�⃗�𝟏 

⃗𝟏 
⃗𝟏 

𝑶𝟏 

�⃗� 
�⃗�𝟏 

O

 ⃗

 ⃗

⃗𝟏 

⃗𝟏 𝑶𝟏 
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 The relationship between the two position vectors is: 

�⃗� 𝑶𝑴/𝓡 𝑶𝑶𝟏/𝓡 𝑶𝟏�⃗�/𝓡𝟏
𝑶𝑶𝟏/𝓡 �⃗�𝟏/𝓡𝟏

	

                     ⟹        𝒙⃗ 𝒚⃗ 𝒛𝒌 𝒙𝑶𝟏⃗ 𝒚𝑶𝟏⃗ 𝒛𝑶𝟏𝒌 𝒙𝟏⃗𝟏 𝒚𝟏⃗𝟏 𝒛𝟏𝒌𝟏  

8.2.2‐	Velocity	

Remained the transport theorem: 

For two reference frames 𝓡 and 𝓡𝟏 Let ω⃗ the angular velocity of 𝓡𝟏 with 

respect to 𝓡.The derivative of a vector 𝑨 with respect to 𝓡 is: 

𝒅𝑨/𝓡

𝒅𝒕

𝒅𝑨/𝓡𝟏

𝒅𝒕
ω⃗ ⋀ 𝑨/𝓡𝟏

 

According to the definition: 

�⃗�𝑴
𝒅�⃗�
𝒅𝒕

𝒅𝑶�⃗�/𝓡

𝒅𝒕

𝒅𝑶𝑶𝟏/𝓡

𝒅𝒕

𝒅𝑶𝟏�⃗�/𝓡

𝒅𝒕

𝒅𝑶𝑶𝟏/𝓡

𝒅𝒕

𝒅𝑶𝟏�⃗�/𝓡

𝒅𝒕𝟏
.
𝒅𝒕𝟏
𝒅𝒕
	

In the case of low speeds, time is considered to be absolute, i.e.   

𝒕 𝒕𝟏					⟹     𝒅𝒕 𝒅𝒕𝟏	

�⃗�𝑴
𝒅𝑶𝑶𝟏/𝓡

𝒅𝒕

𝒅𝑶𝟏�⃗�/𝓡

𝒅𝒕𝟏
	

�⃗�𝑴
𝒅 𝒙𝑶𝟏⃗ 𝒚𝑶𝟏⃗ 𝒛𝑶𝟏𝒌

𝒅𝒕
𝒅 𝒙𝟏⃗𝟏 𝒚𝟏⃗𝟏 𝒛𝟏𝒌𝟏

𝒅𝒕
	

�⃗�𝑴
𝒅𝒙𝑶𝟏
𝒅𝒕

⃗
𝒅𝒚𝑶𝟏
𝒅𝒕

⃗
𝒅𝒛𝑶𝟏
𝒅𝒕

𝒌
𝒅𝒙𝟏
𝒅𝒕

⃗𝟏
𝒅𝒚𝟏
𝒅𝒕

⃗𝟏
𝒅𝒛𝟏
𝒅𝒕

𝒌𝟏 𝒙𝟏
𝒅⃗𝟏
𝒅𝒕

𝒚𝟏
𝒅⃗𝟏
𝒅𝒕

 𝒛𝟏
𝒅𝒌𝟏
𝒅𝒕

	

The moving basis is in translation and rotation with an angular velocity ω⃗ with 

respect to the fixed basis. 

But the derivative of a vector with respect to time is: 

                    𝒅𝑨
𝒅𝒕

�⃗� ∧ 𝑨  for any vector 𝑨 of constant magnitude 

For any unitary vector ′ �⃗� ′ :  𝒅𝒖
𝒅𝒕

�⃗� ∧ �⃗�        
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⟹        𝒅⃗
𝒅𝒕

�⃗� ∧  ⃗ ,      𝒅⃗
𝒅𝒕

�⃗� ∧  ⃗     and      𝒅�⃗�
𝒅𝒕

�⃗� ∧ 𝒌 

The velocity of the point M is written as follows: 

�⃗�𝑴/𝓡 𝒙𝑶𝟏⃗ 𝒚𝑶𝟏⃗ 𝒛𝑶𝟏𝒌 𝒙𝟏⃗𝟏 𝒚𝟏⃗𝟏 𝒛𝟏𝒌𝟏 𝒙𝟏 �⃗� ∧ ⃗𝟏 𝒚𝟏 �⃗� ∧ ⃗𝟏 𝒛𝟏 �⃗� ∧ 𝒌𝟏 	

�⃗�𝑴/𝓡 𝒙𝑶𝟏⃗ 𝒚𝑶𝟏⃗ 𝒛𝑶𝟏𝒌 𝒙𝟏⃗𝟏 𝒚𝟏⃗𝟏 𝒛𝟏𝒌𝟏 �⃗� ∧ 𝒙𝟏 𝟏 �⃗� ∧ 𝒚𝟏⃗𝟏 �⃗� ∧ 𝒛𝟏𝒌𝟏 	

Since the vector product is distributive with respect to addition, we will have: 

�⃗�𝑴/𝓡 𝒙𝑶𝟏⃗ 𝒚𝑶𝟏⃗ 𝒛𝑶𝟏𝒌 𝒙𝟏⃗𝟏 𝒚𝟏⃗𝟏 𝒛𝟏𝒌𝟏 �⃗� ∧ 𝒙𝟏⃗𝟏 𝒚𝟏⃗𝟏 𝒛𝟏𝒌𝟏 	

�⃗�𝑴/𝓡 �⃗�𝑴/𝓡𝟏
�⃗�𝑶𝟏/𝓡 �⃗� ∧ 𝑶𝟏�⃗� �⃗�𝑴/𝓡𝟏

�⃗�𝑶𝟏/𝓡 �⃗� ∧ �⃗�𝟏	

�⃗�𝑴/𝓡 �⃗�𝒂 �⃗�𝒓 �⃗�𝒆	

This is the law of velocities composition 

�⃗�𝑴/𝓡 �⃗�𝒂 

Is the absolute velocity, i.e., the velocity of the point M with respect to the fixed 

reference frame 𝓡 𝑶, ,⃗ ,⃗𝒌 . 

�⃗�𝑴/𝓡𝟏
�⃗�𝒓 

Is the relative velocity, i.e., the velocity of the point M with respect to the mobile 

reference frame 𝓡𝟏 𝑶𝟏, ⃗𝟏, ⃗𝟏,𝒌𝟏 . 

�⃗�𝑶𝟏/𝓡 �⃗� ∧ �⃗�𝟏 �⃗�𝒆 

Is transport velocity, i.e., the velocity of the point with respect to the fixed reference 

frame, M assuming that this point is fixed in the mobile reference frame (The 

velocity of the mobile reference frame with respect to the fixed one)   

8.2.3‐	Acceleration	vector	

 According to the definition: 

�⃗�𝑴
𝒅�⃗�𝑴/𝓡

𝒅𝒕
𝒅𝟐 𝑶𝑴/𝓡

𝒅𝒕𝟐
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�⃗�𝑴
𝒅 �⃗�𝑴/𝓡𝟏

�⃗�𝑶𝟏/𝓡 �⃗� ∧ 𝑶𝟏𝑴

𝒅𝒕
𝒅 �⃗�𝑴/𝓡𝟏

𝒅𝒕

𝒅 �⃗�𝑶𝟏/𝓡

𝒅𝒕
𝒅 �⃗� ∧ 𝑶𝟏�⃗�

𝒅𝒕
	

                    

⎩
⎪⎪
⎨

⎪⎪
⎧
𝒅 𝒗𝑴/𝓡𝟏

𝒅𝒕

𝒅 𝒙𝟏⃗𝟏 𝒚𝟏⃗𝟏 𝒛𝟏�⃗�𝟏
𝒅𝒕

𝒙𝟏⃗𝟏 𝒚𝟏 ⃗𝟏 𝒛𝟏𝒌𝟏 �⃗� ∧ 𝒙𝟏⃗𝟏 𝒚𝟏 ⃗𝟏 𝒛𝟏𝒌𝟏

𝒅 𝒗𝑶𝟏/𝓡

𝒅𝒕

𝒅 𝒙𝑶𝟏⃗ 𝒚𝑶𝟏⃗ 𝒛𝑶𝟏�⃗�

𝒅𝒕
𝒙𝑶𝟏⃗ 𝒚𝑶𝟏⃗ 𝒛𝑶𝟏𝒌                                                           

𝒅 𝝎∧�⃗�𝟏
𝒅𝒕

�⃗� ∧ �⃗�𝟏 �⃗� ∧ 𝒙𝟏⃗𝟏 𝒚𝟏 ⃗𝟏 𝒛𝟏𝒌𝟏 �⃗� ∧ 𝒙𝟏⃗𝟏 𝒚𝟏 ⃗𝟏 𝒛𝟏𝒌𝟏

	

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝒅 �⃗�𝑴/𝓡𝟏

𝒅𝒕
�⃗�𝑴/𝓡𝟏

�⃗� ∧ �⃗�𝒓                        

𝒅 �⃗�𝑶𝟏/𝓡

𝒅𝒕
�⃗�𝑶𝟏/𝓡                                           

𝒅 �⃗� ∧ �⃗�𝟏
𝒅𝒕

�⃗� ∧ �⃗�𝟏 �⃗� ∧ �⃗�𝒓 �⃗� ∧ �⃗�𝟏

	

Finally:  

�⃗�𝑴 �⃗�𝑴/𝓡𝟏
�⃗�𝑶𝟏/𝓡 �⃗� ∧ �⃗�𝟏 �⃗� ∧   �⃗� ∧ �⃗�𝟏 𝟐�⃗� ∧ �⃗�𝒓 	

�⃗� �⃗�𝒓 �⃗�𝒆 �⃗�𝒄	

�⃗� :  Is the absolute acceleration, i.e., the acceleration of the point M with respect        

to the fixed reference frame 𝓡 𝑶, ,⃗ ,⃗𝒌 .	

�⃗�𝒓 : Is the relative acceleration, i.e. The acceleration of the point M with respect 

to the mobile frame of reference 𝓡𝟏 𝑶𝟏, ⃗𝟏, ⃗𝟏,𝒌𝟏 	

�⃗�𝒆 : Is the transport acceleration, 

�⃗�𝒄 : Is the Coriolis acceleration. This acceleration cancels out if: 

‐ 𝝎 �⃗�       Movement is a pure translation 

‐ 𝒗𝒓 �⃗�      The point is fixed in the moving coordinate system M 

‐ 𝝎 ∥ �⃗�𝒓     The rotation is in a plane perpendicular to the displacement of in the     
           M moving coordinate system 
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8.3‐	Special	case	

													8.3.1	‐"𝓡𝟏"	in	translation	with	respect	to	′′𝓡"	

a‐	Translation	at	constant	velocity:	

In this case: �⃗� 𝟎 and the acceleration of the point O1 is zero 
𝒅 𝒗𝑶𝟏/𝓡

𝒅𝒕
 𝟎  , 

then:  

�⃗�𝒂 �⃗�𝒓 �⃗�𝒆 �⃗�𝒓 �⃗�𝑶𝟏/𝓡	

         The transport velocity is that of the moving coordinate system. 

�⃗� �⃗�𝒓	

              

           Note: In this case Newton's laws are the same in both referential  ′′𝓡" and  "𝓡𝟏" , 

they are called Galilean referential 

b	‐	Translation	at	variable	velocity	

In this case: �⃗� 𝟎 and the acceleration of the point O1  is not zero 

𝒅 �⃗�𝑶𝟏/𝓡

𝒅𝒕
 𝟎 

�⃗�𝒂 �⃗�𝒓 �⃗�𝒆 �⃗�𝒓 �⃗�𝑶𝟏/𝓡  and    �⃗� �⃗�𝒓 �⃗�𝑶𝟏/𝓡	

                           Note:  

We see that the absolute acceleration is increased by the acceleration of the 

origin of the moving coordinate system. The frame of reference is not Galilean, 

Newton's 2nd law is not valid but will be corrected. 

8.3.2‐	"𝓡𝟏"		in	rotation	with	respect	to	′′𝓡"	

a‐	Rotation	at	constant	angular	velocity:		�⃗� 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆	

        In this case:  �⃗� 𝑪𝒔𝒕𝒆    ⟹     𝒅 𝝎

𝒅𝒕
�⃗� 𝟎 
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        And  �⃗�𝑶𝟏/𝓡

𝒅 𝒗𝑶𝟏/𝓡

𝒅𝒕
𝟎 ;          �⃗�𝑶𝟏/𝓡 𝟎  (Only rotation) 

             The absolute velocity is: 

�⃗�𝒂 �⃗�𝒓 �⃗�𝒆 �⃗�𝒓 �⃗� ∧ �⃗�𝟏	

               And the absolute acceleration is given by: 

�⃗� �⃗�𝒓 �⃗�𝒆 �⃗�𝒄 �⃗�𝒓 �⃗� ∧   �⃗� ∧ 𝒓𝟏 𝟐�⃗� ∧ �⃗�𝒓	

b‐	Variable	angular	velocity			

             In this case:       �⃗�𝑶𝟏/𝓡 𝟎      (Only rotation) 

                And                �⃗�𝑶𝟏/𝓡

𝒅 𝒗𝑶𝟏/𝓡

𝒅𝒕
𝟎 

              Then: 

�⃗�𝒂 �⃗�𝒓 �⃗�𝒆 �⃗�𝒓 �⃗� ∧ �⃗�𝟏	

                   And  

�⃗� �⃗�𝒓 �⃗�𝒆 �⃗�𝒄 �⃗�𝒓 �⃗� ∧ �⃗�𝟏 �⃗� ∧ �⃗� ∧ �⃗�𝟏 𝟐�⃗� ∧ �⃗�𝒓	



III- Dynamics 

1- Introduction 

1-1-Definition:  

Dynamics (kinetics) is the study of motion by taking into account the causes that generate it 

1-2-Inertial Frame of Reference (Galilean) 

In the case of relative motion, the reference frames have been defined as "𝓡", and "𝓡𝟏", one is 

assumed to be absolute (fixed), the other is mobile. But the question for "𝓡", it is fixed with 

respect to what? As a result, it is assumed that a frame of reference is fixed according to the 

problem under study where the laws of physics become simpler.  

The frame of reference in which an isolated (free) object maintains its state of motion(constant 

velocity) is a privileged reference frame called an inertial frame.  

1.3- Observation: 

- If a ball is dropped, from a height" 𝒉", into a smooth tank (frictionless), it goes down and up 

again at the same level " 𝒉" regardless of the slope. 

- If the second side of the bowl is flattened, then it has been lowered, the ball follows a 

horizontal path and continues its path with a uniform rectilinear movement. 

Result:  

An isolated ball follows a uniform straight path. 

2- Principle of inertia 

In an inertial frame of reference (Galilean), a free body (isolated or not subjected to any external 

forces), continues to move in a straight line at a constant speed (uniform rectilinear motion) if 

it was already in motion, if it is in rest, it remains at rest. 

Note: The principle of inertia brings us closer to the concept of force. 

3- Mass and momentum 

     3.1- Mass 

      The greater the mass of a body, the more difficult to stop or move it. 

𝒉 



Mass is the amount of matter in a body that characterizes its ability to resisting 

the change of motion (velocity), it characterizes its inertia.   

     3.2- Momentum 

‐ For two bodies with the same velocity, it is easier to stop or move the one with the 

smaller mass. 

‐ For two bodies with the same mass, it is easier to stop or move the one with the lower 

velocity. 

3-2-1-Definition  

The product of a body's mass by its velocity defines the momentum denoted  "�⃗�". 

�⃗� 𝒎�⃗�   [kg.m/s] 

Note: The principle of inertia can be stated as follows: 

           An isolated body of constant mass has a constant momentum. 

3-2-2-Momentum of a Particle System 

Let be an isolated system consisting  "𝒏" of particles of respective velocities " �⃗�𝟏, �⃗�𝟐, �⃗�𝟑, … , �⃗�𝒏". 

We define the center of mass "𝑮" whose vector position " �⃗�𝑮" such that:  

�⃗�𝑮
∑ 𝒎𝒊�⃗�𝒊
𝒏
𝒊 𝟏

∑ 𝒎𝒊
𝒏
𝒊 𝟏

 

�⃗�𝒊 : is the position vector for the 𝒊𝒕𝒉 particle of mass "𝒎𝒊" 

Then: 

𝒅�⃗�𝑮
𝒅𝒕

�⃗�𝑮
∑ 𝒎𝒊

𝒅�⃗�𝒊
𝒅𝒕

𝒏
𝒊 𝟏

∑ 𝒎𝒊
𝒏
𝒊 𝟏

∑ 𝒎𝒊�⃗�𝒊
𝒏
𝒊 𝟏

∑ 𝒎𝒊
𝒏
𝒊 𝟏

 

∑ 𝒎𝒊
𝒏
𝒊 𝟏 𝑴    the total mass 

Then:       

�⃗�𝑮
∑ 𝑷𝒊
𝒏
𝒊 𝟏

∑ 𝒎𝒊
𝒏
𝒊 𝟏

∑ 𝑷𝒊
𝒏
𝒊 𝟏

𝑴
      ⟹     

∑ 𝒎𝒊𝒗𝒊
𝒏
𝒊 𝟏

∑ 𝒎𝒊
𝒏
𝒊 𝟏

∑ �⃗�𝒊
𝒏
𝒊 𝟏  

Hence: the momentum (linear momentum) of the system 

�⃗� 𝑴�⃗�𝑮 �⃗�𝟏 �⃗�𝟐 �⃗�𝟑 ⋯ �⃗�𝒏 �⃗�𝒊

𝒏

𝒊 𝟏

 

The momentum of system of  "𝒏" particles  is the same as if all its mass were concentrated 

at its center of mass that whose velocity is �⃗�𝑮. 

 



3-2-3-Conservation of Momentum 

 a – Conservation of momentum 

 Let be a system consisting of two particles [(𝒎𝟏, �⃗�𝟏  ; 𝒎𝟐, �⃗�𝟐 ] in interaction. Due to the 

change in their velocities, each of the particles follows a curvilinear path. 

- at the moment "𝒕 𝒕𝟎" the two particles are in position 𝑨𝟏 and  𝑨𝟐 

- at the moment "𝒕 𝒕𝟏" the two particles are in position 𝑩𝟏 and  𝑩𝟐 

 

The position vector of the center of mass of the system is: 

 

�⃗�𝑮
∑ 𝒎𝒊�⃗�𝒊
𝒏
𝒊 𝟏

∑ 𝒎𝒊
𝒏
𝒊 𝟏

𝒎𝟏�⃗�𝟏 𝒎𝟐�⃗�𝟐
𝒎𝟏 𝒎𝟐

 

The momentum is: 

- At  "𝒕 𝒕𝟎" :   �⃗� 𝒎𝟏�⃗�𝟏 𝒎𝟐�⃗�𝟐 

- At "𝒕 𝒕𝟏" :   𝑷⃗ 𝒎𝟏𝒗⃗𝟏 𝒎𝟐𝒗⃗𝟐 

The velocity of the center of mass of the system is: 

‐ At  "𝒕 𝒕𝟎" : 

�⃗�𝑮
𝒅�⃗�𝑮
𝒅𝒕

∑ 𝒎𝒊
𝒅�⃗�𝒊
𝒅𝒕

𝒏
𝒊 𝟏

∑ 𝒎𝒊
𝒏
𝒊 𝟏

𝒎𝟏�⃗�𝟏 𝒎𝟐�⃗�𝟐
𝒎𝟏 𝒎𝟐

 

- At "𝒕 𝒕𝟏" : 

 𝒗⃗𝑮
𝒅�⃗�𝑮
𝒅𝒕

∑ 𝒎𝒊
𝒅𝒓⃗𝒊
𝒅𝒕

𝒏
𝒊 𝟏

∑ 𝒎𝒊
𝒏
𝒊 𝟏

𝒎𝟏𝒗⃗𝟏 𝒎𝟐𝒗⃗𝟐
𝒎𝟏 𝒎𝟐

 

 

Since the system is isolated, the center of 

mass moves at a constant speed. 

�⃗�𝑮 𝒗⃗𝑮 

- At "𝒕 𝒕𝟎" :  �⃗� 𝑴�⃗�𝑮  

- At "𝒕 𝒕𝟏" : 𝑷⃗ 𝑴𝒗′⃗𝑮 

�⃗�𝑮 𝒗⃗𝑮           ⟹           
𝒎𝟏𝒗𝟏 𝒎𝟐𝒗𝟐
𝒎𝟏 𝒎𝟐

𝒎𝟏𝒗⃗𝟏 𝒎𝟐𝒗⃗𝟐
𝒎𝟏 𝒎𝟐

  

 

 𝒎𝟏�⃗�𝟏 𝒎𝟐�⃗�𝟐  𝑴�⃗�𝑮 𝒎𝟏𝒗⃗𝟏 𝒎𝟐𝒗⃗𝟐 𝑴𝒗⃗𝑮      

⟹      �⃗� 𝑷⃗ 

�⃗�𝟏 

�⃗�𝟐 

 ⃗ ⃗

𝒌 

𝑨𝟐

𝑩𝟐 

𝑨𝟏 

𝑩𝟏 

𝓒𝟏 

𝒗𝟐 

�⃗�𝟏

𝒎𝟐 

𝒎𝟏 

𝒗𝟏 

𝒗𝟐 

𝓒𝟐 



𝑷 ⃗ 

𝑷𝟐  

 

b - Equality of changes in momentum 

Let be two magnetic disks linked by a string and thrown on a blower table which 

constitutes an isolated system.  

 

 

 

 

 

 

-   1 Position before burning the string 

         The system is isolated, and the disks are still linked. 

-   2 Position where the string is burned: 

         The system is isolated and the disks begin to repel each other. 

-   3 Position after the string is burned: 

         The system is still isolated, but the disks become non-isolated and repel each other 

(interact) and change their velocities. 

-   4 Position after a moment of disk separation: 

        The system is still isolated, but the disks become free again and continue in a 

straight path.                     

  

 

 

 

 

 

 

Since the system is isolated, momentum is conserved, �⃗� 𝑷⃗ 𝑷 ⃗  

1 2 3 4 

𝑷𝟏 𝑷𝟐 
�⃗� 

Before the string is burned 𝑷𝟐 

𝑷⃗ 

𝑷𝟏 
�⃗�𝟏 

�⃗�𝟏 
∆�⃗�𝟏 

When the string is burned 

𝑷𝟏

�⃗�𝟐 

�⃗�𝟐 
∆�⃗�𝟐 

After the string is burned 



but for the disks constituting this system are interacting, which changes their momentum 

𝑷𝟏 and �⃗�𝟐. 

Since:                �⃗� 𝑷⃗     ⟹        �⃗�𝟏 �⃗�𝟐 𝑷⃗𝟏 𝑷⃗𝟐     

                                     ⟹         𝑷⃗𝟏 �⃗�𝟏 �⃗�𝟐 𝑷⃗𝟐 

The change in momentum is: 

∆�⃗� 𝑷⃗ �⃗� 

⟹      ∆�⃗�𝟏 𝑷⃗𝟏 �⃗�𝟏   and   ∆�⃗�𝟐 𝑷⃗𝟐 �⃗�𝟐 

                                       ⟹         ∆�⃗�𝟏 ∆�⃗�𝟐 

i.e., the variations in momentum are equal and opposite 

4- Newton's Laws   

 4.1:  1st Law: Law of Inertia 

In an inertial frame of reference, the momentum of a free body is conserved, i.e., the 

body (system) is in uniform rectilinear motion or at rest depending on its initial state  

4.2: 2nd Law: Fundamental Principle of Dynamics 

This law is already mentioned, i.e., any change in velocity (or change in momentum) of 

an isolated (free) system is the result of an interaction that results in a force. 

The rate of change in momentum in an interval time produces the applied force. 

�⃗� �⃗�𝒊
𝒆𝒙

𝒊

∆�⃗�
∆𝒕

 

Where:    �⃗�: 𝑁𝑒𝑡 𝑓𝑜𝑟𝑐𝑒               

�⃗�: system momentun
 

 

In the limit case with an infinitesimal change:  

�⃗� 𝐥𝐢𝐦
∆𝒕→𝟎

∆�⃗�
∆𝒕

𝒅�⃗�
𝒅𝒕

 



Note: In the case where the mass of the system is constant, the 2ndlaw becomes 

�⃗� �⃗�𝒊
𝒆𝒙

𝒊

𝒅�⃗�
𝒅𝒕

𝒅 𝒎�⃗�
𝒅𝒕

 𝒎
𝒅�⃗�
𝒅𝒕

 

⟹         �⃗� 𝒎�⃗� 

 4.3: 3rd Law:  Law of Reciprocity (Law of Action and Reaction) 

 As already pointed out, the momentum exchanging during the interaction between 

two particles in the system are the same but opposite. 

�⃗� 𝑷⃗  ⟹    �⃗�𝟏 �⃗�𝟐 𝑷⃗𝟏 𝑷⃗𝟐 

           ⟹    𝑷⃗𝟏 �⃗�𝟏 �⃗�𝟐 𝑷⃗𝟐    

  ⟹    ∆�⃗�𝟏 ∆�⃗�𝟐 

If: 

 �⃗�𝟏𝟐: is the action of particle (1) on particle (2) 

�⃗�𝟐𝟏 : is the action of particle (2) on particle (1)   

So:     �⃗�𝟏𝟐
∆�⃗�𝟐
∆𝒕

and            �⃗�𝟐𝟏
∆�⃗�𝟏
∆𝒕

Since       ∆�⃗�𝟏 ∆�⃗�𝟐 ⟹ 

at the limit:    ∆�⃗�𝟏 → 𝒅�⃗�𝟏   and     ∆�⃗�𝟐 → 𝒅�⃗�𝟐 

                    ⟹     �⃗�𝟏𝟐
𝒅𝑷𝟐
𝒅𝒕

    and       �⃗�𝟐𝟏
𝒅𝑷𝟏
𝒅𝒕

      

∆�⃗�𝟏 ∆�⃗�𝟐  ⟹   𝒅�⃗�𝟏 𝒅�⃗�𝟐 

   ⟹    �⃗�𝟐𝟏 �⃗�𝟏𝟐 

 Result:  

If one body exerts an effort on another, the latter reacts with an equal and opposite force 

  



5- Some laws of force 

      According to the fundamental law of dynamics, we have:  

�⃗� 𝒎�⃗� 𝒎�⃗�  

Where:  �⃗� �⃗� 𝒓, �⃗�, 𝒕  

 5.1- Constant force 

In this case, the net force is: 

�⃗� �⃗� �⃗�, 𝒓, 𝒕 �⃗�𝟎 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆 

 �⃗� �⃗� �⃗�, �⃗�, 𝒕 �⃗�𝟎 𝒎�⃗�      ⟹    𝒓 �⃗�𝟎
𝒎

𝒅

𝒅𝒕

𝒅�⃗�

𝒅𝒕
    

 ⟹     𝒅 𝒅�⃗�

𝒅𝒕

�⃗�𝟎
𝒎
𝒅𝒕            ⟹        𝒅 �⃗�

𝒓
𝒓𝟎

�⃗�𝟎
𝒎

𝒅𝒕
𝒕
𝒕𝟎

       

 ⟹    �⃗� 𝒓𝟎
�⃗�𝟎
𝒎

𝒕 𝒕𝟎       ⟹        �⃗� 𝒅�⃗�

𝒅𝒕
�⃗�𝟎

�⃗�𝟎
𝒎

𝒕 𝒕𝟎  

Finally:   

𝒅�⃗�
𝒓

𝒓𝟎

�⃗�𝟎
�⃗�𝟎
𝒎

𝒕 𝒕𝟎 𝒅𝒕
𝒕

𝒕𝟎

 

                                          ⟹         �⃗� 𝟏

𝟐

�⃗�𝟎
𝒎

𝒕 𝒕𝟎 𝟐 �⃗�𝟎 𝒕 𝒕𝟎 �⃗�𝟎 

It is the law of uniformly varied motion  

Example: Free Fall              �⃗�𝟎 𝒎�⃗� ⟹ �⃗� �⃗� �⃗� 

                               ⟹    �⃗� 𝒅�⃗�

𝒅𝒕
�⃗�𝟎 �⃗� 𝒕 𝒕𝟎  

                              ⟹     �⃗� 𝟏

𝟐
�⃗� 𝒕 𝒕𝟎 𝟐 �⃗�𝟎 𝒕 𝒕𝟎 �⃗�𝟎 

Since the motion is done in a straight line   

⟹     𝒓  𝟏
𝟐
𝒂 𝒕 𝒕𝟎 𝟐 𝒗𝟎 𝒕 𝒕𝟎 𝒉𝟎    

     5.2- Time-dependent force 

               �⃗� �⃗�, �⃗�, 𝒕 �⃗� 𝒕     



             �⃗� �⃗� 𝒕

𝒎

𝒅

𝒅𝒕

𝒅�⃗�

𝒅𝒕
       ⟹     𝒅 �⃗�

𝒓
𝒓𝟎

𝟏

𝒎
�⃗� 𝒕 𝒅𝒕

𝒕
𝒕𝟎

 

      ⟹   �⃗� 𝒅�⃗�

𝒅𝒕
�⃗�𝟎

𝟏

𝒎
�⃗� 𝒕 𝒅𝒕

𝒕
𝒕𝟎

        ⟹   𝒅�⃗�
𝒓
𝒓𝟎

�⃗�𝟎
𝟏

𝒎
�⃗� 𝒕 𝒅𝒕

𝒕
𝒕𝟎

𝒅𝒕
𝒕
𝒕𝟎

 

Finally:        �⃗� �⃗�𝟎
𝟏

𝒎
�⃗� 𝒕 𝒅𝒕

𝒕
𝒕𝟎

𝒅𝒕
𝒕
𝒕𝟎

�⃗�𝟎 

Example: Point Charge Q   in a Variable Electric Field  𝑬 𝒕 𝑬𝟎𝒔𝒊𝒏 𝝎𝒕 . 

We know the force of an electric charge is:    𝑭 𝑸𝑬      

 𝑭 𝑸𝑬𝟎𝒔𝒊𝒏 𝝎𝒕 ⟹ 𝑭 𝒎𝒂 𝑸𝑬𝟎𝒔𝒊𝒏 𝝎𝒕  

⟹     𝒂 𝑸𝑬𝟎𝒔𝒊𝒏 𝝎𝒕

𝒎
 

𝒓 𝒓𝟎
𝑸𝑬𝟎𝒔𝒊𝒏 𝝎𝒕

𝒎

𝒕

𝟎
𝒅𝒕

𝒕

𝟎
𝒓𝟎 𝒓𝟎 𝒗𝟎𝒕

𝑸𝑬𝟎
𝒎𝝎𝟐 𝝎𝒕 𝒔𝒊𝒏𝝎𝒕  

If we take the following initial conditions: 𝒕𝟎 𝟎 ; 𝒓𝟎 𝟎  ; 𝒗𝟎 𝟎  

𝒓
𝑸𝑬𝟎
𝒎𝝎𝟐 𝝎𝒕 𝒔𝒊𝒏𝝎𝒕  

 

     5.3- Velocity-dependent force 

�⃗� �⃗�, �⃗�, 𝒕 �⃗� �⃗� �⃗� �⃗�    

⟹    �⃗� �⃗� 𝒗

𝒎

𝒅

𝒅𝒕
�⃗�       

⟹   𝒅𝒕 𝒎 𝒅𝒗

𝑭 𝒗
         ⟹  𝒕 𝒕𝟎 𝒎 𝒅𝒗

𝑭 𝒗

𝒗
𝒗𝟎

              

⟹  𝒕 𝒕𝟎 𝒇 𝒗;𝒗𝟎  

   But:  

 𝒎𝒂 𝒎𝒅𝒗

𝒅𝒕
𝒎 𝒅𝒗

𝒅𝒓
. 𝒅𝒓
𝒅𝒕

𝒎𝒗 𝒅𝒗

𝒅𝒓
𝑭 𝒗     

           ⟹   𝒅𝒓 𝒎 𝒗𝒅𝒗

𝑭 𝒗
 

            ⟹   𝒅𝒓
𝒓
𝒓𝟎

𝒎 𝒗𝒅𝒗

𝑭 𝒗

𝒗
𝒗𝟎

         ⟹         𝒓 𝒓𝟎 𝒎 𝒗𝒅𝒗

𝑭 𝒗

𝒗
𝒗𝟎

 

 



Example: frictional force (air resistance) acting on a body in free fall: �⃗� 𝒌�⃗� 

         ∑ �⃗�𝒆𝒙 𝒎�⃗� �⃗�    ⟹    𝒎𝒈 𝒌𝒗 𝒎𝒅𝒗

𝒅𝒕
    

         ⟹    𝒅𝒗

𝒈 𝒌
𝒎
𝒗

𝒅𝒕    ⟹   𝒅𝒗

𝒈 𝒌
𝒎
𝒗

𝒅𝒕     

If we take                

 𝒈
𝒌
𝒎
𝒗 𝒖 ⟹  

𝒌
𝒎
𝒅𝒗 𝒅𝒖 

So 

𝒅𝒖
𝒖

  
𝒎
𝒌

𝒅𝒕      ⟹          𝑳𝒏 𝒖
𝒎
𝒌
𝒕 

 

If at  𝒕𝟎 𝟎,   𝒗𝟎 𝟎    ⟹   𝒗 𝜶 𝟏 𝒆 𝜷𝒕 𝜷 𝒎

𝒌
    

Where   𝜶 𝒎𝒈

𝒌
 

5.4- Position-dependent force 

�⃗� �⃗�, �⃗�, 𝒕 �⃗� �⃗�  

Generally, these types of forces are conservative, so they derive from a potential. 

𝑭
𝒅𝑽
𝒅𝒓

 

Where 𝑽 : is a potential function (potential energy) 

𝑭 𝒅𝑽

𝒅𝒓
𝒎𝒂 𝒎𝒓        ⟹              �⃗� ∘ �⃗� 𝒎𝒓 ∘ �⃗�    

                �⃗� ∘ 𝒅�⃗�
𝒅𝒕

𝟏

𝟐

𝒅 𝒎𝒓𝟐

𝒅𝒕
         

  ⟹  �⃗� ∘ 𝒅�⃗�
𝒓
𝒓𝟎

𝒅 𝟏

𝟐
𝒎𝒓𝟐

𝒓
𝒓𝟎

𝒅𝑽
𝑽
𝑽𝟎

      

⟹    𝟏
𝟐
𝒎𝒓𝟐 𝒎𝒓𝟎

𝟐 𝑽 𝒓𝟎 𝑽 𝒓  

⟹          𝟏
𝟐
𝒎𝒓𝟐 𝑽 𝒓  𝟏

𝟐
𝒎𝒓𝟎

𝟐 𝑽 𝒓𝟎 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝑬 

E: total energy (mechanical Energy) 

𝒎�⃗� 

�⃗� 

+



We have:                     

𝒅𝒓
𝒅𝒕

𝒓 ∓
𝟐
𝒎

𝑬 𝑽 𝒓            ⟹            𝒅𝒕 ∓
𝒎
𝟐

.
𝒅𝒓

𝑬 𝑽 𝒓
 

⟹         𝒕 𝒕𝟎 ∓ 𝒎

𝟐
. 𝒅𝒓

𝑬 𝑽 𝒓

𝒓
𝒓𝟎

 

      ⟹        𝒕 𝒕𝟎 ∓
𝒎

𝟐
. 𝒅𝒓

𝑬 𝑽 𝒓

𝒓
𝒓𝟎

𝑻 𝒓  

Time is a function of "𝒓", conversely, we can determine the function that describes 

the position of the mobile "𝒓 𝑹 𝒕 " 

 6- Angular momentum 

A particle of mass "𝒎" and velocity "�⃗�", has momentum "�⃗�" and is subject to forces 

given by Newton's second law. 

�⃗� ∑ �⃗�𝒊
𝒆𝒙

𝒊
𝒅𝑷

𝒅𝒕
     

⟹   �⃗� ∧ �⃗� ∑ �⃗� ∧ �⃗�𝒊
𝒆𝒙 ∑ �⃗�𝒊 �⃗�𝒊

𝒆𝒙
/𝒐𝒊𝒊 �⃗� ∧ 𝒅𝑷

𝒅𝒕
 

If we add the quantity " 𝒅�⃗�
𝒅𝒕
∧ �⃗� 𝟎" that does not modify the previous expression in any 

way, we will have: 

�⃗�𝒊/𝒐 �⃗� ∧
𝒅�⃗�
𝒅𝒕

𝒊

𝒅�⃗�
𝒅𝒕

∧ �⃗�
𝒅 �⃗� ∧ �⃗�

𝒅𝒕
 

Quantity "�⃗� ∧ �⃗�" plays an important role in rotational motion than momentum in 

translation. This amount is called angular momentum. 

 6.1- Definition 

 The angular momentum with respect to a point "O", denoted "�⃗�𝑶", of a particle of mass 

"𝒎" and velocity " �⃗� ", is the rotation that results from the effect of its momentum. 

�⃗�𝑶 𝓜 �⃗� /𝒐 𝑶𝑴 ∧ �⃗� �⃗� ∧ �⃗�. 



6.2- Relation between angular momentum and resultant forces (Newton's 

2nd Law) 

Newton's second law for a rotational motion of a body can be written as follows:  

𝓜 �⃗� /𝒐 𝓜𝒊/𝒐
𝒊

𝒅 �⃗� ∧ �⃗�
𝒅𝒕

𝒅�⃗�𝑶
𝒅𝒕

 

 

Example:  

The mass 𝒎𝟐, slides without friction, on a table, driven by 

the sphere 𝒎𝟏, with the help of a non stretched wire passing 

through the groove of a pulley of radius 𝑹 and mass 𝑴 distributed on its rim. 

Calculate  

1. The angular momentum with respect to an axis passing through the center of the  

    pulley. 

2. The acceleration of the masses 𝒎𝟏 and 𝒎𝟐 

 

 The angular momentum of 𝒎𝟐 : 

      𝑳𝟐 |�⃗�𝟐 ∧ 𝒎𝟐�⃗�𝟐| 𝒎𝟐𝒗𝑹 

 The angular momentum of 𝒎𝟏 : 

       𝑳𝟏 |�⃗�𝟏 ∧ 𝒎𝟏�⃗�𝟏| 𝒎𝟏𝒗𝑹 

 The angular momentum of 𝑴 : 

        𝑳𝟑 �⃗� ∧ 𝑴�⃗� 𝑴𝒗𝑹 

Pulley mass distributed over the rim (periphery), so the angular momentum is: 

𝑳/∆ 𝑳𝟏 𝑳𝟐 𝑳𝟑 

𝓜 �⃗� /∆

𝒊

𝒅𝑳/∆

𝒅𝒕
𝒅 𝑳𝟏 𝑳𝟐 𝑳𝟑

𝒅𝒕
𝒅 𝒎𝟏𝒗𝑹 𝒎𝟐𝒗𝑹 𝑴𝒗𝑹

𝒅𝒕
 

𝓜 �⃗�
/∆

𝒊

𝓜 𝒎𝟏�⃗⃗�
/∆

𝒎𝟏𝒈𝑹 𝒎𝟏 𝒎𝟐 𝑴 𝑹𝒂 

⟹        𝒂 𝒎𝟏𝒈

𝒎𝟏 𝒎𝟐 𝑴 
 

𝑶 

�⃗� 

𝒛 

𝒚 

𝒙 
�⃗� 𝒎𝒗 

𝒎𝟏 

�⃗� 𝑴,𝑹 𝒎𝟐 


