TABLE DES MATIÈRES

Partie I : Cadre théorique

Chapitre 2 : Formalisme de la théorie fonctionnelle de la densité (DFT) et la méthode du pseudopotentiel-ondes planes (PP-PW)

2.1. Hamiltonien d'un système physique	8
2.2. Approximation de Born Oppenheimer	9
2.3.1. Théorie de la fonctionnelle de la densité de Hohenberg-Kohn	12
2.3.2. Approche de Kohn-Sham	16
2.3.3. Approximations de l'échange-corrélation dans la DFT	19
2.3.3.1. Approximation de la densité locale (LDA)	19
2.3.3.2. Approximation du gradient généralisé (GGA)	22
2.4. Méthodes de résolution des équations de Kohn-Sham	25
2.4.1. Cycle autocohérent de résolution des équations de Kohn-Sham	27
2.4.2. L'approche d'ondes planes	28
2.4.2.1. Symétrie cristalline et théorème de Bloch	28
2.4.2.1.1. Symétrie cristalline	28
2.4.2.1.2. Théorème de Bloch	29
2.4.3. L'approche des pseudopotentiels (PP)	33
2.4.3.1. Concept des pseudopotentiels	33
2.4.3.2. Théorie des pseudopotentiels	34
2.4.3.3. Pseudopotentiel à norme conservée	36
2.4.3.4. Construction et génération d'un pseudopotentiel ab-initio	37
2.4.3.5. Pseudopotentiels ultra doux (US-PP)	39
2.5. Détails de calculs	45
2.5.1. Description du Code de calcul	45
2.5.2. Technique SCF de minimisation électronique dans CASTEP	45
2.5.3. L'optimisation de la géométrie d'équilibre	46
2.5.4. Structure de bandes et densité d'états	47
2.5.5. Calcul des charges	48
2.5.6. Calcul des paramètres optiques	49
2.5.7. Méthode de calcul des constantes élastiques	49

2.5.8. Calcul des propriétés thermodynamiques	50
2.5.9. Paramètres de calculs	52
Références bibliographies	54
Partie II : Résultats et discussions	
Chapitre 3 : Propriétés structurales, électroniques, optiques, élastiques	
et thermodynamiques des composés spinelles SnX_2O_4 (X = Mg et Zn)	
3.1. Introduction	57
3.2. Propriétés structurales	57
3.2.1. Étude des paramètres du réseau cristallin à pression nulle	57
3.2.1.1. Description structurale	57
3.2.1.2. Paramètres structuraux à pression nulle	58
3.2.1.3. Stabilité thermodynamique	59
3.2.2. Équation d'état et paramètres structuraux sous pression	60
3.3. Propriétés électroniques et liaisons chimiques	66
3.3.1.Étude de la structure électronique à pression d'équilibre	66
3.3.1.1. Analyse de la structure des bandes électroniques	66
3.3.1.2. Analyse de la densité d'états totales et partielles	69
3.3.1.3. Analyse des liaisons chimique	71
3.3.1.4. Étude de la masse effective	72
3.3.2. Étude de l'effet de la pression sur la structure électronique	73
3.3.2.1. Analyse de la structure des bandes électroniques sous pression	73
3.3.2.2. Analyse des liaisons chimiques et transfert de charge sous pression	76
3.4. Étude des propriétés optiques	76
3.4.1. Étude à pression nulle	77
3.4.1. 1. Fonction diélectrique	77
3.4.1.2. Indice de réfraction et coefficient d'extinction	79
3.4.1. 3. Réflectivité et fonction de la perte optique	82
3.4.1.4. Absorption et conductivité optique	83
3.4.2. Étude de quelques paramètres optiques sous pression	85
3.5. Propriétés élastiques et leurs propriétés relatives	87

3.5.1. Étude des propriétés élastiques à pression nulle	88
3.5.1.1. Constantes élastiques en état monocristallin	88
3.5.1.2. Étude d'anisotropie élastique	88
3.5.1.3. Stabilité mécanique	89
3.5.1.3. Calcul des vitesses d'ondes élastiques anisotropes	89
3.4.1.4. Propriétés élastiques en état polycristallin	91
3.5.1.5. Vitesses acoustique isotropes et température de Debye	94
3.5.2. Effet de la pression sur quelques paramètres élastiques	95
3.5.2.1. Effet de la pression sur les constantes élastiques	95
3.4.2.2. Étude de la stabilité mécanique sous pression	97
3.5.2.3. Effet de la pression sur les modules élastiques <i>B</i> , <i>G</i> et <i>E</i>	98
3.5.2.4. Effet de la pression sur le rapport de Poisson et la température de Debye	100
3.6. Propriétés thermodynamiques	100
3.6.1. Variation du volume sous température	101
3.6.2. Module de compressibilité	102
3.6.3. Coefficient d'expansion thermique	103
3.6.4. Capacité calorifique à volume constant C_V	104
3.6.5. Capacité calorifique à pression constante C_P	106
3.6.6. Température de Debye	107
3.7. Conclusion	108
Références Bibliographies	111