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Chapter 1
Logical Concepts

At the intersection of philosophy and mathematics, logic is a fundamental branch that enables

the determination of the truth value of propositions and the construction of mathematical

reasoning.

This document serves as an introduction to this crucial branch of mathematics. We will

define the concepts of proposition and operator, construct truth tables, explain implications,

reciprocal implications, and equivalence, before delving into the various types of reasoning used

in mathematics.

1.1 Definition

A logical proposition (or assertion) is a statement formed by combining symbols and words,

concerning mathematical objects, to which a clear truth value, either true or false, can be

assigned.

Let P be a proposition.

By definition, P satisfies the following three principles (or axioms):

• Principle of Identity: P is P

In other words, if P is true, then P is true, and if P is false, then P is false.

• Principle of Non-contradiction: P cannot be both true and false simultaneously.

• Principle of the Excluded Middle: Either P is true, or P is false.

1



Chapter 1. Logical Concepts 2

There is no other truth value in mathematical logic.

These three principles form the foundation of all mathematical reasoning. The last point

deserves a moment of attention:

Let P be the proposition ”The square of a real number is strictly positive.”

So, is it true or false?

The initial intuition might be to say, ”It depends on the number.” This is true for most

numbers, but it is false for zero (since 02 is not greater than 0).

The problem is that this response contradicts the Principle of the Excluded Middle. There-

fore, it is necessary to unambiguously assign either the value of true or the value of false to this

proposition.

Given that there is at least one number (in this case, zero) for which this proposition is

false, we will say that proposition P is false.

1.1.1 Some Examples

P 1 : ”The number of letters in the French alphabet is 10.”

The proposition P 1 is false.

P 2: ”2 + 2 = 4”

The proposition P2 is true.

P3: ”x>1”

P 3 is not a complete logical proposition because it contains a free variable x. We do

not know what x represents (a point? an integer? a vector? a star in the universe?).

Therefore, we cannot assign a truth value to the proposition P3.

P ′
3 : ”Let x be a real number, then x > 1”

The proposition P ′
3 is false. Indeed, P ′

3 is a logical proposition because we have defined

the variable x as a real number. However, it is false because, for example, 0 is a real

number and 0 < 1.

1.1. Definition
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Here, a counterexample is used to prove that the proposition P ′
3 is false.

(This type of reasoning will be further explored later).

Key Takeaways

Logical propositions can only take two values: TRUE or FALSE (hence the name bivalent

logic).

It is important to distinguish between a proposition (which is a sentence) and its truth

value (which is either TRUE or FALSE). We say that proposition p is false.

1.2 Basic Operators

Operators allow us to construct new propositions from one or more initial propositions.

Let’s start with the first (and simplest!) one, the ”NOT” operator.

1.2.1 Negation (not): Learning to Say No!

Let P be a proposition. We define a proposition ”not P” which is denoted as ”¬A” (with a

sort of small L elongated downwards) or simply as P .

If P is true, then P is false.

If P is false, then P is true.

For those who do programming, the ”NOT” operator (denoted as � in math) is often written

as ”!” in computer science.

We can establish the truth table for the negation operator based on its definition.

Definition. A truth table is a table that defines the value of a logical function for each possible

combination of inputs.

Explanation. In the first column, we list all the possible values of A (i.e., True or False). In

the second column, we place the corresponding truth value of Ā.

1.2. Basic Operators
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By convention, and to facilitate the reading of large tables, we write F for the value FALSE

and V for the value TRUE.

P P

V F

F V

It is important to understand how to construct a truth table as we will use it many times

in this course.

This connector is quite intuitive as we use it in our daily lives.

Some Examples

P : ”Algiers is the capital of Algeria” (its value is V )

P̄ : ”Algiers is not the capital of Algeria” (its value is F )

Q : ”π is an integer” (F)

Q̄ : ”π is not an integer” (V)

R : ”5 is an odd number” (V)

R̄ : ”5 is an even number” (F)

This first operator should now seem quite simple to you. In order to construct logical reasoning,

we need to use operators that link two logical propositions together (these are called binary

operators).

1.2.2 Conjunction ”and”, denoted ∧

Let P and Q be two propositions.

We define a new proposition ”P AND Q” which is denoted as ”P ∧Q”. This new proposition

is:

True when both P and Q are true.

False in all other cases.

From this definition, we can derive the truth table for the proposition ”P ∧Q”:

1.2. Basic Operators
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P Q P ∧Q

V V V

V F F

F V F

F F F

The first two columns list all possible cases for the truth values of P and Q. The last column

corresponds to the truth value of the proposition ”P ∧Q”.

It is important to understand the truth table of the ”AND” operator as it is used in many

logical reasoning.

Some Examples

Example 1: ”5 is a number less than 10 and 5 is even.”

Let P : ”5 is a number less than 10.” P is true.

Let Q: ”5 is even.” Q is false.

The proposition A is the proposition ”P ∧Q”.

According to the truth table of the ”AND” operator, we conclude that proposition A is

false.

Example 2: ”The letter A is a vowel and T is a consonant.”

By reasoning in the same way, we conclude that proposition B is true.

1.2.3 Disjunction ”or”, denoted ∨

The second binary operator we are going to study is the ”OR” operator.

Let P and Q be two propositions.

We define a new proposition ”P or Q” which is denoted as ”P ∨Q”.

This proposition is:

False when both P and Q are false.

1.2. Basic Operators
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True otherwise.

The truth table for the proposition ”P ∨Q” is as follows:

P Q P ∨Q

V V V

V F V

F V V

F F F

In other words, the proposition ”P ∨Q” is true only if either P or Q is true (or both!).

Example: ”5 is a number less than 10 OR 5 is even”

What is the truth value of this proposition?

Solution: Let P : ”5 is a number less than 10”. It is true.

Let Q: ”5 is even”. It is false.

The proposition ”P ∨Q”

According to the truth table of the ”OR” operator, the proposition in the example is true.

The binary operators ”NOT,” ”AND,” and ”OR” are the most important in mathematics

because they allow us to define all other operators.

We are now at the heart of the matter! Indeed, implications and equivalences are used in

the majority of mathematical proofs. Understanding them well allows us to avoid reasoning

errors in exams... and in life too!

1.2.4 Notion of Implication ”⇒”

Implication is a binary operator (i.e., it connects two propositions).

Let P and Q be two propositions.

We write P ⇒ Q (and read ”P implies Q”).

Multiple Wordings for the Same Concept

P ⇒ Q can also be read as:

1.2. Basic Operators
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X If P , then Q

X It is sufficient for P to have Q

X It is necessary for Q to have P

X Q is required for P

Hence, every time you hear one of these wordings in everyday language, it is actually an

implication.

Example:

”I am joyful if he is here” corresponds to ”He is here” ⇒ ”I am joyful”

”It is raining” ⇒ ”The ground is wet”. If it is raining, then the ground is wet. It means

that it is impossible for it to rain and the ground not to be wet.

”If I am tired, I will rest.” This means that ”I am tired” ⇒ ”I will rest.”

Let P and Q be two propositions.

We define a new proposition ”P ⇒ Q” (read as ”P implies Q”).

This proposition is:

False when P is true and Q is false.

True otherwise.

The truth table for the proposition ”P ⇒ Q” is as follows:

P Q P ⇒ Q

V V V

V F F

F V V

F F V

In other words, the proposition ”P ⇒ Q” is false only when P is true and Q is false.

1.2. Basic Operators
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1.2.5 Reciprocal Implication ”
”

Here’s one more thing. P and Q are still two propositions. The proposition Q ⇒ P is called

the reciprocal implication of the proposition P ⇒ Q. Remember this expression, we will use it

again shortly!

1.2.6 Equivalence ”⇔”

The symbol for equivalence is ⇔, a double arrow that resembles the implication arrow discussed

earlier.

Let P and Q be two propositions.

We define a new proposition ”P ⇔ Q” which is read as ”P is equivalent to Q”.

Alternatively, it can be read as ”if and only if Q”.

It is also understood as ”the implication P ⇒ Q and the reciprocal implication Q ⇒ P”.

This proposition has the following truth conditions:

True when P and Q have the same truth value (both true or both false).

False otherwise.

P Q P ⇔ Q

V V V

V F F

F V F

F F V

When proving an equivalence, the double implication rule is often employed:

X First, we establish one direction of implication,

X then we prove the reciprocal implication.

1.2. Basic Operators
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Avoid Confusion!

Do not confuse implications and equivalences.

Whenever determining the truth value of an equivalence, be sure to check the truth value

of the double implication.

1.2.7 Properties

1. (P1 ⇔ P2) ⇔ (P1 ⇒ P2) ∧ (P2 ⇒ P1)

2. P̄ 1 ⇔ P1

3. P1 ∨ P1 ⇔ P1

4. P1 ∨ P1 ⇔ P1

5. P1 ∨ P2 ⇔ P1 ∧ P2

6. P1 ∧ P2 ⇔ P1 ∨ P2

7. P1 ∧ (P2 ∧ P3) ⇔ (P1 ∧ P2) ∧ P3

8. P1 ∨ (P2 ∨ P3) ⇔ (P1 ∨ P2) ∨ P3

9. P1 ∧ (P2 ∨ P3) ⇔ (P1 ∧ P2) ∨ (P1 ∧ P3)

10. P1 ∨ (P2 ∧ P3) ⇔ (P1 ∨ P2) ∧ (P1 ∨ P3)

11. (P1 ⇒ P2) ⇔ P1 ∧ P2

12. P1 ⇒ P2 ⇔ P2 ⇒ P1 ”Law of contrapositive”

Proof

X Let’s prove property 1 :

(1)︷ ︸︸ ︷
(P1 ⇔ P2)

(2)︷ ︸︸ ︷
(P1 ⇒ P2) ∧ (P2 ⇒ P1)

We use the truth table.

1.2. Basic Operators
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P1 P2 P1 ⇒ P2 P2 ⇒ P1 (1): P1 ⇔ P2 (2) : (P1 ⇒ P2) ∧ (P2 ⇒ P1) (1) ⇔ (2)

V V V V V V V

V F F V F F V

F V V F F F V

F F V V V V V

1.3 Quantifiers

Let P be the proposition ”8 is an even number”. We can replace the number 8 with any other

number to form new propositions. For example, we can write the proposition P (6) as ”6 is an

even number”, which is true, or the proposition P (3) as ”3 is an even number”, which is false.

We can then write the general form of this proposition as

P (x): ”x is an even number”, where x is called the argument of the proposition P . The

truth value of the proposition P (x) depends on x.

The problem is that I don’t know what x is in the proposition P (x). In our example, x is a

number, but it needs to be specified because otherwise our proposition doesn’t make sense (for

example, P (ABC): ”Triangle ABC is an even number” doesn’t make sense).

Therefore, we have invented quantifiers to indicate that we take our x from a determined

set.

1.3.1 The Universal Quantifier ”∀”

We write ”for all x element of E, the proposition P (x) is true” as ”∀x in E, P (x).”

Hold on! What are all these symbols?!

Stay calm, stay calm. You quickly get used to reading these mathematical symbols.

X The symbol ∀ (a reversed A) is read as ”for all” or ”for every.” It is a quantifier that indicates

that the property is true for all objects satisfying the given condition.

X x is a mathematical object (a number, a point, a vector...).

1.3. Quantifiers
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X The symbol ∈ means ”belongs to” or ”is an element of.” It is an operator used to indicate

that x belongs to a specified set.

The notation ∀ comes from the German word ”Alle,” which means ”all” in english.

Example

Translate the proposition into its equivalent mathematical form (using the appropriate

quantifier and logical connector).

P : ”For all x real number, if x is greater than or equal to 5, then x2 is greater than or

equal to 25.”

Correction

The statement ”it suffices for P to be true for Q to be true” is translated as P ⇒ Q. This

equivalence is true for all x real numbers, so we use the quantifier ∀.

P (x) : ∀︸︷︷︸
Quantifier

x ∈ R, x ≥ 5 ⇒︸︷︷︸
Connector

x2 ≥ 25

1.3.2 The Existential Quantifier ”∃”

The proposition Q: ”All students are present.”

Try to determine Q (in a english sentence).

Watch out! There’s a trap!

The negation of ”All students are present” is not ”All students are absent”! In fact, if

even one student is absent, the proposition Q becomes false.

We will say that the opposite proposition of Q is ”At least one student is absent.”

We need another quantifier to translate ”there exists at least one.” We could use the negation

of the universal quantifier ∀, but to simplify the notation, we use the symbol ∃ (a reversed E).
Yes, ∃ comes from the German word ”Existieren,” which means ”to exist” in english.

∃ is used in the same way as ∀.

1.3. Quantifiers
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Example

P (x) : ∃x ∈ R such that x2 = 1

The proposition P is read as ”There exists at least one real number x whose square is

equal to 1.”

See how convenient mathematical notation is!

1.3.3 Multiple Quantifiers

Multiple quantifiers can be used in a proposition, and in such cases, the order of the quantifiers

is important.

Example Translate into English the propositions P and Q and determine their truth value:

P (x) : ∀x ∈ N,∃y ∈ N : x < y (where N denotes the set of natural numbers)

Q(x) : ∃x ∈ N,∀y ∈ N : x < y

Correction The proposition P means ”For every natural number x, there exists a natural

number y greater than x.” Proposition P is true.

The proposition Q means ”There exists a natural number x that is less than every natural

number y.” Proposition Q is false. To prove this, we can use a counterexample. There is

no natural number that is less than 0.
These two propositions, despite their similar appearance, have absolutely nothing to do

with each other!

Remember that changing the nature or order of quantifiers changes the meaning of the

proposition.

1.3.4 Properties

1. (∀xP (x)) ⇔ (∃xP (x))

2. (∃xP (x)) ⇔ (∀xP (x))

1.3. Quantifiers
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Example Find the negation of the inclusion proposition ”A ⊂ B”.

Correction The proposition A ⊂ B is written as ”∀x;x ∈ A ⇒ x ∈ B”.

So, the negation of A ⊂ B is written as A ⊂ B or A ̸⊂ B. It is equivalent to finding

∀x;x ∈ A ⇒ x ∈ B. We use property 1:

∀x;x ∈ A ⇒ x ∈ B ⇔ ∃x;x ∈ A ⇒ x ∈ B (using (P1 ⇒ P2) ⇔ P1 ∧ P2)

∃x;x ∈ A ⇒ x ∈ B ⇔ ∃x;x ∈ A and x /∈ B

In summary:

A ⊂ B ⇔ ∀x;x ∈ A ⇒ x ∈ B

A ̸⊂ B ⇔ ∃x;x ∈ A and x /∈ B

1.4 Types of Reasoning

Now we have all the tools to carry out complete mathematical reasoning.

Reasoning allows us to establish a proposition based on one or more initial propositions

that are accepted (or previously proven) by following the rules of logic. In this final part, we

will detail three ”types” of reasoning, three ”methods” to prove a proposition:

• Finding an example or a counterexample

• Proving the contrapositive

• Reasoning by contradiction

These different forms of reasoning should be applied in specific cases.

1.4.1 Example and Counterexample

To show that a proposition of the form ”there exists x ∈ E, such that P (x) is true”, we find

an x for which P (x) is true. This is providing an example.

Example: P : ”There exist (x, y, z) ∈ N3 such that x2 = y2 + z2”. Show that P is true.

1.4. Types of Reasoning
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Solution: Let x = 5, y = 4, and z = 3.

x, y, and z satisfy x2 = y2 + z2 (since 25 = 16 + 9).

Therefore, proposition P is true.

To show that a proposition of the form ”∀x ∈ E, P (x) is false”, we show that its negation

”∃x ∈ E,¬P (x) is true”. This is providing a counterexample.

Example: Let P be the proposition ”∀n ∈ N, n2 + 1 is a prime number”.

Prove that P is false.

Solution: To prove that P is false, we will show that its negation ¬P is true.

¬P is the proposition ”∃n ∈ N such that n2 + 1 is not a prime number”.

Let n = 3. Then n2 + 1 = 10.

10 is not a prime number.

n is a counterexample of proposition P .

Therefore, proposition P is false.

n is an example of the proposition ¬P.

n is a counterexample of the proposition P.

Thus, proposition P is false.

1.4.2 Contrapositive

I hope you remember the truth table for implication! No? Well, try to recall it (in your mind,

if possible, or refer to the previous section) before moving on to the next exercise.

Exercise: Let P and Q be two propositions. Show that (P ⇒ Q) is equivalent to (¬Q ⇒ ¬P ).

Solution: You guessed it right! We will use a truth table to justify this equivalence.

1.4. Types of Reasoning
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P Q ¬P ¬Q P ⇒ Q ¬Q ⇒ ¬P (P ⇒ Q) ⇔ (¬Q ⇒ ¬P )

T T F F T T T

T F F T F F T

F T T F T T T

F F T T T T T

Therefore, (P ⇒ Q)
equivalent to︷︸︸︷⇔ (¬Q ⇒ ¬P ).

1.4.2.1 Definition

The proposition (¬Q ⇒ ¬P ) is called the contrapositive of the proposition (P ⇒ Q).

A proposition and its contrapositive are equivalent, which means that one can be proven to

prove the other. For example, to prove (P ⇒ Q), we can use contrapositive reasoning to prove

(¬Q ⇒ ¬P ).

1.4.2.2 Example and Exercise

Example: To prove ”If it rains, then the ground is wet”, I will prove ”If the ground is not wet,

then it does not rain.”

Exercise: Prove the proposition P : ∀n ∈ N, if n2 is even, then n is even.

Hint 1: Let n be a natural number. There are two cases:

X n is even: ∃n ∈ N : n = 2k where k ∈ N.

X n is odd: ∃n ∈ N : n = 2k + 1 where k ∈ N.

Solution: We will prove this by contrapositive reasoning. Instead of proving that if n2 is even,

then n is even, we will prove that if n is odd, then n2 is odd.

Assume n is odd: ∃k ∈ N : n = 2k + 1 where k ∈ N (as given in the hint).

So,

n2 = (2k + 1)2 = 4k2 + 4k + 1 (Squaring both sides)

1.4. Types of Reasoning
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Therefore, n2 = 2(2k2 + k) + 1 (Factorizing) (k is a natural number, so k2 + k is also a

natural number).

Hence, n2 = 2h+ 1, where h = (2k2 + k) ∈ N, and it is odd.

We have shown that if n is odd, then n2 is odd. Thus, ∀n ∈ N, if n2 is even ⇒ n is even.

This completes the proof.

1.4.3 Reasoning by Contradiction

Why introduce absurdity in logical reasoning?!

It may sound strange, but rest assured, reasoning by contradiction (contrary to its name)

is not absurd at all. It is, in fact, very logical!

This reasoning is based on the principle of excluded middle, which states that if a proposition

is not false, then it is true. For example, imagine you know that something is true, but you don’t

know how to prove it. By reasoning by contradiction, you start by assuming that this thing

is false. Then, by following the rules of logic, you deduce the consequences of this assumption

and arrive at an irrefutable contradiction (like 1 = 2 or 2 and 4 are coprime). You conclude

that your initial assumption must be false, i.e., the thing you wanted to prove is not false, so

it must be true.∗

1.4.3.1 Definition

Reasoning by contradiction is a form of logical reasoning. It consists of:

X either proving that a proposition P is true by proving the absurdity of the proposition ¬P ,

X or proving that a proposition P is false by logically deducing absurd consequences.

Now, let’s see reasoning by contradiction in all its glory through one of its classic examples:

the irrationality of
√
2.

1.4.3.2 Example

We want to prove that proposition P is true.

1.4. Types of Reasoning
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P : ”
√
2 /∈ Q”, ”

√
2 is an irrational number”

We reason by contradiction. So, we will show that the proposition ¬P is absurd.

¬P is translated as ”
√
2 ∈ Q” or ”

√
2 is a rational number”.

If
√
2 ∈ Q, it can be expressed as a fraction, i.e., there exist p ∈ Z and q ∈ Z such that

√
2 = p

q
, where p and q are coprime.

We simplify this equation:

2 =
p2

q2
(Squared both sides)

So,2q2 = p2 (By multiplying both sides by q2).

Therefore, p2 is even, and thus, p is even (proved by contrapositive in the previous section).

Therefore, ∃k ∈ Z such that p = 2k (as seen before).

By substituting into the previous equation, we get: 2q2 = (2k)2 ⇒ q2 = (2k)2 = 4k2. So, q2

is even, and thus, q is even, which is impossible since p and q are coprime.

This leads to a contradiction.

Therefore, the proposition ¬P is false.

Thus,
√
2 is an irrational number.

In the case where the proposition to be proven is of the form P ⇒ Q, reasoning by con-

tradiction consists of proving that the proposition P ∧ ¬Q is false. To do this, we assume

that P is true and Q is false, deduce the consequences logically, and show that we arrive at a

contradiction.

1.5 Corrected Exercises

Exercise 1. Among the following expressions, which ones are propositions? For propositions,

indicate whether they are true or false.

(a) 2 + 3 = 5

(b) ∀n ∈ N, n+ 2 = 4

(c) ∃n ∈ N n+ 2 = 3

1.5. Corrected Exercises
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(d) This exercise is difficult

(e) x ∈ N

Solution.

a. This expression is a true proposition.

b. This expression is a false proposition because for n = 1 ∈ N, we have n+ 2 = 3 ̸= 4.

c. This expression is a true proposition because there exists an element n = 1 ∈ N such that

n+ 2 = 3.

d. This expression is not a proposition because we cannot assign a truth value to it.

e. This expression is not a proposition because we don’t know the nature of the element x, so

we cannot assign a truth value to it.

Exercise 2. In the Mathematics and Computer Science Bachelor’s program, a student who is

admitted to the second year must choose between Mathematics or Computer Science but

not both simultaneously. This is the exclusive OR (∨). Provide the truth table.

Solution. Here is the truth table for the ”exclusive OR.” It is different from the truth table

for the disjunction (∨) because, in this particular case, the ”exclusive OR” is true only

when the two assertions P and Q are different. Thus, one can choose both at the same

time.

P Q P∨Q

1 0 1

0 1 1

1 1 0

0 0 0

Exercise 3. In which cases are the following propositions true?

(a) (P =⇒ Q) ∧ (P̄ =⇒ Q)

1.5. Corrected Exercises
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(b) P ∧ (Q ∧R) ⇔ Q

(c) ((P ∨Q) =⇒ R) ⇐⇒ (P =⇒ R) ∧ (Q =⇒ R).

Solution.

a. (P =⇒ Q) ∧ (P̄ =⇒ Q)

P Q P̄ P =⇒ Q P̄ =⇒ Q (P =⇒ Q) ∧ (P̄ =⇒ Q)

1 0 0 0 1 0

0 1 1 1 1 1

1 1 0 1 1 1

0 0 1 1 0 0

b. P ∧ (Q ∧R) ⇔ Q (Homework for students)

c. ((P ∨Q) =⇒ R)︸ ︷︷ ︸
(1)

⇐⇒ (P =⇒ R) ∧ (Q =⇒ R)︸ ︷︷ ︸
(2)

P Q R P ∨Q P =⇒ R Q =⇒ R (1) (2) (1) ⇔ (2)

1 1 1 1 1 1 1 1 1

1 1 0 1 0 0 0 0 1

1 0 1 1 1 1 1 1 1

1 0 0 1 0 1 0 0 1

0 0 1 0 1 1 1 1 1

0 1 0 1 1 0 0 0 1

0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1

Exercise 4. Consider the following four propositions:

a- ∃x ∈ R,∀y ∈ R x+ y > 0

b- ∀x ∈ R,∃y ∈ R x+ y > 0

1.5. Corrected Exercises
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c- ∀x ∈ R,∀y ∈ R x+ y > 0

d- ∃x ∈ R,∀y ∈ R y2 > x.

Are these propositions true or false? Provide their negations.

Solution.

a. ∃x ∈ R,∀y ∈ R x+ y > 0

The assertion (a) is false: Can we find a real number x such that for every real number y,

their sum is always positive? It is not always true, for example, we can take y = −(x+1).

We would have x+ y = x− x− 1 = −1 < 0.

The negation of assertion (a) is: ∀x ∈ R,∃y ∈ R; x+ y ≤ 0, which is a true statement.

b. ∀x ∈ R,∃y ∈ R x+ y > 0.

The assertion (b) is true: Indeed, for every real number x, there exists a y dependent on

x. Let’s take, for example, y = −x+ 1, which implies that x+ y = x− x+ 1 = 1 > 0.

The negation of assertion (b) is: ∃x ∈ R,∀y ∈ R x+ y ≥ 0, which is a false statement.

c. The assertion (c) is false. We just need to find an x and a y that do not satisfy (c). For

example, let x < 0 and y < 0.

The negation of this assertion is: ∃x ∈ R, ∃y ∈ Rx+ y ≤ 0, which is a true statement.

d. Homework for the students.

Exercise 5.

1. Using proof by contradiction, prove that

(a)
√
2 is not a rational number.

(b) If n ∈ N∗, then n2 + 1 is not a perfect square.

2. Prove by induction

(a) ∀n ∈ N∗1 + 22 + 32 + . . . . . . . . .+ n2 = n(n+1)(2n+1)
6

1.5. Corrected Exercises
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(b) ∀n ∈ N2n > n.

3. Using proof by contrapositive, prove that if the integer (n2 − 1) is not divisible by 8, then

n is even.

Solution.

1. Using proof by contradiction, prove that

(a)
√
2 is not a rational number.

Assume, by contradiction, that
√
2 is rational: that is, there exist positive integers a and

b such that
√
2 =

a

b
⇒ a =

√
2b ⇒ 2b2 = a2.

Then, we deduce that a2 is even, which implies that a is also even (see the example from

the course). In other words, there exists a positive integer k such that

a2 = 4k2 = 2b2 ⇒ b2 = 2k2.

Thus, b2 is even, which means that b is also even. Therefore, we can simplify the fraction
a
b
by 2, contradicting the assumption that a and b are coprime (i.e., the fraction cannot

be further simplified).

(b) Homework.

2. Prove by induction

(a) ∀n ∈ N∗1 + 22 + 32 + . . . . . . . . .+ n2 = n(n+1)(2n+1)
6

.

1- Verify if this proposition holds for n = 1 and 2.

For n = 1, we have 1(1+1)(2+1)
6

= 1, which is true.

For n = 2, we have 2(2+1)(4+1)
6

= 1 + 22 = 5, which is true.

2- Assume that this proposition is true for n, i.e., (P (n) is true). Show that the

proposition (P (n+ 1) is true).

1.5. Corrected Exercises
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3- Based on 2, we have

P (n) ⇔ ∀n ∈ N∗1 + 22 + 32 + . . . . . . . . .+ n2 =
n(n+ 1)(2n+ 1)

6
.

Then, we have

1 + 22 + 32 + . . . . . . . . .+ n2︸ ︷︷ ︸
P (n)

+(n+ 1)2

=
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
n(n+ 1)(2n+ 1)

6
+

6(n+ 1)2

6

=(n+ 1)

[
n(2n+ 1) + 6(n+ 1)

6

]
= (n+ 1)

[
2n2 + 7n+ 6

6

]
=
(n+ 1)(n+ 2)(2n+ 3)

6
= P (n+ 1).

b. ∀n ∈ N2n > n. Homework.

3. Using proof by contrapositive, prove that if the integer (n2 − 1) is not divisible by 8,

then n is even.

Let P :
(
n2 − 1

)
is not divisible by 8︸ ︷︷ ︸
P

⇒

Now, we need to use the contrapositive

Q : n is odd: that is, ∃ an integer k such that n = 2k + 1︸ ︷︷ ︸
Q̄

⇒

(
n2 − 1

)
is divisible by 8 : that is, ∃1︸ ︷︷ ︸

P̄

Assume that n is odd, so there exists an integer k such that n = 2k + 1, which

implies that n2 = (2k + 1)2.

Then,
n2 − 1 = (2k + 1)2 − 1

= 4k2 + 4k.

Now, we have two cases: k is even or k is odd.

1- If we assume that k is even, then there exists an integer k′ such that k = 2k′,

and we have
n2 − 1 = 4k2 + 4k

= 4 (2k′)
2
+ 4 (2k′)

= 8k′2 + 8k′ = 8
(
k′2 + k′) = 8p.
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2- If k is odd, then there exists an integer k′′ such that k = 2k′′ + 1, and we have:

n2 − 1 = 4 (2k′′ + 1)
2
+ 4 (2k′′ + 1)

= 4 (2k′′)
2
+ 4 (2k′′) + 4 + 4 (2k′′) + 4

= 8k′′2 + 8k′′ + 8k′′ + 8

= 8
(
k′′2 + 2k′′ + 1

)
= 8p′.

Thus, (n2 − 1) is divisible by 8.

1.6 Unsolved Exercises

Exercise 1. Let P , Q, and R be three propositions. Prove the following properties:

1. (P ⇒ Q) ⇔ (¬Q ⇒ ¬P )

2. (P ⇔ Q) ⇔ ((¬P ∧ ¬Q) ∨ (¬Q ∧ ¬P ))

3. (P ∧ (¬Q ∧ ¬R)) ⇔ ((P ∧ ¬Q) ∨ (P ∧ ¬R))

Exercise 2. Rewrite the following sentences using quantifiers:

1. f is a constant function on R.

2. The graph of the function f intersects the line y = x.

3. The equation sin x = x has one and only one solution in R.

4. For every integer, there exists an integer that is strictly greater.

Exercise 3. Negate the following formulas:

1. 0 ≤ x ≤ 25 ⇒
√
x ≤ 5.

2. 0 < x ≤ 1 or 2 ≤ y < 3.

3. ∃x ∈ R | cos(x) = 0 and ∃x ∈ R | sin(x) = 0.

4. ∀ϵ > 0,∃α > 0 | ∀x ∈ Df , (|x− x0| < α ⇒ |f(x)− f (x0)| ≥ ϵ).

Exercise 4. Are the following assertions true or false?

1.6. Unsolved Exercises
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(a) ∃x ∈ R | ∀y ∈ R : x+ y > 0;

(b) ∀x ∈ R : ∃y ∈ R | x+ y > 0;

(c) ∀x ∈ R : ∀y ∈ R : x+ y > 0;

(d) ∃x ∈ R | ∀y ∈ R : y2 > x.

Exercise 5. Prove the following formulas:

1. |x| < 0.1 ⇒ |2x2 − x| < 0.12 (Direct proof).

2. For any integer n, n2 + 3n is even (Proof by cases).

3. ∀n ∈ N : n2 is even ⇒ n is even (Contrapositive).

4.
√
2 is irrational (Proof by contradiction).

5. ∀a, b ∈ R+ : a
1+b

= b
1+a

⇒ a = b (Proof by contradiction).

6. ∀n ∈ N : 2n > n (Proof by induction).

7. For real numbers a, b, c, and d such that a ≤ b and c ≤ d, is it always true that

ac ≤ bd? (Counterexample).

Exercise 6.

1. Let a and b be two nonzero natural numbers. Prove that

((∃k ∈ N | b = ka) and (∃k ∈ N | a = kb)) ⇒ (a = b)

2. Prove by induction the following equalities:

n∑
k=1

k =
n(n+ 1)

2

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

n∑
k=1

k3 =

(
n(n+ 1)

2

)2

3. Let n ∈ N. Prove by contradiction that n2 + 1 is not a perfect square.

1.6. Unsolved Exercises
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Sets and Functions

2.1 Definitions and Examples

2.1.1 Sets and Elements

* Intuitively, a set is a collection of objects. The objects in a set are called elements of that

set, and an element a belongs to E (written as a ∈ E) or does not belong to E (written

as a /∈ E).

* An empty set, denoted by ∅, is a set that does not contain any elements.

* A set E = {a}, consisting of a single element, is called a singleton.

* Let E be a set. If a set A is contained in E, we say that A is a subset or a sub-set of E. The

elements of E that do not belong to set A form a new set called the complement of A in

E, denoted as Ac or CE(A). Formally, CE(A) = {x ∈ E | x /∈ A}.

2.1.2 Set Operations

Given two sets A and B, we can construct other sets.

* We say that A is included in B (A is a subset of B or a part of B) and we denote it as A ⊂ B

if every element of A is also an element of B.

A ⊂ B ⇔ (∀x ∈ A ⇒ x ∈ B)

25
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* We say that A and B are equal if and only if A ⊂ B and B ⊂ A.

* Given two sets A and B, the union of A and B, denoted as A ∪B (read as ”A union B”), is

the set of elements that belong to either A or B.

A ∪B = {x | x ∈ A ∨ x ∈ B}

* Given two sets A and B, the intersection of A and B, denoted as A∩B (read as ”A intersect

B”), is the set of elements that belong to both A and B.

A ∩B = {x | x ∈ A ∧ x ∈ B}

* We say that A and B are disjoint sets if A ∩B = ∅.

Example In N (the set of natural numbers), if we denote by D(n) the set of divisors of the

natural number n, we have

D(24) ∪ D(16) = {1, 2, 3, 4, 6, 8, 12, 16, 24} and D(24) ∩ D(16) = {1, 2, 3, 4, 8}

2.1.3 Properties and Rules of Calculations

Here are some properties and rules of calculations on sets.

Proposition 2.1 Let A,B,C be subsets of a set E. Then:

1. A ∪ A = A, A ∩ A = A.

2. A ∪ ∅ = A, A ∩ ∅ = ∅.

3. A ∪B = B ∪ A, A ∩B = B ∩ A (Commutativity).

4. A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C (Associativity).

5. A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C), A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C) (Distributivity).

2.1. Definitions and Examples
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Proof. We prove that A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

Let x ∈ A ∪ (B ∩ C) ⇔ x ∈ A or x ∈ (B ∩ C)

⇔ x ∈ A or (x ∈ B and x ∈ C)

⇔ (x ∈ A or x ∈ B) and (x ∈ A or x ∈ C)

⇔ (x ∈ A ∪B) and (x ∈ A ∪ C)

⇔ x ∈ (A ∪B) ∩ (A ∪ C).

�
Definition 2.1 (Power Set) Let E be a set. We admit the existence of a set denoted by

P(E) such that the following equivalence holds:

X ∈ P(E) ⇔ X ⊂ E

P(E) is called the power set of E.

Remark 2.1 If card(E) = n, then card(P(E)) = 2n.

Example If E = {1, 2, 3}, then card(P(E)) = 23 = 8 and

P(E) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Definition 2.2 (Set Difference) Let A,B be two subsets of E.

1. The difference of A and B, denoted A \B, consists of elements that are in A but not

in B, i.e., A \B = A ∩ CE(B).

2. The symmetric difference of A and B, denoted A△B, is the set (A \ B) ∪ (B \ A) or

(A ∪B) \ (A ∩B).

Example 1. In N, we have D(24) \ D(16) = {3, 6, 12, 24} and D(16) \ D(24) = {16}. Also,

D(24)△D(24) = {6, 12, 16, 24}.

2. The set R \Q contains irrational numbers like π.

Remark 2.2 When A ⊂ E, we have E \ A = CE(A).

2.1. Definitions and Examples
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Proposition 2.2 Let A,B be two subsets of E. Then:

1. A \ A = ∅.

2. A \ ∅ = A.

3. A ∪ CE(A) = E.

4. A ∩ CE(A) = ∅.

5. CE(CE(A)) = A.

6. CE(A ∩B) = CE(A) ∪ CE(B).

7. CE(A ∪B) = CE(A) ∩ CE(B).

Proof. We prove that CE(A ∩B) = CE(A) ∪ CE(B).

Let x ∈ CE(A ∩B) ⇔ x /∈ (A ∩B)

⇔ x ∈ (A ∩B)

⇔ x ∈ A and x ∈ B

⇔ x ∈ A or x ∈ B

⇔ x /∈ A or x /∈ B

⇔ x ∈ CE(A) ∪ CE(B).

�
Definition 2.3 (Partition) Let E be a set. A partition of E is a set {Ei} of subsets of E

that satisfies the following two conditions:

1. E =
∪

i∈I Ei

2. Ei ∩ Ej = ∅ for all i ̸= j ∈ I.

Example Let A be a subset of E. Then the set {A,CE(A)} is a partition of E.

Definition 2.4 (Cartesian Product) Let A,B be two sets. The Cartesian product, denoted

A×B, is the set of pairs (x, y) where x ∈ A and y ∈ B.

A×B = {(x, y) | x ∈ A and y ∈ B}
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Example

1. R2 = R× R = {(x, y) | x, y ∈ R}.

2. Let A = {1, 2, 3} and B = {a, b}. Then A×B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}.

Generalization If we consider setsA1, A2, . . . , An, we can similarly define n-tuples (x1, x2, . . . , xn)

where x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An.

A1 × A2 × . . .× An = {(x1, x2, . . . , xn) | x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An} .

Proposition 2.3 Let A,B,C,D be four subsets of E. Then:

1. (A× C) ∪ (B × C) = (A ∪B)× C.

2. (A× C) ∪ (A×D) = A× (C ∪D).

3. (A× C) ∩ (B ×D) = (A ∩B)× (C ∩D).

Proof. We prove that (A× C) ∪ (B × C) = (A ∪B)× C.

(A× C) ∪ (B × C) = {(x, y) | (x, y) ∈ A× C or (x, y) ∈ B × C}

= {(x, y) | (x ∈ A and y ∈ C) or (x ∈ B and y ∈ C)}

= {(x, y) | (x ∈ A or x ∈ B) and y ∈ C}

= (A ∪B)× C.

�
2.1.4 Definitions and Examples

Definition 2.5 Let E,F be two sets. We say that f is a function from E to F if for every

element x ∈ E, there exists a unique element y ∈ F such that f(x) = y, and we write

f : E −→ F or E
f−→ F

* The set E is called the domain and F is called the codomain. The element x is called

the pre-image and y is called the image of x under f .
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* We denote by F(E,F ) the set of all functions from E to F .

Example

1.
f : {1, 2, 3} −→ {2, 4, 5}

x 7→ x2
is not a function.

2. The identity function
f : E −→ E

x 7→ x
is a function and will be very useful in the

following.

3. The projections
Px : E × F −→ E

(x, y) 7→ Px (x, y) = x

Py : E × F −→ F

(x, y) 7→ Py (x, y) = y

are also functions.

Definition 2.6 (Restrictions and Extensions) Let f be a function from E to F .

1. The restriction of f to a subset A ⊂ E is the function denoted f|A : A −→ F defined

by

f|A = f(x), ∀x ∈ A

2. The extension of f to a set E ′ containing E is any function g from E ′ to F whose

restriction is f .

Example If f is the identity function from R+ to itself, it has infinitely many extensions to

R, among which:

1. The identity function on R.

2. The absolute value function from R to itself.

3. The function h defined by h(x) = 1
2
(x+ |x|), which is identically zero on R−.

2.1.5 Direct Image and Inverse Image

Definition 2.7 Let E,F be two sets.

1. For A ⊂ E and f : E −→ F , the direct image of A under f is a subset of F defined by

f(A) = {f(x) | x ∈ A}
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2. For B ⊂ F and f : E −→ F , the inverse image of B under f is a subset of E defined

by

f−1(B) = {x | f(x) ∈ B}

Example Let f be a given function:
f : N −→ N

n 7→ 2n+ 1

1. Let A = {0, 1, 2}, then f(A) = {f(n) | n ∈ A} = {f(0), f(1), f(2)} = {1, 3, 5}.

2. Let B = {5}, then f−1(B) = {n ∈ N | f(n) ∈ B} = {n ∈ N | f(n) = 5} = {2}.

Proposition 2.4 Let f : E −→ F be a function, A1, A2 be two subsets of E, and B1, B2 be

two subsets of F . Then

(1) f (A1 ∪ A2) = f (A1) ∪ f (A2) , f (A1 ∩ A2) ⊂ f (A1) ∩ f (A2);

(2) If A1 ⊂ A2, then f (A1) ⊂ f (A2);

(3) A1 ⊂ f−1 (f (A1));

(4) f−1 (B1 ∪B2) = f−1 (B1) ∪ f−1 (B2) , f−1 (B1 ∩B2) = f−1 (B1) ∩ f−1 (B2);

(5) If B1 ⊂ B2, then f−1 (B1) ⊂ f−1 (B2);

(6) f (f−1 (B1)) ⊂ B1.

Proof: We prove property (2).

Let y ∈ f (A1), then ∃x ∈ A1 | f(x) = y, and since A1 ⊂ A2, there exists x ∈ A2 | f(x) =

y. Therefore, y ∈ f (A2).

�

Definition 2.8 (Composition) Let E,F,G be three sets, and f, g be two functions such that

E
f−→ F

g−→ G

Then we can obtain a function from E to G, denoted by h = g ◦ f , and called the

composition of f and g, defined as

∀x ∈ E, h(x) = g ◦ f(x) = g[f(x)]
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Remark 2.3 In general, f ◦ g ̸= g ◦ f . This is illustrated by real functions

f(x) = x2, g(x) = 2x+ 1

f ◦ g(x) = f [g(x)] = f(2x+ 1) = (2x+ 1)2, g ◦ f(x) = g[f(x)] = g
(
x2
)
= 2x2 + 1.

Therefore, f ◦ g ̸= g ◦ f .

* However, function composition is associative: h ◦ (g ◦ f) = (h ◦ g) ◦ f .

2.1.6 Injection, Surjection, Bijection

Definition 2.9 Let E,F be two sets and f : E −→ F be a function.

1. f is injective if and only if

∀x, x′ ∈ E, f(x) = f (x′) ⇒ x = x′

2. f is surjective if and only if

∀y ∈ F, ∃x ∈ E | y = f(x)

* Another formulation: f is surjective if and only if f(E) = F .

3. f is bijective if f is both injective and surjective. In other words,

∀y ∈ F, ∃!x ∈ E | y = f(x)

Remark 2.4 If f is bijective, and only in this case, to each y ∈ F is associated a unique x ∈ E.

We can define a bijective function, denoted as

f−1 : F −→ E

and called the inverse function of f . We have the equivalence

y = f(x) ⇔ x = f−1(y)

Example Let f : N −→ Q be defined by f(x) = 1
1+x

. Let’s show that f is injective. Assume

x, x′ ∈ N such that f(x) = f (x′). Then 1
1+x

= 1
1+x′ , which implies 1 + x = 1 + x′ and

thus x = x′. Therefore, f is injective.
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However, f is not surjective. We need to find an element y that does not have a pre-image

under f . Here it is easy to see that we always have f(x) ≤ 1, so for example y = 2 has

no pre-image. Hence, f is not surjective and therefore not bijective.

Theorem 2.1 Let E,F,G be three sets and f, g be two functions such that f : E −→ F and

g : F −→ G

1. If f and g are injective, then g ◦ f is injective.

2. If f and g are surjective, then g ◦ f is surjective.

3. If f and g are bijective, then g ◦ f is bijective.

4. If f and g are bijective, then (g ◦ f)−1 = f−1 ◦ g−1.

Proof

1. Since f and g are injective, we have

(g ◦ f)(x) = (g ◦ f)(y) ⇒ f(x) = f(y) ⇒ x = y.

2. Since f and g are surjective, we have

(g ◦ f)(E) = g[f(E)] = g(F ) = G.

3. Follows directly from (1) and (2).

4. Let z ∈ G. Since g ◦ f is bijective, there exists x ∈ E such that (g ◦ f)(x) = z.

We have (g ◦ f)−1(z) = (g ◦ f)−1((g ◦ f)(x)) = x.

On the other hand,

(f−1 ◦ g−1) (z) = (f−1 ◦ g−1) ((g ◦ f)(x)) = f−1 (g−1(g(f(x))) = f−1(f(x)) = x .

Therefore, (g ◦ f)−1(z) = (f−1 ◦ g−1) (z) ∀z ∈ G. Hence, (g ◦ f)−1 = f−1 ◦ g−1.

2.2 Exercises with Solutions

Exercise 1.
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1. Let A = {1, 2, 3, 4, 5}. Determine whether the following statements are true:

2 ∈ A, 3 ⊂ A, ∅ ∈ A, {∅} ⊂ A,A ∪ {∅} = A

2. Let B = {1, 2} and C = {1, 3} be two sets.

(a) Determine B ∩ C,B ∪ C,CA(B), CA(C), A\B, and B△C.

(b) Determine B × C,B × ∅, B × {∅}, and P(P(B)).

Exercise 2. Let A,B,C be three subsets of the set E. Show that:

1. A ∩B = ∅ ⇔ A ⊂ CE(B)

2. A ⊂ B ⇔ CE(B) ⊂ CE(A).

3. CE(A ∩B) = CE(A) ∪ CE(B), CE(A ∪B) = CE(A) ∩ CE(B)

4. A\(B ∪ C) = (A\B) ∩ (A\C).

5. CE(A)∆CE(B) = A△B, CE(A△B) = CE(A)△B(∗)

6. (A× C) ∪ (B × C) = (A ∪B)× C.

7. A ⊂ B ⇒ P(A) ⊂ P(B).

Exercise 3. Let A,B,C be three subsets of the set E. Show that:

1. A = B ⇔ A ∩B = A ∪B.

2. A ∪B = A ∩ C ⇔ B ⊂ A ⊂ C.

3. A ∩B = ∅ ⇔ CE(A) ∪ CE(B) = E.

4. A△B = ∅ ⇔ A = B.

5. (A ∩B)\C = (A\C) ∩ (B\C) = (A\C) ∩B = (B\C) ∩ A.

Exercise 4. Let f : E −→ F be a function. Let A,B be two subsets of the set E and C,D be

two subsets of the set F . Show that:

1. f(A ∩B) ⊂ f(A) ∩ f(B), f(A ∪B) = f(A) ∪ f(B)(∗)

2. f is injective ⇔ f(A ∩B) = f(A) ∩ f(B).
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3. f−1(C ∩D) = f−1(C) ∩ f−1(D), f−1(C ∪D) = f−1(C) ∪ f−1(D)(∗)

4. f (f−1(C)) ⊂ C.

5. f is surjective ⇔ f (f−1(C)) = C.

6. f−1 (CF (C)) = CEf
−1(C). 7. f−1(C△D) = f−1(C)∆f−1(D).

Exercise 5. Consider the function f defined by

f : R −→ R

x 7−→ f(x) =
2x

1 + x2

1. Is f injective? Surjective?

2. Show that f(R) = [−1, 1].

3. Show that the function g defined by

g : [−1, 1] −→ [−1, 1]

x 7−→ g(x) = f(x)

is a bijection and find its inverse function g−1.

Exercise 6. Let E be a non-empty set. Consider a function f from E to R such that
i) f(ϕ) = 0,

ii) f(E) = 1,

iii) ∀A,B ∈ P(E) : f(A ∪B) = f(A) + f(B), if A ∩B = ϕ.

1. For any subset A of E, express f
(
CA

E

)
in terms of f(A).

2. Prove that ∀A,B ∈ P(E) : f(A ∪B) = f(A) + f(B)− f(A ∩B).

3. Furthermore, suppose that

iv) ∀A ∈ P(E) : f(A) ≥ 0.

(a) Show that ∀A,B ∈ P(E) : A ⊂ B ⇒ f(A) ≤ f(B).

(b) Show that ∀A ∈ P(E) : 0 ≤ f(A) ≤ 1.
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2.2.1 Solution

Exercise 1.

1.

* 2 ∈ A means that 2 is an element of A. This is true because the elements of A are 1,

2, and 3.

* 3 ⊂ A means that 3 is a subset of A. This is false because 3 is an element of A and

not a subset of A.

* ϕ ∈ A means that ϕ is an element of A. This is false because the elements of A are 1,

2, and 3, but ϕ is not among these elements.

* {ϕ} ⊂ A means that the singleton {ϕ} is a subset of A. This is false because {ϕ} is a

subset of P (A) (the power set of A) and not a subset of A.

* A ∪ {ϕ} = {1, 2, 3, ϕ}. This is false because A has three elements.

2.

a) B ∩C = {1};B ∪C = {1, 2, 3};CA(B) = {3, 4, 5};CA(C) = {2, 4, 5};A\B = {3, 4, 5}.

B△C = {B ∪ C)\(B ∩ C) = {1, 2, 3}\{1} = {2, 3}

b)

* B × C = {(x, y) | x ∈ B ∧ y ∈ C} = {(1, 1), (1, 3), (2, 1), (2, 3)}.

* B × ϕ = {(x, y) | x ∈ B ∧ y ∈ ϕ}, where ϕ does not contain any elements, so

B × ϕ = ϕ.

* B × {ϕ} = {(x, y) | x ∈ B ∧ y ∈ {ϕ}} = {(1, ϕ), (2, ϕ)}.

* P (B) = {ϕ,B, {1}, {2}},so

P (P (B)) = {ϕ;P (B); {ϕ}; {B}; {{1}}; {{2}}; {ϕ,B}; {ϕ, {1}}; {ϕ, {2}}; {B, {1}}; {B, {2}};

{{1}, {2}}; {ϕ,B, {1}}; {ϕ,B, {2}}; {B, {1}, {2}}; {ϕ, {1}, {2}}.

Exercise 2.

1. A ∩B = ϕ ⇔ A ⊂ CE(B).
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⇒ We have A ∩B = ϕ. Let x ∈ A and assume that x /∈ CE(B).

Then x /∈ CE(B) ⇒ x ∈ C (CE(B)) = B ⇒ x ∈ A ∩ B ⇒ A ∩ B ̸= ϕ, which is

absurd. Thus, x ∈ CE(B).

⇐ We assume that A ∩ B ̸= ϕ. Then, ∃x ∈ E/x ∈ A ∩ B ⇒ x ∈ A ∧ x ∈ B and

since A ⊂ CE(B), we have x ∈ CE(B) ∧ x ∈ B ⇒ x ∈ CE(B) ∩ B = ϕ, which is a

contradiction. Therefore, A ∩B = ϕ.

2. A ⊂ B ⇔ CE(B) ⊂ CE(A).

⇒ Let’s assume that A ⊂ B and x ∈ CE(B). Then x ∈ CE(B) ⇒ x /∈ B and since

A ⊂ B, we have x /∈ A ⇒ x ∈ CE(A) ⇒ CE(B) ⊂ (A).

⇐ We have CE(B) ⊂ CE(A). Then x ∈ A ⇒ x /∈ CE(A) ⇒ x /∈ CE(B) ⇒ x ∈ B.

Therefore, A ⊂ B.

3. CE(A ∩B) = CE(A) ∪ CE(B)

x ∈ CE(A ∩B) ⇔ x /∈ (A ∩B) ⇐⇒ x /∈ A ∨ x /∈ B

⇔ x ∈ CE(A) ∨ x ∈ CE(B)

⇔ x ∈ CE(A) ∪ CE(B).

The same applies to the union.

4. A\(B ∪ C) = (A\B) ∩ (A\C).

A\(B ∪ C)
Def
= A ∩ C(B ∪ C)

(3)
= A ∩

(
CE(B) ∩ CE(C)

)
= (A ∩ CE(B)) ∩ (A ∩ CE(C))

Def
= (A\B) ∩ (A\C).

5. CE(A)∆CE(B) = A△B.

According to the definition: A∆B = (A\B) ∪ (B\A) = (A ∩ CE(B)) ∪ (B ∩ CE(A)). By

replacing A with CE(A) and B with CE(B) in the previous formula

CE(A)∆CE(B) =(CE(A)\CE(B)) ∪ (CE(B)\CE(A) ) =

CE(A) ∩ CE(B) ∪ CE(B) ∩ CE(A) =

(A ∩ CE(B)) ∪ (B ∩ CE(A)) = A∆B
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Since ∩ and ∪ are commutative laws.

6. (A× C) ∪ (B × C) = (A ∪B)× C.

(A× C) ∪ (B × C) = {(x, y)/(x, y) ∈ A× C or (x, y) ∈ B × C}

= {(x, y) | (x ∈ A and y ∈ C) or (x ∈ B and y ∈ C}

= {(x, y) | (x ∈ A or x ∈ B) and y ∈ C}

= (A ∪B)× C.

7. A ⊂ B ⇒ P (A) ⊂ P (B).

According to the definition: P (A) = {X | X ⊂ A}, we have:

X ∈ P (A) ⇒ X ⊂ A and since A ⊂ B, we have X ⊂ B ⇒ x ∈ P (B). Therefore, the

inclusion holds.

Exercise 4.

1. f(A ∩B) ⊂ f(A) ∩ f(B).

Let y ∈ f(A ∩ B), which means there exists x ∈ A ∩ B such that y = f(x). Since

x ∈ A, we have y = f(x) ∈ f(A). Similarly, since x ∈ B, we have y ∈ f(B). Hence,

y ∈ f(A) ∩ f(B).

Therefore, f(A ∩B) ⊂ f(A) ∩ f(B).

2. f is injective ⇔ f(A ∩B) = f(A) ∩ f(B).

⇐ Let’s assume that f(A ∩B) = f(A) ∩ f(B). We need to prove that f is injective.

Assume that f(x1) = f(x2) for some x1, x2 ∈ E. Let A = {x1} and B = {x2}.

We have f(x1) = f(x2) ∈ f(A) ∩ f(B) = f(A ∩ B), which means f(A ∩ B) ̸= ϕ.

This implies A ∩ B ̸= ϕ, which contradicts the assumption x1 = x2. Therefore, f is

injective.

=⇒ We assume that f is injective. We need to prove that f(A ∩B) = f(A) ∩ f(B).
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We already proved in part (1) that f(A ∩ B) ⊂ f(A) ∩ f(B). Now let’s prove the

other inclusion. Let y ∈ f(A) ∩ f(B). Then y ∈ f(A) and y ∈ f(B).

⇒ ∃x ∈ A|y = f(x) ∧ ∃x̄ ∈ B|y = f (x′) .

Since f(x) = f (x′) and f is injective, we have x = x̄.

⇒ x ∈ A ∩B ⇒ f(x) ∈ f(A ∩B) ⇒ y ∈ f(A ∩B).

Thus, f(A) ∩ f(B) ⊂ f(A ∩B).

3. f−1(C ∩D) = f−1(C) ∩ f−1(D)

f−1(C ∩D) = {x; f(x) ∈ C ∩D}

= {x; f(x) ∈ C ∧ f(x) ∈ D}

= {(x; f(x) ∈ C) and (x; f(x) ∈ D)}

= f−1(C) ∩ f−1(D).

4. If f(x) ∈ f (f−1(C)), then x ∈ C

Therefore, f (f−1(C)) ⊂ C.

5. f is surjective ⇔ f (f−1(C)) = C.

=⇒ We need to prove that for every y ∈ F , there exists x ∈ E such that y = f(x).

For every y ∈ F , we have y ∈ {y} and according to the hypothesis, we can write

{y} = f (f−1({y})).

Therefore, there exists an element x ∈ E with x ∈ f−1({y}) ⇒ f(x) ∈ {y} ⇒

f(x) = y.

⇐= We have f (f−1(C)) ⊂ C according to (4). Now we need to prove that C ⊂

f (f−1(C)).

Let y ∈ C, which means y ∈ F . Since f is surjective, there exists x ∈ E such that

y = f(x).

⇒ ∃x ∈ E|y = f(x) ∧ ∃x̄ ∈ B|y = f (x′) .
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⇒ f(x) = f (x′) and since f is injective x = x̄

⇒ x ∈ f−1(C) ⇒ f(x) ∈ f
(
f−1(C)

)
Therefore, y ∈ f (f−1(C)). Hence, f (f−1(C)) ⊃ C.

(6) f−1 (CF (C)) = CEf
−1(C).

x ∈ f−1 (CF (C)) ⇔ f(x) ∈ CE(C) ⇔ f(x) /∈ C ⇔ x /∈ f−1(C)

⇔ x ∈ CEf
−1(C).

(7) f−1(C△D) = f−1(C)∆f−1(D).

f−1(C△D) = f−1((C\D) ∪ (D\C)) = f−1(C\D) ∪ f̂−1(D\C)

= f−1(C ∩ CF (D)) ∪ f−1(D ∩ CF (C))

=
(
f−1(C) ∩ f−1(CF (D))

)
∪
(
f−1(D) ∩ f−1(CF (C))

)
.

=
(
f−1(C) ∩ CEf

−1(D)
)
∪
(
f−1(D) ∩ CEf

−1(C)
)
.

=
(
f−1(C)\f−1(D)

)
∪
(
f−1(D)\f−1(C)

)
= f−1(C)∆f−1(D).

Exercise 5.

1. f is not injective because f(2) = f(1/2) = 4
5
but 2 ̸= 1

2
.

f is not surjective because the value ”2” does not have a preimage.

To show this, we can solve the equation f(x) = 2 which leads to x2 − x+ 1 = 0 and this

equation has no real solutions.

2. We know that f(R) = [−1, 1] if the equation f(x) = y has a unique solution x for every

y ∈ [−1, 1].

f(x) = y ⇒ yx2 − 2x+ y = 0....... (∗)

∆ = 1− y2

(∗) has a solution if and only if ∆ ≥ 0, so there are solutions if and only if y ∈ [−1, 1].

Hence, f(R) = [−1, 1].
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3. g is bijective if and only if g is injective and surjective.

=⇒ We assume that g is bijective. We need to prove that for every y ∈ [−1, 1], the

equation g(x) = y has a unique solution.

So for every y ∈ [−1, 1], there exists a unique x ∈ [−1, 1] such that g(x) = y.

Let’s find the solution to g(x) = x:
x =

1−
√

1−y2

y
, ∈ [−1, 1]

x =
1+
√

1−y2

y
, /∈ [−1, 1]

We can see that 1+
√

1−y2

y
/∈ [−1, 1], so the only solution is x =

1−
√

1−y2

y
. Therefore,

g is bijective.

g−1 : [−1, 1] −→ [−1, 4]

y 7−→ g−1(y) =
1−

√
1− y2

y
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Binary Relations on a Set

3.1 Basic Definitions

Definition 3.1 (Binary Relation) Let E be a set. A binary relation R on E is a property

that applies to pairs of elements from E. We denote xRy to indicate that the property

is true for the pair (x, y) ∈ E × E.

Example

1. The inequality ≤ is a relation on N,Z, and R.

2. The inclusion relation in the power set of E: ARB ⇔ A ⊂ B.

3. The divisibility relation on the integers: mRn ⇔ m divides n.

Definition 3.2 Let R be a relation on a set E.

1. R is reflexive if for every x ∈ E, xRx holds.

2. R is symmetric if for all x, y ∈ E, xRy ⇒ yRx.

3. R is antisymmetric if for all x, y ∈ E, (xRy ∧ yRx) ⇒ x = y.

4. R is transitive if for all x, y, z ∈ E, (xRy ∧ yRz) ⇒ xRz.
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3.2 Equivalence Relations

Definition 3.3 (Equivalence Relation) A binary relation R on E is an equivalence relation

if and only if it is reflexive, symmetric, and transitive.

Example 1 The relation R of ”being parallel” is an equivalence relation for the set E of affine

lines in the plane:

1. Reflexivity: A line is parallel to itself.

2. Symmetry: If line D is parallel to D′, then D′ is parallel to D.

3. Transitivity: If line D is parallel to D′ and D′ is parallel to D′′, then D is parallel to

D′′.

Example 2 Consider the following relation on Z:

xRy ⇔ ∃k ∈ Z | x− y = 2k

1. R is reflexive because ∃k = 0 | x− x = 2k = 0, thus xRx.

2. Suppose xRy, then ∃k ∈ Z | x− y = 2k ⇒ y − x = 2k′ with k′ = −k ∈ Z. Therefore,

yRx. Hence, R is symmetric.

3. Suppose xRy and yRz. Then, (∃k ∈ Z | x − y = 2k) and (∃k′ ∈ Z | y − z = 2k′) by

adding these equations, we obtain x− z = 2k′′ with k′′ = (k + k′) ∈ Z. Thus, xRz.

Therefore, R is transitive. Consequently, R is an equivalence relation.

Definition 3.4 Let R be an equivalence relation on a set E. The equivalence class of an

element x ∈ E is the set of elements in E that are related to x by R, denoted by C(x) or

x̄:

x̄ = {y ∈ E | yRx}

Definition 3.5 Let R be an equivalence relation on a set E. The quotient set of E by R is

the set of equivalence classes of R, denoted by E/R:

E/R = {x̄ | x ∈ E}

3.2. Equivalence Relations
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Example In the previous example, we have

x̄ = {y ∈ E | yRx}

= {y ∈ E | x− y = 2k}

= {x− 2k : k ∈ Z}

= {. . . , x− 4, x− 2, x, x+ 2, x+ 4, . . .}.

0 = {y ∈ E | 0Ry} = {. . . ,−4,−2, 0, 2, 4, . . .}, 1 = {y ∈ E | 1Ry} = {. . . ,−3,−1, 1, 3, . . .}

and 2 = 0.Therefore,Z/R = {x̄ | x ∈ E} = {0, 1}

Proposition 3.1 Let R be an equivalence relation on E. Then

1. An equivalence class is a subset of the set E, i.e., for all x ∈ E, x̄ ⊂ E.

2. An equivalence class is never empty, i.e., for all x ∈ E, x̄ ̸= ϕ.

3. The intersection of two distinct equivalence classes is empty, i.e., for all x, y ∈ E,

x̄ ∩ ȳ = ϕ.

4. For all x, y ∈ E, xRy ⇔ x̄ = ȳ.

Theorem 3.1 Let R be an equivalence relation on E. The equivalence classes (x̄)x∈E form a

partition of E:

E = ∪x∈Ex̄

3.3 Order Relation

Definition 3.6 (Order Relation) A binary relation R on E is an order relation if and only

if it is reflexive, antisymmetric, and transitive. We then say that (E,R) is an ordered set.

Example.

1. The inequality ≤ is an order relation on N,Z, and R.

2. The inclusion relation in the power set of E is an order relation: ARB ⇔ A ⊂ B.

3.3. Order Relation
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Definition 3.7 Let R be an order relation on E. Two elements x and y of E are said to be

comparable if xRy or yRx.

Definition 3.8 (Total Order and Partial Order) Let R be an order relation on E. If any

two elements x and y are always comparable, we say that R is a total order relation

and the set E is called totally ordered. Otherwise (i.e., if there exist at least two non-

comparable elements x and y), we say that R is a partial order relation and the set E is

called partially ordered.

Example.

1. ≤ is a total order on N,Z, and R.

2. The divisibility relation in N∗ is a partial order.

Definition 3.9 Let R be an order relation on E, and let M,m be two elements of E.

1. M is an upper bound of a subset A of E if xRM for every x ∈ A.

2. m is a lower bound of a subset A of E if mRx for every x ∈ A.

Example.

1. The set {8, 10, 12} is bounded above by 120 and bounded below by 2 for the divisibility

relation ”/” on N.

2. P(E) is bounded below by ∅ and bounded above by E for the inclusion relation ⊂.

3.4 Exercises with Solutions

Exercise 1. In R, the binary relation R is defined as follows:

∀x, y ∈ R : xRy ⇐⇒ x2 − 1 = y2 − 1

1. Show that R is an equivalence relation on R.

2. Determine the quotient set R/R.
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Exercise 2. For every n ∈ N∗, a binary relation on Z is defined by

∀x, y ∈ Z : xRy ⇐⇒ ∃k ∈ Z | x− y = kn

1. Show that R is an equivalence relation on Z.

2. Assume that n = 3:

(a) Determine the equivalence class of x ∈ Z. Deduce the classes 0, 1, 2.

(b) Show that ∀m ∈ Z : 0 = 3m, 1 = 3m+ 1, 2 = 3m+ 2.

(c) Show that 0 ∩ 1 = ∅, 1 ∩ 2 = ∅, 0 ∩ 2 = ∅. Deduce the quotient set Z/R.

Exercise 3. Let E be a set and let A be a subset of E. A binary relation R is defined on

P(E) as follows:

∀X,Y ∈ P(E) : XRY ⇐⇒ A ∩X = A ∩ Y

1. Show that R is an equivalence relation on P(E).

2. Determine the equivalence classes of ∅ and E. Deduce Ā and CE(A).

Exercise 4. Let R be a binary relation on R3 defined by

(x, y, z)R(a, b, c) ⇐⇒ (|x− a| ≤ b− y and z = c).

1. Show that R is a partial order relation on R3.

2. Is the order total on R3?

Exercise 5. A binary relation R is defined on R2 as follows:

∀ (x1, y1) , (x2, y2) ∈ R2 : (x1, y1)R (x2, y2) ⇐⇒ x1 ≤ x2 and y1 ≤ y2.

1. Show that R is an order relation on R2.

2. Are the elements (2, 4), (3, 1) of R2 comparable by R?

3. Is the order total on R2?

4. Determine the set of upper bounds of A = {(1, 2), (3, 1)} ⊂ R2.

Exercise 6. Determine whether the following relations R are order relations:
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1. ∀x, y ∈ R : xRy ⇐⇒ ex ≤ ey;

2. ∀x, y ∈ R : xRy ⇐⇒ |x| ≤ |y|;

3. ∀x, y ∈ N : xRy ⇐⇒ ∃p, q ≥ 1 | y = pxq (where p and q are integers);

4. ∀x, y ∈ N∗ : xRy ⇐⇒ ∃m ∈ N∗ | y = mx;

5. ∀x, y ∈]1,+∞[: xRy ⇐⇒ x
1+x2 ≥ y

1+y2
.

3.4.1 Solution

Exercise 1.

1. ∀x, y ∈ R : xRy ⇐⇒ x2 − 1 = y2 − 1

(i) Reflexivity: ∀x ∈ R, x2 − 1 = x2 − 1 ⇒ xRx.

(ii) Symmetry: xRy ⇔ x2 − 1 = y2 − 1 ⇒ y2 − 1 = x2 − 1 ⇒ yRx.

(iii) Transitivity: xRy

yRz
⇔

 x2 − 1 = y2 − 1

y2 − 1 = z2 − 1
⇒ x2 − 1 = z2 − 1 ⇒ xRz.

Therefore, R is an equivalence relation.

2. R/R = {x̄ : x ∈ R}.

We have x̄ = {y ∈ R | yRx} = {y ∈ R | y2 − 1 = x2 − 1} = {x,−x | x ∈ R}

Thus, R/R = {{x1 − x} , x ∈ R}.

Exercise 2.

1. ∀x, y ∈ Z : xRy ⇔ ∃k ∈ Z | x− y = kn.

- Reflexivity: We know that ∀x ∈ Z : x− x = 0 = 0 · n with k = 0 ∈ Z, so xRx.

- Symmetry: xRy ⇔ x − y = kn ⇒ y − x = (−k) · n = k′ · n with k′ = −k ∈ Z. Thus,

yRx.
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- Transitivity: xRy

yRz
⇔

 x− y = k1 · n/k1 ∈ Z

y − z = k2 · n/k2 ∈ Z gives:
; Summing both sides:

x− z = (k1 + k2)n = k3 · n with k3 = k1 + k2 ∈ Z

Therefore, xRz

2. For n = 3 : ∀x, y ∈ Z : xRy ⇔ ∃k ∈ Z : x− y = 3k.

(a) For any

x ∈ Z : x̄ = {y ∈ Z : yRx} = {y ∈ Z : y = x+ 3k}

= {x+ 3k | k ∈ Z}.

In particular:

0̄ = {y ∈ Z : yR0} = {3k | k ∈ Z} = 3Z

1̄ = {y ∈ Z : yR1} = {3k + 1 | k ∈ Z} = 3Z+ 1

2̄ = {y ∈ Z : yR2} = {3k + 2 | k ∈ Z} = 3Z+ 2.

(b)

For all m ∈ Z: 
0̄ = ¯3m

1̄ = ¯3m+ 1

2̄ = ¯3m+ 2

because ∀m ∈ Z :


0R(3m)

1R(3m+ 1)

2R(3m+ 2)

.

Indeed, for all m ∈ Z: 
0− (3m) = 3(−m)

1− (3m+ 1) = 3(−m)

2− (3m+ 2) = 3(−m)

, −m ∈ Z .

(C)
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We have:
0̄ ∩ 1̄ = ∅

1̄ ∩ 2̄ = ∅

0̄ ∩ 2̄ = ∅

, because


0��R1

1��R2

0��R2

.Indeed,


0− 1 = −1 ̸= 3k1

1− 2 = −1 ̸= 3k2

0− 2 = −2 ̸= 3k3

, k1, k2, k3 ∈ Z .

We know that:

Z/R = {x̄ : x ∈ Z}

= {x̄ : x = 3m} ∪ {x̄ : x = 3m+ 1} ∪ {x̄ : x = 3x+ 2}.

= {0̄, 1̄, 2̄}.

Exercise 4. (x, y, z)R(a, b, c) ⇔ (|x− a| 6 b− y and z = c)

(1)

(i) Reflexivity: (x, y, z)R(x, y, z) ⇔ (|x − x| = 0 6 y − y = 0 and z = z), hence R is

reflexive.

(ii) Anti-symmetry: Suppose (v, y, z)R(a, b, c) and (a, b, c)R(x, y, z)

This implies [(|x− a| 6 b− y (∗) and |a− x| 6 y − b (∗∗)) and z = c]

Then, (∗) + (∗∗) gives: x = a, replacing x = a in (∗) and (∗∗) we find y = b. Thus,

(x, y, z) = (a, b, c). Therefore, R is anti-symmetric.

(iii) Transitivity: Suppose (v, y, z)R(a, b, c) and (a, b, c)R(α, β, γ)

This implies [(|x− a| 6 b− y (∗) and |a− α| 6 β − b (∗∗)) and z = c = γ]

Thus, (∗) + (∗∗) gives (|x− a|+ |a− α| 6 b− y + β − b and z = c = γ).

And since (|x− α| = |x− a+ a− α| 6 |x− a|+ |a− α| 6 y + β and z = γ) implies

(x, y, z)R(α, β, γ). Hence, R is transitive.

Therefore, R is a partial order relation on R3.

(2) R is not total because ∃(x, y, z) = (0, 0, 2) ∈ R3 and (a, b, c) = (0, 0, 3) ∈ R3 such that

(0, 0, 2)��R(0, 0, 3) and (0, 0, 3)��R(0, 0, 2).

Exercise 5. ∀ (x1, y1) , (x2, y2) ∈ R2 : x1 6 x2 and y1 6 y2.

3.4. Exercises with Solutions



Chapter 3. Binary Relations on a Set 50

(1)

(i) Reflexivity: We know that

∀(x, y) ∈ R2 :

 x 6 x

y 6 y
⇒ (x, y)R(x, y) ⇒ R is reflexive.

(ii) Anti-symmetry: Suppose (x1, y1)R (x2, y2) and (x1, y2)R (x1, y1)

⇒


x1 6 x2 ∧ y1 6 y2

∧

x2 6 x1 ∧ y2 6 y1

⇒


x1 = x2

∧

y1 = y2

⇒ (x1, y1) = (x2, y2) . Thus, R is anti-symmetric.

(iii) Transitivity: Let (x1, y1) , (x2, y2) , (x3, y3) ∈ R2
(x1, y1)R (x2, y2)

∧

(x2, y2)R (x3, y3)

⇒


x1 6 x2 ∧ y1 6 y2

∧

x2 6 x3 ∧ y2 6 y3

⇒


x1 6 x3

∧

y1 6 y3

⇒ (x1, y1)R (x3, y3)

Therefore, R is transitive. Hence, R is a partial order relation on R2.

(2) (2, 4) and (3, 1) are not comparable because (1, 4) and (3, 1) do not satisfy the relation. In

fact,


2 6 3

∧

4��61

and


3��62

∧

1 6 2

⇒


(2, 4)��R(3, 1)

∧

(3, 1)��R(2, 4)

(3) The order is partial because ∃a = (2, 4) and b = (3, 1) where a��Rb and b��Ra.

(4) t = (x, y) ∈ R2 is an upper bound of A if ∀a ∈ A : aRt.

⇒


(1, 2)R(x, y)

∧

(3, 1)R(x, y)

⇒


1 6 x ∧ 2 6 y.

∧

3 6 x ∧ 1 6 y.

⇒


x > 3

∧

y > 2

⇒ Maj(A)
R2

= {(x, y) : x > 3 ∧ y > 2}.
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Algebraic Structures

4.1 Internal Composition Laws and Their Properties

4.1.1 Internal Composition Laws

Definition 4.1 Let E be a set. An internal composition law ∗ on E is a mapping from E×E

to E:

∗ : E × E −→ E

(x, y) 7→ x ∗ y

Notations

1. Instead of ”internal composition law,” we also say ”operation of internal composition”

or simply ”internal operation.”

2. (E, ∗) is often used to denote a set E equipped with an internal operation ∗.

Example.

1. The laws ∪ (union), ∩ (intersection), and △ (symmetric difference) on P(E) (the

power set of E).

2. The law (composition) on F(E) (the set of functions from E to E).
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3. The laws + and × on N,Z,Q,R, and C.

4. Let * be defined on R by x∗y = 1
x+y

. Then * is not an internal operation since (−1, 1)

does not have an image.

Definition 4.2 (Stable Subset for an Operation) Let E be a set equipped with an inter-

nal composition law * and F be a subset of E. We say that F is stable under the law *

if

∀(x, y) ∈ F × F : x ∗ y ∈ F

Example.

1. R+ and R− are two stable subsets of R under the operation +.

2. For the operation ×, R+ is still a stable subset, but R− is not.

4.1.2 Properties of internal composition laws

Definition 4.3 (Commutativity and Associativity) Let E be a set equipped with an in-

ternal composition law ∗.

We say that ∗ is commutative if ∀(x, y) ∈ E2 : x ∗ y = y ∗ x.

We say that ∗ is associative if ∀(x, y, z) ∈ E3 : (x ∗ y) ∗ z = x ∗ (y ∗ z).

Example.

1. The addition and multiplication laws on N,Z,Q,R, and C are commutative and asso-

ciative.

2. Also, the union (∪), intersection (∩), and symmetric difference (△) laws on P(E) are

commutative and associative.

3. The composition law (◦) on F(E) is associative but not commutative, because f ◦ g ̸=

g ◦ f in general.

4. Let ∗ be the law defined on Q by: x ∗ y = x+y
2
. Then ∗ is commutative,

because x ∗ y = x+y
2

= y+x
2

= y ∗ x, but it is not associative,
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because (−1 ∗ 0) ∗ 1 = 1
4
̸= −1 ∗ (0 ∗ 1) = −1

4
.

Definition 4.4 (Neutral Element) Let E be a set equipped with an internal composition

law *. Let e be an element of E. We say that e is the neutral element for the law *, if

∀x ∈ E : x ∗ e = e ∗ x = x

Remark 4.1 If the law ∗ is commutative, the equality x ∗ e = e ∗ x is automatically satisfied.

Example.

1. In N,Z,Q,R, and C, 0 is neutral for the addition law, and 1 is neutral for the multi-

plication law.

2. In P(E), the empty set (∅) is neutral for the union law (∪), and E is neutral for the

intersection law (∩).

3. Let ∗ be the law defined on R by: x ∗ y = x+ y − 1. Then e = 1 is a neutral element,

because x ∗ e = x ⇒ x+ e− 1 = x. Thus, e = 1.

Proposition 4.1 (Uniqueness of the Neutral Element) The neutral element of E for the

law * if it exists, is unique.

Proof. Indeed, let e′ be another neutral element for ∗, then e′ = e′ ∗ e = e ∗ e′ = e. Thus, the

neutral element is unique.

Definition 4.5 (Inverse Element) Let E be a set equipped with an internal composition

law * and let e be a neutral element. We say that the element x of E has an inverse

element x′ of E, if ∀x ∈ E : x ∗ x′ = x′ ∗ x = e.

Example.

1. In R, the invertible elements for the multiplication law (×) are the non-zero elements.

2. Let ∗ be the law defined on R by: x ∗ y = x + y − 1. Then x ∈ R has an inverse

element x′ = 2− x, because x ∗ x′ = 1 ⇒ x+ x′ − 1 = 1. Thus, x′ = 2− x.

4.1. Internal Composition Laws and Their Properties



Chapter 4. Algebraic Structures 54

4.1.3 Properties of internal composition laws

Definition 4.3 (Commutativity and Associativity) Let E be a set equipped with an in-

ternal composition law ∗.

We say that ∗ is commutative if ∀(x, y) ∈ E2 : x ∗ y = y ∗ x.

We say that ∗ is associative if ∀(x, y, z) ∈ E3 : (x ∗ y) ∗ z = x ∗ (y ∗ z).

Example.

1. The addition and multiplication laws on N, Z, Q, R, and C are commutative and

associative.

2. The union (∪), intersection (∩), and symmetric difference (△) laws on P(E) are

commutative and associative.

3. The composition law (◦) on F(E) is associative but not commutative, because f ◦ g ̸=

g ◦ f in general.

4. Let ∗ be the law defined on Q by: x ∗ y = x+y
2
. Then ∗ is commutative, because

x ∗ y = x+y
2

= y+x
2

= y ∗ x, but it is not associative, because (−1 ∗ 0) ∗ 1 = 1
4
̸=

−1 ∗ (0 ∗ 1) = −1
4
.

Definition 4.4 (Neutral Element) Let E be a set equipped with an internal composition

law ∗. Let e be an element of E. We say that e is the neutral element for the law ∗ if

∀x ∈ E : x ∗ e = e ∗ x = x.

Remark 4.1 If the law ∗ is commutative, the equality x ∗ e = e ∗ x is automatically satisfied.

Example.

1. In N, Z, Q, R, and C, 0 is the neutral element for the addition law, and 1 is the neutral

element for the multiplication law.

2. In P(E), the empty set ∅ is the neutral element for the union law ∪, and E is the

neutral element for the intersection law ∩.
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3. Let ∗ be the law defined on R by: x ∗ y = x+ y − 1. Then e = 1 is a neutral element,

because x ∗ e = x+ e− 1 = x. Thus, e = 1.

Proposition 4.1 (Uniqueness of the Neutral Element) The neutral element of E for the

law ∗, if it exists, is unique.

Proof. Indeed, let e′ be another neutral element for ∗, then e′ = e′ ∗ e = e ∗ e′ = e. Thus, the

neutral element is unique.

Definition 4.5 (Inverse Element) Let E be a set equipped with an internal composition law

∗ and let e be a neutral element. We say that the element x of E has an inverse element

x′ of E if ∀x ∈ E : x ∗ x′ = x′ ∗ x = e.

Example.

1. In R, the invertible elements for the multiplication law are the non-zero elements.

2. Let ∗ be the law defined on R by: x ∗ y = x+ y − 1. Then each x ∈ R has an inverse

element x′ = 2− x, because x ∗ x′ = x+ x′ − 1 = 1. Thus, x′ = 2− x.

Proposition 4.2 Let E be a set equipped with an associative internal composition law ∗ that

has a neutral element.

1. The inverse element x′ of x for the law ∗ in E, if it exists, is unique.

2. If x, y ∈ E are invertible, then x ∗ y is invertible, and its inverse is given by

(x ∗ y)′ = y′ ∗ x′

Definition 4.6 (Distributivity) Let E be a set equipped with two internal composition laws

∗ and ⊤.

We say that ∗ is left distributive with respect to ⊤ if

∀(x, y, z) ∈ E3 : x ∗ (y⊤z) = (x ∗ y)⊤(x ∗ z).

We say that ∗ is right distributive with respect to ⊤ if

∀(x, y, z) ∈ E3 : (x⊤y) ∗ z = (x ∗ z)⊤(y ∗ z).
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Remark 4.2 If the law ∗ is commutative, then one of these properties implies the other.

Example

1. In N, Z, Q, R, and C, the multiplication law × is left distributive with respect to the

addition law +.

2. In P(E), the laws ∪ and ∩ are left distributive with respect to each other.

3. Let ∗ be the law defined on R by x ∗ y = x+ y − xy, and let ⊤ be the law defined on

R by x⊤y = x + y − 1. Since the law ∗ is commutative, it suffices to demonstrate

left distributivity with respect to ⊤:

x ∗ (y⊤z) = x ∗ (x+ y − 1)

= 2x+ y + z − xy − xz − 1 . . . . . . (1)

(x ∗ y)⊤(x ∗ z) = (x+ y − xy)⊤(x+ z − xz)

= 2x+ y + z − xy − xz − 1 . . . . . . (2)

(1) = (2) So the law ∗ is left distributive with respect to the law ⊤.

4.2 Algebraic Structures

4.2.1 Groups

4.2.1.1 Definitions and Examples

Definition 4.7 (Group) A group is a non-empty set equipped with an internal composition

law (G, ∗) such that:

- ∗ is associative;

- ∗ has a neutral element e;

- every element in G is invertible (has an inverse) for ∗.

Remark 4.3 If ∗ is commutative, we say that (G, ∗) is commutative or abelian.
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Example

1. (Z,+), (Q,+), (R,+), and (C,+) are abelian groups;

2. The set P(E) equipped with the symmetric difference △ is an abelian group;

3. (N,+), (R,×), (P(E),∩), and (P(E),∪) are not groups.

Definition 4.8 (Subgroup) Let (G, ∗) be a group and let H be a non-empty subset of G.

We say that H is a subgroup of G if:

1. H is closed under ∗, i.e., for every (x, y) ∈ H2, x ∗ y ∈ H;

2. H is closed under taking inverses, i.e., for every x ∈ H, x′ (the inverse of x) is also in

H.

Example

1. Let (G, ∗) be a group, then eG and G are subgroups (called trivial subgroups);

2. Let (Z,+) be a group. Then 3Z is a subgroup of Z, defined by

3Z = {3z : z ∈ Z} = {. . . ,−6,−3, 0, 3, 6, . . .}

3. Let (G, ·) be a group. Then the set Z(G) = {x ∈ G : ∀y ∈ G, xy = yx} is a subgroup

of G called the center of G.

Theorem 4.1 (Characterization of Subgroups) Let (G, ∗) be a group and let H be a non-

empty subset of G. Then H is a subgroup of G if and only if

∀(x, y) ∈ H2, x ∗ y′ ∈ H

Proposition 4.3 (Intersection of Subgroups) Let (G, ∗) be a group and let {Hi}i∈I be a

family of subgroups of G. Then ∩i∈IHi is a subgroup of G.

Remark 4.4 The union of two subgroups of G is not necessarily a subgroup of G. For example,

2Z and 3Z are two subgroups of (Z,+), but their union is not a subgroup since 2 and 3

are in 2Z ∪ 3Z while 2 + 3 = 5 /∈ 2Z ∪ 3Z.
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4.2.1.2 Group Homomorphisms

Definition 4.9 Let (G1, ∗) and (G2,⊥) be two groups. A group homomorphism (or simply

morphism) from G1 to G2 is a function f : G1 −→ G2 such that for all x, y ∈ G1,

f(x ∗ y) = f(x) ⊥ f(y)

Example

Let f be defined as
f : R −→ R∗

x 7→ f(x) = 2x
. Then f is a homomorphism from (R,+) to

(R∗,×) because

∀x, y ∈ R, f(x+ y) = 2x+y = 2x × 2y = f(x)× f(y)

Remark 4.5 Let (G1, ∗) and (G2,⊥) be two groups and f be a homomorphism from G1 to

G2. Then:

1. If f is bijective, then we say that f is an isomorphism;

2. If f is defined from (G1, ∗) to itself, then we say that f is an endomorphism;

3. If f is a bijective endomorphism, then we say that f is an automorphism.

Example

1. The exponential function is an isomorphism from the group (R,+) to (R∗
+,×);

2. The natural logarithm function is an isomorphism from the group (R∗
+,×) to (R,+).

Proposition 4.4 Let (G1, ∗) and (G2,⊥) be two groups with neutral elements e1 and e2,

respectively, and let f be a homomorphism from G1 to G2. Then:

1. f(e1) = e2;

2. For all x ∈ G1, (f(x))′ = f(x′).

Proposition 4.5 Let (G1, ∗) and (G2,⊥) be two groups with neutral elements e1 and e2,

respectively, and let f be a homomorphism from G1 to G2. Then:
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1. If H is a subgroup of G1, then f(H) is a subgroup of G2;

2. If H ′ is a subgroup of G2, then f−1(H) is a subgroup of G1.

Definition 4.10 (Kernel and Image of a Homomorphism) Let (G1, ∗) and (G2,⊥) be

two groups, and let f be a homomorphism from G1 to G2. Then:

1. The kernel of f is defined as

Ker(f) = f−1(e) = {x ∈ G1 : f(x) = e2}

2. The image of f is defined as

Im(f) = f(G1) = {f(x) ∈ G2 : x ∈ G1}

Example Let f be the homomorphism given in Example 4.9. Then

Ker(f) = {x ∈ R : f(x) = 1} = {x ∈ R : 2x = 1} = {0}

and Im(f) = {f(x) : x ∈ R}. We have f(x) = y, which implies 2x = y, and this implies

x ln 2 = ln y, so x = ln y
ln 2

. Hence, Im(f) = R∗
+.

Theorem 4.2 Let f be a homomorphism from (G1, ∗) to (G2,⊥). Then:

1. Ker(f) is a subgroup of G1;

2. Im(f) is a subgroup of G2;

3. f is injective if and only if Ker(f) = {e1};

4. f is surjective if and only if Im(f) = G2.

4.2.1.3 Rings

Definition 4.11 (Ring) Let A be a set equipped with two binary operations, ∗ and ⊥.

(A, ∗,⊥) is called a ring if:

1. (A, ∗) is a commutative group;

2. ⊥ is associative;
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3. ⊥ is distributive over ∗.

Remark 4.6

1. If ⊥ is commutative, then (A, ∗,⊥) is called a commutative ring.

2. If ⊥ has a neutral element, then (A, ∗,⊥) is called a unitary ring.

Example

1. (Z,+,×), (Q,+,×), (R,+,×) and (C,+,×) are commutative rings;

2. Let E be a set, (P(E),△,∩) is a commutative ring;

3. Let A be the set of functions from C to C of the form z 7→ αz + βz̄. (A,+, ◦) is a

non-commutative ring.

Definition 4.12 (Subring) Let (A,+, ·) be a ring and B be a subset of A. B is called a

subring of (A,+, ·) if and only if:

1. B ̸= ∅ (0A ∈ B);

2. (B,+) is a subgroup of A;

3. B is closed under ·.

Alternatively,

1. 0A ∈ B

2. For all a, b ∈ B, a− b ∈ B;

3. For all a, b ∈ B, a · b ∈ B.

Example

1. (Z,+,×), (Q,+,×), (R,+,×) and (C,+,×) are all subrings of each other;

2. The set
{
r + s

√
2 : (r, s) ∈ Q2

}
is a subring of (R,+,×).

Definition 4.13 (Ring Homomorphism) Let (A,+, ·) and (B,+, ·) be two rings. A func-

tion f from A to B is called a homomorphism if:
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1. f (1A) = 1B

2. For all a, b ∈ A, f(a+ b) = f(a) + f(b);

3. For all a, b ∈ A, f(a · b) = f(a) · f(b).

Remark 4.7 In particular, f is a group homomorphism from (A,+) to (A,+).

Definition 4.14 (Invertible Element) An element of a ring (A,+, ·) is called invertible if it

has a symmetrical element for the second operation (if it has an inverse for the operation).

Definition 4.15 (Zero Divisor) A non-zero element x of a ring A is a zero divisor if its

product with another non-zero element equals zero:

∃y ̸= 0 | xy = 0 or yx = 0.

Example

1. In (Q,+, ·), (R,+, ·), and (C,+, ·), all non-zero elements are invertible;

2. In the set of functions from R to R, any function f that vanishes is a zero divisor, and

the invertible elements are the functions that do not vanish.

4.2.1.4 Ideal in a Ring

Definition 4.16 (Ideal) Let (A,+, ·) be a ring. A non-empty subset I of A is called an ideal

of A if and only if:

1. I is a subgroup of (A,+, ·);

2. For x ∈ I and a ∈ A, x · a ∈ I and a · x ∈ I.

Example The set Z is not an ideal of (R,+,×) because 1
5
∈ R and 3 ∈ Z while 3

5
/∈ Z.

Remark 4.8 It is easy to verify that:

1. The intersection of ideals of A is an ideal of A.

2. The image of an ideal under a surjective ring homomorphism is an ideal.

3. The kernel of a ring homomorphism is an ideal.
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4.2.1.5 Rules of Calculation in a Ring

Let us recall the binomial theorem, which extends from Z to commutative rings, but also to

arbitrary rings.

Proposition 4.6 Let (A,+, ·) be a ring, a, b ∈ A with a · b = b · a, and n ∈ N∗. Then:

(a+ b)n =
n∑

k=0

Ck
na

kbn−k.

Proof By induction on N and using the Pascal’s triangle.

Remark 4.9 Let x, y ∈ A and n ∈ N∗, then x− y | xn − yn and more precisely:

xn − yn = (x− y)
n−1∑
k=0

xkyn−1−k.

* A particular case of the above: if 1 − x is invertible, we can calculate
∑n−1

k=0 x
k using

the formula:

1− xn = (1− x)
n−1∑
k=0

xk.

4.2.2 Fields

Definition 4.17 (Field) A field is a commutative ring in which every non-zero element is

invertible for the second operation.

Remark 4.10 If the second operation is also commutative, the field (K,+, ·) is called a com-

mutative field.

Example

Q,R, and C are fields, but Z is not (2 is not invertible).

Definition 4.18 (Subfield) Let (K,+, ·) be a field, a subfield of K is a subset K1 of K such

that (K1,+, ·) is a field, i.e., for all x, y in K1, we have x− y ∈ K1 and xy−1 ∈ K1.

Example

1. (Q,+,×), (R,+,×), and (C,+,×) are all subfields of each other;
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2. The set Q[
√
2] = {a + b

√
2 : a, b ∈ Q} is a commutative field that contains Q as a

subfield.

4.3 Solved Exercises

Exercise 1. We define on R an internal composition law ∗ as follows:

∀a, b ∈ R : a ∗ b = ln
(
ea + eb

)
1. Is the law ∗ commutative? Associative? Does it have a neutral element?

2. Let a, b ∈ R. We define an internal composition law ⊥ on R as follows:

∀x, y ∈ R : x ⊥ y = ax+ by

Determine a, b such that the law ⊥ is: (1) associative, (2) has a neutral element.

Exercise 2. Let G = R∗ × R and ∗ be the internal composition law defined on G as follows:

∀(x, y), (x′, y′) ∈ G : (x, y) ∗ (x′, y′) = (xx′, xy′ + y)

1. Show that (G, ∗) is a non-commutative group.

2. Show that the set H = R∗
+ × R is a subgroup of (G, ∗).

Exercise 3. Let
(
R∗

+,×
)
and (R,+) be two groups, and let f : R∗

+ −→ R be the function

defined as follows:

f(x) = ln(x)

1. Show that f is a homomorphism from
(
R∗

+,×
)
to (R,+).

2. Calculate Ker(f). What can you conclude?

3. Is f surjective?

Exercice4. We equip the set A = Z2 with two operations defined by:

(x, y) + (x′, y′) = (x+ x′, y + y′) and (x, y) ⋆ (x′, y′) = (xx′, xy′ + x′y)
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1. Show that (A,+) is a commutative group. (∗)

2. Show that the operation ⋆ is commutative and associative.

3. Determine the neutral element for the operation ⋆.

4. Show that (A,+, ⋆) is a commutative unitary ring.

5. Show that B = {(a, 0) | a ∈ Z} is a subring of (A,+, ⋆).

6. We equip the set K = R with the usual addition and multiplication.

(a) Why is (K,+, ·) a field?

(b) Let L = {x ∈ R,∃α, β ∈ Q | x = α + β
√
3} be a subset of R.

Show that (L,+,.)isasubfieldof(K,+,.).

Exercice5.

(1) Consider a set E defined by E = {(a, b) ∈ R2 : a ̸= 0} and define on E a composition

law ∗ by

∀ (a1, b1) , (a2, b2) ∈ E : (a1, b1) ∗ (a2, b2) = (a1a2, a1b2 + b1)

(a) Verify that ∗ is an internal law on E and find (2, 0) ∗ (1, 1)

(b) Show that (E, ∗) is a non-commutative group.

(c) Determine the set H = {(x, y) ∈ E, ∀(a, b) ∈ E : (x, y) ∗ (a, b) = (a, b) ∗ (x, y)}

(2) Let F = {(a, b) ∈ E : b = 0} be a subset of E.

(a) Show that F is a subgroup of E.

(3) Consider a function f defined by

f : (E, ∗) −→ (R∗, .)

(a, b) 7−→ f((a, b)) = a

(a) Show that f is a group homomorphism from (E, ∗) to the group (R∗, .)

(b) Determine the kernel of f .

(4) Let Z[
√
2] = {m+ n

√
2,m, n ∈ Z} be a subset of R.

(a) Show that Z[
√
2] equipped with addition and multiplication of real numbers is

a subring of R.
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4.3.1 Solutions

Exercise 1.

(1)

• ∀a, b ∈ R, b ∗ a = ln
(
eb + ea

)
= ln

(
ea + eb

)
= a ∗ b.

Therefore, ∗ is commutative.

•
∀a, b, c ∈ R, (a ∗ b) ∗ c ln

(
ea∗b + ec

)
= ln

(
ea + eb + ec

)
= a ∗ (b ∗ c).

Therefore, ∗ is associative.

• a ∗ e = a ⇔ ln (ea + ee) = a ⇔ ee = 0.

Thus, there is no neutral element.

(2)

• ⊥ is associative ⇔ ∀x, y, z ∈ R, (x ⊥ y) ⊥ z = x ⊥ (y ⊥ z).

⇔ ∀x, y, z ∈ R, a2x+ aby + bz = ax+ aby + b2z.

Therefore, a2 = a and ab = ba and b = b2.

Hence, (a = 0 or a = 1) and (b = 0 or b = 1).

• ⊥ has a neutral element e ∈ R if ∀x ∈ R, x ⊥ e = e ⊥ x = x.

⇔ ∀x ∈ R, ax+ be = ae+ bx = x.

⇔ a = 1 and e = 0 and b = 1.

Exercise 2.

(1)

•
((x, y) ∗ (x′, y′)) ∗ (x′′, y′′) = (xx′, xy′ + y) ∗ (x′′, y′′)

= (xx′x′′, xx′′y′ + xy′′ + y) and

(x, y) ∗ ((x′, y′) ∗ (x′′, y′′)) = (x, y) ∗ (x′x′′, x′y′′ + y′) = (xx′x′′, xx′′y′ + xy′′ + y).

Thus, ∗ is associative.

• (x, y) ∗ (1, 0) = (x, y) and (1, 0) ∗ (x, y) = (x, y).

Hence, (1, 0) is the neutral element.
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• (x, y) ∗
(
1
x
, −y

x

)
= (1, 0) and

(
1
x
,− y

x

)
∗ (x, y) = (1, 0).

Therefore, every element is symmetrizable. Thus, (G, ∗) is a group.

• (1, 2) ∗ (3, 4) = (3, 6) and (3, 4) ∗ (1, 2) = (3, 10).

Therefore, the group is not commutative.

(2) H = R∗
+ × R is a subset of G.

• (1, 0) ∈ H,

• ∀(x, y), (x′, y′) ∈ H, (x, y) ∗ (x′, y′) ∈ H since xx̄ > 0,

• ∀(x, y) ∈ H, (x, y)−1 =
(
1
x
, −y

x

)
∈ H since 1

x
> 0.

Therefore, H is a subgroup of G.

Exercise 3.

(1) f is a homomorphism from
(
R∗

+, ·
)
to (R,+). Let:

x1, x2 ∈ R∗
+ : f (x1 · x2) = ln (x1 · x2) = lnx1 + lnx2

= f (x1) + f (x2)

(2)

ker(f) =
{
x ∈ R∗

+ : f(x) = 0
}

=
{
x ∈ R∗

+ : lnx = 0
}

=
{
x ∈ R∗

+ : eln(x) = e0 = 1
}

=
{
x ∈ R∗

+ : x = 1
}

= {1}

Thus, f is injective.

(3) f is surjective because:

∀y ∈ R,∃x = ey ∈ R∗
+ such that f(x) = f (ey) = ln (ey) = y.

Exercise 4.

(1) (∗)
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(2) (x, y) ∗ (x′, y′) = (xx′, xy′ + x′y) = (x′x, x′y + xy′) = (x′, y′) ∗ (x, y).

Therefore, ∗ is commutative.

(3) For

[(x, y) ∗ (x′, y′)] ∗ (x′′, y′′) = (xx′, xy′ + x′y) ∗ (x′′, y′′) = (xx′x′′, xx′y′′ + x′′(xy′ + x′y))

= (xx′x′′, xx′y′′ + xx′′y′ + x′x′′y) ,

(x, y) ∗ [(x′, y′) ∗ (x′′, y′′)] = (x, y) ∗ (x′x′′, x′y′′ + x′′y′) = (xx′x′′, x(x′y′′ + x′′y′) + x′x′′y)

= (xx′x′′, xx′y′′ + xx′′y′ + x′x′′y) .

The operation ∗ is associative.

(4) All the properties of a ring are satisfied based on the previous questions, except for

the distributivity of ∗ over addition:

(x, y) ∗ [(x′, y′) + (x′′, y′′)] = (x, y) ∗ (x′ + x′′, y′ + y′′)

= (x(x′ + x′′), x(y′ + y′′) + (x′ + x′′)y)

= (xx′ + xx′′, xy′ + x′y + xy′′ + x′′y)

= (xx′, xy′ + x′y) + (xx′′, xy′′ + x′′y)

= [(x, y) ∗ (x′, y′)] + [(x, y) ∗ (x′′, y′′)] .

Thus, (A,+, ∗) is a commutative ring.

(5) B = {(a, 0) | a ∈ Z}

• B ⊂ Z2 and (1, 0) ∈ A.

• ∀(a, 0), (b, 0) ∈ B, we have (a, 0)− (b, 0) = (a− b, 0) ∈ B.

• ∀(a, 0), (b, 0) ∈ B, we have (a, 0) ∗ (b, 0) = (ab, 0) ∈ B.

Therefore, B is a subring of (Z2,+, ∗).

(6)

(a) (k,+, ·) is a field because (i) (K,+, ·) is a commutative ring ((∗))

(ii) every nonzero element has a multiplicative inverse.
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(b) (L,+, ·) is a subfield of (k,+, ·) if and only if:

(i) ∀x, y ∈ L : x− y ∈ L

(ii) ∀x, y ∈ L : xy ∈ L

(iii) ∀x ∈ L∗ : x−1 ∈ L.

Let’s assume that x = α1 + β1

√
3, y = α2 + β2

√
3 ∈ L

(i) We have: x− y = (α1 − α2) + (β1 − β2)
√
3 = α3 + β3

√
3 ∈ L.

because: α3 = α1 − α2, β3 = β1 − β2 ∈ Q.

(ii) We also have:

xy =
(
α1 + β1

√
3
)(

α2 + β2

√
3
)
= (α1α2 + 3β1β2) + (α1β2 + β1α2)

√
3

= α′ + β′
√
3 ∈ L.

because: α′ = α1α2 + 3β1β2, β
′ = α1β2 + β1α2 ∈ Q.

(iii) Let x = α1 + β1

√
3 ∈ L∗, which means α1 ̸= 0 and β1 ̸= 0. Then,

x−1 =
1

x
=

1

α1 + β1

√
3
=

α1 − β1

√
3

α2
1 − 3β2

1

=
α1

α2
1 − 3β2

1

+
−β1

α2
1 − 3β2

1

√
3 = a+ b

√
3 ∈ L.

because: a = α1

α2
1−3β2

1
, b = −β1

α2
1−3β2

1
∈ Q

Therefore, (L,+, ·) is a subfield of (k,+, ·).
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Polynomial Rings

In this chapter, we introduce the concept of a polynomial over a field or a commutative ring.

Throughout the chapter, K denotes a field and A denotes a unitary commutative ring.

5.1 Definitions

Definition 5.1. Let (A,+, ·) be a unitary commutative ring.

A polynomial P in one variable X with coefficients in A is defined as an algebraic expression

of the form

P = a0 + a1X + a2X
2 + . . .+ anX

n + . . .

where the ai ∈ A are zero except for a finite number.

Another definition is given by:

Definition 5.2. A polynomial in one variable x with coefficients in A is a sequence P = (an)n∈N

of elements in A that are zero from a certain rank.

1. The an are called the coefficients of P .

2. The largest index n for which an ̸= 0 (if it exists) is called the degree of P and denoted

deg(P ), and in this case, anXn is called the leading term of P .

3. If all the ai are zero, P is called the zero polynomial, denoted as 0, and conventionally

deg(0) = −∞.

69
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4. If the leading term of P is 1Xn, the polynomial P is said to be monic.

5. Each element a of A is a polynomial, called a constant polynomial.

6. The set of polynomials in one variable X with coefficients in A is denoted as A[X].

Polynomials are equipped with the usual operations of addition, multiplication of polynomials,

and scalar multiplication by λ ∈ A: Let P = (an)n∈N, Q = (bn)n∈N be two polynomials in one

variable with coefficients in A. Then:

1. P +Q = (an + bn)n∈N,

2. PQ = (cn)n∈N with cn =
∑

0≤k≤n akbn−k,

3. λP = (λan)n∈N.

Definition 5.3.

The set A[X] of polynomials in one variable with coefficients in A, equipped with the

addition and multiplication defined above, forms a commutative ring.

Proposition 5.1. If A is an integral domain, then for all P,Q ∈ A[X], we have:

1. deg(PQ) = deg(P ) + deg(Q).

2. deg(P +Q) ≤ max(deg(P ), deg(Q)).

Proof

1. If either of the two polynomials is zero, then PQ = 0, and the equation becomes

−∞ = −∞, which is true. So, we assume that P andQ are non-zero. Let n = deg(P )

and m = deg(Q). We can write P =
∑

aiX
i and Q =

∑
biX

i, where ai, bi ∈ A.

Then the coefficient of the leading term of PQ is anbm. Now, an ̸= 0 and bn ̸= 0,

and since A is an integral domain, anbn ̸= 0. This implies that deg(PQ) = n+m.

2. Obvious.

Let U(A) denote the set of invertible elements in A.

5.1. Definitions
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Proposition 5.2

If A is an integral domain, then the invertible elements in A[X] are the constant polyno-

mials P = a where a ∈ U(A).

Proof.

Let P be invertible in A[X]. There exists Q ∈ A[X] such that PQ = 1. Then, we have

deg(P ) + deg(Q) = 0, and deg(P ) = deg(Q) = 0. Thus, P and Q are constant and

invertible elements.

5.2 Polynomial Arithmetic

5.2.1 Associated Polynomials

Definition 5.4.

Two polynomials P and Q in A[X] are said to be associated if there exists a ∈ U(A) such that

P = a.Q.

Example.

The set of polynomials associated with X2 + 1 in Z[X] is {X2 + 1,− (X2 + 1)} since the

only units in Z are 1 and -1.

Proposition 5.3.

1. The relation ”being associated” is an equivalence relation on A[X].

2. If P and Q are associated and have the same leading coefficient, then P = Q.

3. If A is a field, then every polynomial P is associated with a unique monic polynomial.

Proposition 5.4 Let P andQ be two polynomials inA[X]. Then deg(P+Q) ≤ max(deg(P ), deg(Q))

and deg(P ·Q) = deg(P ) + deg(Q).

Example. In Q[X], let P = 3X2− 1 and Q = 1
2
X3+4X. Then P +Q = 1

2
X3+3X2+4X − 1

and P ·Q = 3
2
X5 − 23

2
X3 − 4X.
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Definition 5.5 (Divisibility) Let P,B be two polynomials in A[X]. We say that B divides

P if there exists Q ∈ A[X] such that P = Q ·B. We denote this as B | P .

We also say that P is a multiple of B or P is divisible by B.

Example.

1. Every invertible element a in the ring A divides every polynomial P in A[X]. Indeed,

P = a · (a−1P ).

2. X + 1 divides X2 +X. Indeed, X2 +X = X(X + 1).

Remark. If B divides P and P ̸= 0, then deg(B) ≤ deg(P ) (since P = Q ·B implies deg(P ) =

deg(Q) + deg(B)).

Proposition 5.5 Let A,B,C be polynomials in K[X]. Then:

1. If A | B and B | A, then there exists λ ∈ K∗ such that A = λB.

2. If A | B and B | C, then A | C.

3. If C | A and C | B, then C | (AU +BV ) for any U, V ∈ K[X].

Definition 5.6 (Euclidean Division of Polynomials) Let P,B be two polynomials inA[X].

If the leading coefficient of B is invertible in A, then there exists a pair (Q;R) ∈ A[X]2

such that P = QB +R and deg(R) < deg(B).

Example. Division of P = 3X5 − 2X3 − 5X2 + 1 by B = 2X3 + 1
2
X2 −X:

3X5 + 0X4 − 2X3 − 5X2 + 0X + 1 1
2
X3 + 2X2 −X + 0

−12X4 + 4X3 − 5X2 + 0X + 1 6X2 − 24X + 104

52X3 − 29X2 + 0X + 1

−237X2 + 104X + 1

Therefore, the quotient is Q = 6X2 − 24X + 104 and the remainder is R = −237X2 +

104X + 1.
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The existence of the Euclidean division allows us to develop the properties of divisibility:

GCD, LCM, Bézout’s theorem, Euclidean algorithm, Gauss’s theorem, and factorization into

irreducible factors, entirely analogous to Z.

Definition 5.7 The greatest common divisor (GCD) of two polynomials A and B is a poly-

nomial D that divides both A and B, and any polynomial dividing both A and B must

also divide D. The least common multiple (LCM) is a polynomial M that is a multiple

of both A and B, and any polynomial that is a multiple of both A and B must also be

divisible by M .

Remark 5.3 Let P1, P2, . . . , P be polynomials in K[X].

1. The GCD and LCM remain unchanged when permuting the Pi.

2. PGCD(λ1P1;λ2P2, . . . , λsPs) = PGCD(P1, P2, . . . , Ps) and

PPCM(λ1P1;λ2P2, . . . , λsPs) = PPCM(P1, P2, . . . , Ps) for λ1, λ2, . . . , λs ∈ K

Example. Let A := X6+X5+X4+X2+X+1 and B := X5+X4+X3+X2+X+1. Then:

A = BQ1 +R1 ( with Q1 = X and R1 = 1−X3)

B = R1Q2 +R2 ( with Q2 = −X2 −X − 1 and R2 = 2X2 + 2X + 2)

R1 = R2Q3 +R3 ( with Q3 =
1
2
and R3 = 0)

Therefore, R2 = 2X2 + 2X + 2 is the GCD and PPCM(A,B) · GCD(A,B) = A · B, so

PPCM(A,B) = X9 +X8 +X7 +X6 + 2X5 + 2X4 +X3 +X2 +X + 1.

Definition 5.8 (Irreducible Polynomial) A polynomial P ∈ K[X] is called irreducible if it

is non-constant and the only factorizations P = QR (with Q,R ∈ K[X]) occur when P

or Q is constant.

Remark 5.4

1. The notion of irreducible polynomials corresponds to that of prime numbers in Z.

2. The irreducible polynomials in C[X] are the polynomials of degree one.

5.2. Polynomial Arithmetic
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3. The irreducible polynomials in R[X] are the polynomials of degree one and the poly-

nomials of degree two of the form P = aX2 + bX + c with b2 − 4ac < 0.

Example. X2 + 1 is irreducible in R[X] because it cannot be written as a product of two

polynomials of degree 1 with coefficients in R.

The same polynomial X2 + 1 is reducible in C[X] since X2 + 1 = (X + i)(X − i).

Theorem 5.1

1. (Euclid) Let P be an irreducible polynomial in K[X] that divides QR. Then P divides

Q or R.

2. (Gauss) If GCD(P,Q) = 1 and P divides QR, then P divides R.

Proof. The proof is entirely analogous to the one done in Z.

5.3 Roots of a Polynomial and Factorization

Definition 5.9 Let P ∈ K[X] and α ∈ K. We say that α is a root (or zero) of P if P (α) = 0.

Proposition 5.6 Let P ∈ K[X], then

P (α) = 0 ⇔ X − α divides P

Definition 5.10 Let k ∈ N∗. We say that α is a root of multiplicity (or order) k of P if

(X − α)k divides P while (X − α)k+1 does not divide P . When k = 1, we refer to it as a

simple root, when k = 2, it is a double root, and so on.

Example 5.7 −3 is a double root and 1 is a simple root of the polynomial P = X3 + 5X2 +

3X − 9 in R[X], since P = (X + 3)2(X − 1).

Definition 5.11 Let P = anX
n + an−1X

n−1 + . . .+ a1X + a0 be a polynomial. The derivative

of P is P ′ = nanX
n−1+(n−1)an−1X

n−2+ . . .+a1. We denote P (r) as the r-th derivative

defined by P (r+1) =
(
P (r)

)′.
Remark 5.5 The following properties are equivalent:

5.3. Roots of a Polynomial and Factorization
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1. P has a root of order r at X = α

2. P (α) = P ′(α) = . . . = P (r−1)(α) = 0 and P (r)(α) ̸= 0

Example Let the polynomial B = X4 − 2X3 + 2X2 − 2X + 1 in R[X]. We have α = 1 as a

double root of B since B(1) = 0, B′(1) = 0, B′′(1) ̸= 0.

Theorem 5.2 (Fundamental Theorem of Algebra) Every non-constant polynomial in C[X]

has at least one root in C. In other words, the irreducible polynomials in C[X] are poly-

nomials of degree 1.

The proof of this theorem goes beyond the scope of the first-year algebra course.

Theorem 5.3 (Decomposition into Irreducible Factors) For any polynomial P in K[X]

with deg P ≥ 1, there exist unique unit irreducible polynomials P1, P2, . . . , Pr, pairwise

distinct in K[X], and positive natural numbers α1, α2, . . . , αr, as well as a unique element

λ ∈ K∗ such that P = λ
∏r

i=1 P
αi
i

This is, of course, analogous to the prime factorization of a number.

Theorem 5.4 (Factorization in C) Let P ∈ C[X] with degree n ≥ 1. The factorization

of P is given by P = λ (X − α1)
k1 (X − α2)

k2 . . . (X − αr)
kr , where α1, α2, .., αr are the

distinct roots of P and k1, k2, . . . , kr are their multiplicities.

Theorem 5.5 (Factorization in R) Let P ∈ C[X] with degree n ≥ 1. The factorization

of P is given by P = λ (X − α1)
k1 (X − α2)

k2 . . . (X − αr)
kr Ql1

1 . . . Qls
s , where αi are the

distinct real roots with multiplicity ki and the Qi are irreducible polynomials of degree

2 : Qi = X2 + βiX + γi with ∆ = β2
i − 4γi < 0.

Example Let P = 2X4(X − 1)3 (X2 + 1)
2
(X2 +X + 1), which is already factored into irre-

ducible factors in R[X], but its factorization in C[X] is

P = 2X4(X − 1)3(X − i)2(X + i)2
(
X − −1+i

√
3

2

)(
X −

(
−1+i

√
3

2

)2
)
.
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5.4 Exercises

Exercise 1. Consider the polynomial P = X4 + 5X3 + 10X2 + 12X + 8.

1. Show that −2 is a double root of the polynomial P .

2. Factorize P in R[X].

3. Deduce the roots of P in C.

Exercise 2. Consider the polynomial P = X4 +X2 + 1.

1. Determine the roots of P in C.

2. Factorize P in C[X].

3. Deduce a factorization of P in R[X].

Exercise 3. Let n ∈ N. Consider the polynomial Pn = Xn.

1. Determine the remainder of the division of Pn by A1 = X2 − 3X − 4.

2. Determine the remainder of the division of Pn by A2 = X2 + 1.

Exercise 4. Consider the polynomial P = X4 − 4X3 + 5X2 − 2X − 6.

1. We aim to show that P does not have a double root.

(a) Perform the Euclidean division of 2P by 1
2
P ′. Let R be the remainder of this

division.

(b) Perform the Euclidean division of 1
2
P ′ by R. Let T be the remainder of this

division.

(c) Show that if a is a double root of P , then a is a root of R and T .

(d) Show that P does not have a double root.

2. We aim to factorize P in R[X].

(a) Let X = Y + 1 and Q(Y ) = P (Y + 1). Calculate Q(Y ).

(b) Find the roots of Q in C. Deduce the roots of P in C.

5.4. Exercises



Chapter 5. Polynomial Rings 77

(c) Factorize P in C[X], then in R[X].

Exercise 5. Consider the polynomial P = X4 + 2X3 − X2 − 2X + 10. For any z ∈ C, let

P (z) = z4 + 2z3 − z2 − 2z + 10

1. Let x ∈ R\{0}. Give the expression of P (x(1 + ı)) in the form P (x(1 + ı)) = Q(x) +

ıR(X), where Q and R are polynomials with real coefficients.

2. Do the equations Q(x) = 0 and R(x) = 0 have any common roots?

3. Find two complex conjugate roots of the equation P (z) = 0.

4. Factorize P as a product of two second-degree trinomials with real coefficients and

deduce the complex roots of P .

Exercise 6. Determine the real numbers p and q such that the polynomial P = X3 + pX + q

is divisible by the polynomial Q = X2 + 3X − 1.

Exercise 7. Let n ∈ N. Show that the polynomial X2 −X + 1 divides the polynomial Pn =

(X − 1)n+2 +X2n+1.

Exercise 8. Let n ∈ N\{0, 1}. Calculate the remainder of the Euclidean division of the

polynomial Pn = (X − 3)2n+ (X − 2)n − 2 by the polynomial (X − 2)2.

Exercise 9. Factorize the polynomial P = X6 + 1 in R[X].

Exercise 10. Determine λ ∈]0,∞ [ such that the polynomial P = X3 − 3X + λ has a double

root. What is the other root of P?

Exercise 11. Let n ∈ N. Show that the polynomial Pn = 1 +X + X2

2
+ X3

3!
+ . . . + Xn

n!
does

not have multiple roots.

Exercise 12. Determine all polynomials P such that (X2 + 1)P ′′ − 6P = 0 and P (1) = 2.

Exercise 13. Consider the polynomial P = X4 + 12X − 5. Factorize P in R[X] and in C[X],

knowing that it has two roots whose product is -1.
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Exercise 14. Solve the system in (x, y, z) ∈ R3:
x+ y + z = 2

xyz = −1
2

1
x
+ 1

y
+ 1

z
= 1

2

Exercise 15. Let n ∈ N\{0}. Factorize the polynomial

Pn = 1−X+
X(X − 1)

2!
−X(X − 1)(X − 2)

3!
+. . .+(−1)n

X(X − 1)(X − 2) . . . (X − n+ 1)

n!

Exercise 16. Determine all polynomials P ∈ R[X] such that P ′ divides P .

5.4. Exercises
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6.1 Exam 01

Exercise 1. (6 p)

I) Let P1,P2 be two propositions. Prove the following properties in the same truth table:

1. (¬P1 ⇒ P2) ⇔ (P1 ∧ ¬P2)

2. (P1 ⇒ P2) ⇔ (¬P2 ⇒ ¬P1)

II) Let P,Q be two polynomials in K[X]. If P ×Q = 0, show that either P = 0 or Q = 0.

Exercise 02. (8 p) Let A and B be two subsets of a set E. The symmetric difference of A

and B, denoted A∆B, is defined as

A∆B = (A\B) ∪ (B\A)

1. Is the symmetric difference of two sets commutative?

2. Determine the following sets: A∆∅, A∆A, and A∆B if A ⊂ B.

3. Show that A∆B = CEA∆CEB.

4. Show that A∆B = (A ∩ CEB) ∪ (B ∩ CEA).

5. Determine the set (A∆B) ∪ (A∆CEB).

79
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Exercise 03. (6 p) Let (G, ·) be a group, and for any a ∈ G, define the function

fa : G −→ G

x 7→ fa(x) = axa−1

1. Show that fa is a homomorphism of G.

2. Calculate the ker (fa). What can you conclude?

3. Show that fa ◦ fb = fab.

4. Is fa ◦ fb an automorphism of G?

6.1.1 Solution

Exercise 1. (6 p)

I) -

P1 P2 ¬P1 ¬P2 P1 ⇒ P2 ¬P2 ⇒ ¬P1 ¬(P1 ⇒ P2) P1 ∧ ¬P2 ⇔ (1◦) ⇔ (2◦)

1 1 0 0 1 1 0 0 1 1

1 0 0 1 0 0 1 1 1 1

0 1 1 0 1 1 0 0 1 1

0 0 1 1 1 1 0 0 1 1

II) Let (P ;Q) ∈ K[X] such that P ×Q = 0. Then we have deg(P ) + deg(Q) = deg(P ×Q) =

−∞.

Therefore, either deg(P ) or deg(Q) equals −∞, which is exactly the required property.

Exercise 02. (8 p)

1. It is commutative because ∪ is commutative.

2. A∆∅ = (A\∅) ∪ (∅\A) = A, A∆A = A, and if A ⊂ B then A∆B = B\A.

6.1. Exam 01
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3.
A∆B = {x ∈ E, (x ∈ A\B) ∨ (x ∈ B\A)}

= {x ∈ E, (x ∈ A ∧ x /∈ B) ∨ (x ∈ B ∧ x /∈ A)}

= {x ∈ E, (x /∈ CEA ∧ x ∈ CEB) ∨ (x /∈ CEB ∧ x ∈ CEA)}

= {x ∈ E, (x ∈ CEB\CEA) ∨ (x ∈ CEA\CEB)}

= CEA∆CEB.

4. A∆B = (A ∩ CEB) ∪ (B ∩ CEA)

A∆B = {x ∈ E, (x ∈ A\B) ∨ (x ∈ B\A)}

= {x ∈ E, (x ∈ A ∧ x /∈ B) ∨ (x ∈ B ∧ x /∈ A)}

= {x ∈ E, (x ∈ A ∧ x ∈ CEB) ∨ (x ∈ B ∧ x ∈ CEA)}

= {x ∈ E, x ∈ (A ∩ CEB) ∨ x ∈ (B ∩ CEA)}

= (A ∩ CEB) ∪ (B ∩ CEA) .

5. We have

(A∆B) ∪ (A∆CEB) = ((A ∩ CEB) ∪ (B ∩ CEA)) ∪ ((A ∩B) ∪ (CEB ∩ CEA))

= ((A ∩ CEB) ∪ (A ∩B)) ∪ ((B ∩ CEA) ∪ (CEB ∩ CEA))

= (A ∩ (CEB ∪B)) ∪ ((B ∪ CEB) ∩ CEA)

= (A ∩ E) ∪ (E ∩ CEA)

= A ∪ CEA = E

Exercise 03. (6 p)

1. fa is a homomorphism of G.

For any x, y ∈ G, fa(xy) = a(xy)a−1 = a (xa−1ay) a−1 = (axa−1) (aya−1) = fa(x)fa(y).

2.
ker (fa) = {x ∈ G, fa(x) = 1}

= {x ∈ G, axa−1 = 1
}

= {x ∈ G, a−1axa−1a = a−1a
}

= {x ∈ G, x = 1}

=

1}
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So fa is injective.

3. Let x ∈ G

(fa ◦ fb) (x) = (fa (fb(x))) =
(
fa

(
bxb−1

))
= abxb−1a−1 = (ab)x(ab)−1 = fab(x)

4. (fa ◦ fb is an automorphism ofG) ⇐⇒ (fab is a bijective homomorphism )

i) fab is a homomorphism

fab(xy) = (ab)xy(ab)−1 = (ab)x(ab)−1(ab)y(ab)−1 = fa(x)fa(y)

ii)

(a) fab is injective

ker (fab) = {x ∈ G, fab(x) = 1}

= {x ∈ G, (ab)x(ab)−1 = 1}

= {1}

So fab is injective.

(b) fab is surjective: Let y ∈ G, then ∃x = (ab)−1yab ∈ G such that fab(x) =

fab ((ab)
−1y(ab)) = y.

6.2 Exam 02

Exercise 01 (8 p)

Let P1,P2, and P3 be three propositions. Prove the following properties.

1. (P1 ∨ (P2 ∧ P3)) ⇔ ((P1 ∨ P2) ∧ (P1 ∨ P3))

2. (P1 ∨ (¬P2 ∨ P3)) ⇔ ((P1 ∨ ¬P2) ∧ (P1 ∨ ¬P3))

Exercise 02 (8 p) Let A and B be two subsets of a set E. The symmetric difference of A

and B, denoted as A∆B, is defined as

A∆B = (A\B) ∪ (B\A)

6.2. Exam 02
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1. Is the symmetric difference of two sets commutative?

2. Specify the following sets: A∆∅, A∆A, and A∆B if A ⊂ B.

3. Show that A∆B = CEA∆CEB.

4. Show that A∆B = (A ∩ CEB) ∪ (B ∩ CEA).

5. Specify the set (A∆B) ∪ (A∆CEB).

Exercise 03 (4 p) Determine the injections, surjections, and bijections among the following

functions:
f : R → R g : R+ → R

x 7→ f(x) = x2 7→ g 7→ g(x) = x2

h : R → R+ k : R+ → R+

x 7→ h(x) = x2 7→ k(x) = x2

6.2.1 Solution

Exercise 01 (8 p)

1. (P1 ∨ (P2 ∧ P3)) ⇔ ((P1 ∨ P2) ∧ (P1 ∨ P3))

P1 P2 P3 (P2 ∧ P3) P1 ∨ (P2 ∧ P3) P1 ∨ P2 P1 ∨ P3 (P1 ∨ P2) ∧ (P1 ∨ P3) ⇔

1 1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1 1

1 0 1 0 1 1 1 1 1

1 0 0 0 1 1 1 1 1

0 1 1 1 1 1 1 0 1

0 1 0 0 0 1 0 1 1

0 0 1 0 0 0 1 0 1

0 0 0 0 0 0 0 1 1

2. (P1 ∨ (¬P2 ∨ P3)) ⇔ ((P1 ∨ ¬P2) ∧ (P1 ∨ ¬P3))

We have (¬P2 ∨ P3) ⇔ (¬P2 ∧ ¬P3), so

(P1 ∨ (¬P2 ∨ P3)) ⇔ (P1 ∨ (¬P2 ∧ ¬P3))
(1)⇔ ((P1 ∨ ¬P2) ∧ (P1 ∨ ¬P3))

6.2. Exam 02
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Exercise 02 (8 p)

1. It is commutative because ∪ is commutative.

2. A∆∅ = (A\∅) ∪ (∅\A) = A,A∆A = A and if A ⊂ B then A∆B = B\A.

3.
A∆B = {x ∈ E, (x ∈ A\B) ∨ (x ∈ B\A)}

= {x ∈ E, (x ∈ A ∧ x /∈ B) ∨ (x ∈ B ∧ x /∈ A)}

= {x ∈ E, (x /∈ CEA ∧ x ∈ CEB) ∨ (x /∈ CEB ∧ x ∈ CEA)}

= {x ∈ E, (x ∈ CEB\CEA) ∨ (x ∈ CEA\CEB)}

= CEA∆CEB.

4. A∆B = (A ∩ CEB) ∪ (B ∩ CEA)

A∆B = {x ∈ E, (x ∈ A\B) ∨ (x ∈ B\A)}

= {x ∈ E, (x ∈ A ∧ x /∈ B) ∨ (x ∈ B ∧ x /∈ A)}

= {x ∈ E, (x ∈ A ∧ x ∈ CEB) ∨ (x ∈ B ∧ x ∈ CEA)}

= {x ∈ E, x ∈ (A ∩ CEB) ∨ x ∈ (B ∩ CEA)}

= (A ∩ CEB) ∪ (B ∩ CEA) .

5. Ona

(A∆B) ∪ (A∆CEB) = ((A ∩ CEB) ∪ (B ∩ CEA)) ∪ ((A ∩B) ∪ (CEB ∩ CEA))

= ((A ∩ CEB) ∪ (A ∩B)) ∪ ((B ∩ CEA) ∪ (CEB ∩ CEA))

= (A ∩ (CEB ∪B)) ∪ ((B ∪ CEB) ∩ CEA)

= (A ∩ E) ∪ (E ∩ CEA)

= A ∪ CEA = E

Exercise 03 (4 p) Injections, surjections, and bijections:

• g is injective because for any x1, x2 ∈ R+, if f (x1) = f (x2) then x1 = x2.

• h is surjective because for any y ∈ R+, there exists x ∈ R such that f(x) = y.

• k is bijective.

6.2. Exam 02
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6.3 Exam 03

Exercise 01 (5p)

I) Let P1, P2, and P3 be propositions. Prove that:

1. (P1 ∨ (P2 ∧ P3)) ⇔ ((P1 ∨ P2) ∧ (P1 ∨ P3))

II) Let R be an equivalence relation on a set E. Prove that:

1. ∀x, y ∈ E, xRy ⇐⇒ x̄ = ȳ.

2. ∀x, y ∈ E, xRy =⇒ x̄ ∩ ȳ = ϕ

Exercise 02 (7p) Let g : E −→ F be a function. Let A and B be two subsets of F . Prove

that:

1. A\B = A ∩ CFB

2. CF (A ∪B) = CFA ∩ CFB

3. g−1(A ∪B) = g−1(A) ∪ g−1(B)

4. g−1(A ∩B) = g−1(A) ∩ g−1(B)

5. g−1 (CFB) = CEg
−1(B)

6. Explicitly describe the set g−1(A∆B)

Exercise 03 (5p) Let (R,+) and
(
R∗

+,×
)
be two groups. Consider the function

f : R −→ R∗
+

x 7→ f(x) = 2x

1. Show that f is a homomorphism from (R,+) to
(
R∗

+,×
)
.

2. Calculate the ker(f). What do you conclude?

3. Is f surjective?

Exercise 04 (5p) Let h : E −→ F be a function. B is a subset of F . Show that

(
B = h

(
h−1(B)

))
⇐⇒ (h is surjective )

6.3. Exam 03
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6.3.1 Solution

Exercise 01 (5p)

I) (P1 ∨ (P2 ∧ P3)) ⇔ ((P1 ∨ P2) ∧ (P1 ∨ P3)).

P1 P2 P3 (P2 ∧ P3) P1 ∨ (P2 ∧ P3) P1 ∨ P2 P1 ∨ P3 (P1 ∨ P2) ∧ (P1 ∨ P3) ⇐⇒

1 1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1 1

1 0 1 0 1 1 1 1 1

1 0 0 0 1 1 1 1 1

0 1 1 1 1 1 1 1 1

0 1 0 0 0 1 0 0 1

0 0 1 0 0 0 1 0 1

0 0 0 0 0 0 0 0 1

II)

1) Let z ∈ x̄.

z ∈ x̄ ⇐⇒ xRz

(since xRy) ⇐⇒ zRx

⇐⇒ zRy

⇐⇒ z ∈ ȳ

2) We will prove the contrapositive (x̄ ∩ ȳ ̸= ∅ =⇒ xRy)

z ∈ x̄ ∩ ȳ =⇒ z ∈ x̄ and z ∈ ȳ

=⇒ xRz and zRy

=⇒ xRy

Exercise 02 (7p) Let g : E −→ F be a function. Let A and B be two subsets of F . Prove

that:

1. x ∈ A\B ⇐⇒ x ∈ A ∧ x /∈ B ⇐⇒ x ∈ A ∧ x ∈ CFB ⇐⇒ x ∈ A ∩ CFB
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2.

x ∈ CF (A ∪B) ⇐⇒ x ∈ F ∧ (x /∈ (A ∪B)) ⇐⇒ x ∈ F ∧ (x /∈ A ∧ x /∈ B) ⇐⇒

(x ∈ F ∧ x /∈ A) ∧ (x ∈ F ∧ x /∈ B) ⇐⇒ x ∈ F\A ∧ x ∈ F\B ⇐⇒ x ∈ CFA ∩ CFB

3.

x ∈ g−1(A ∪B) ⇐⇒ g(x) ∈ A ∪B ⇐⇒ g(x) ∈ A ∨ g(x) ∈ B

⇐⇒ x ∈ g−1(A) ∨ x ∈ g−1(B) ⇐⇒ x ∈ g−1(A) ∪ g−1(B)

4.

x ∈ g−1(A ∩B) ⇐⇒ g(x) ∈ (A ∩B) ⇐⇒ g(x) ∈ A ∧ g(x) ∈ B

⇐⇒ x ∈ g−1(A) ∧ x ∈ g−1(B) ⇐⇒ x ∈ g−1(A) ∩ g−1(B)

5. x ∈ g−1 (CFB) ⇐⇒ g(x) ∈ CFB ⇐⇒ g(x) /∈ B ⇐⇒ x /∈ g−1(B) ⇐⇒ x ∈ CEg
−1(B)

6. g−1(A∆B) = g−1((A\B)∪(B\A)) (2)
= g−1(A\B)∪g−1(B\A) (1)

= g−1 (A ∩ CFB)∪g−1 (CFA ∩B)

(3)
= (g−1(A) ∩ g−1 (CFB))∪(g−1 (CFA) ∩ g−1(B))

(4)
= (g−1(A) ∩ CEg

−1(B))∪(CEg
−1(A) ∩ g−1(B))

(4)
= (g−1(A) ∩ CEg

−1(B))∪(CEg
−1(A) ∩ g−1(B))

(1)
= (g−1(A)\f−1(B))∪(g−1(B)\g−1(A)) =

g−1(A)∆g−1(B).

Exercise 03 (5p)

1. f is a homomorphism from (R,+) to
(
R∗

+, ·
)
.

For x1, x2 ∈ R, we have f (x1 + x2) = 2x1+x2 = 2x12x2 = f (x1) f (x2).

2.
ker(f) = {x ∈ R : f(x) = 1}

= {x ∈ R : 2x = 1}

= {x ∈ R : ln (2x) = ln(1) = 0}

= {x ∈ R : x ln(2) = 0}

= {x ∈ R : x = 0}

= {0}

Therefore, f is injective.
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3. f is surjective because ∀y ∈ R∗
+, ∃x = ln(y)

ln(2) ∈ R such that

f(x) = f

(
ln(y)
ln(2)

)
= 2

ln(y)
ln(2) = eln(2ln(y) ln(2) = e

ln(y)
ln(2) ln(2) = eln(y) = y

Exercise 04 (5p)

1) (B = h (h−1(B))) =⇒ (h is surjective) Assume that B = h (h−1(B)) for any subset B of F .

[(h is surjective ) ⇐⇒ (h(E) = F )] We have h(E) ⊂ F because h is a function. It

remains to show that F ⊂ h(E). According to the proposition, we have F = h (h−1(F ))

but h−1(F ) ⊂ E, so h (h−1(F )) ⊂ h(E), hence F ⊂ h(E).

2) ( h is surjective) =⇒ (B = h (h−1(B))) Assume that h is surjective. We need to show that

B = h (h−1(B)):

(i) B ⊂ h (h−1(B)), let y ∈ B, then ∃x ∈ E such that h(x) = y (since h is surjective),

therefore h(x) ∈ B =⇒ x ∈ h−1(B) =⇒ h(x) ∈ h (h−1(B)) =⇒ y ∈ h (h−1(B))

(ii) h (h−1(B)) ⊂ B, let y ∈ h (h−1(B)), then ∃x ∈ h−1(B) such that h(x) = y, hence

h(x) = y ∈ B.

6.4 Examen 04

Exercise 01 (6p) Let (G1, ∗) and (G2,⊥) be two groups, and f be a homomorphism from

(G1, ∗) to (G2,⊥). Prove that:

1. f (e1) = e2

2. ∀x ∈ G1 : [f(x)]′ = f (x′).

3. ker(f) is a subgroup of G1.

4. (ker(f) = e1 ) ⇐⇒ (f is injective).

Exercise 02 (8p) Let g : E −→ F be a function. Let A and B be two subsets of F . Prove

that:

1. A\B = A ∩ CFB
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2. CF (A ∪B) = CFA ∩ CFB

3. g−1(A ∪B) = g−1(A) ∪ g−1(B)

4. g−1(A ∩B) = g−1(A) ∩ g−1(B)

5. g−1 (CFB) = CEg
−1(B)

6. Explicit the set g−1(A∆B)

Exercise 03 (6p) Prove the following propositions by contrapositive or by contradiction:

1. (n2 is even) =⇒ (n is even).(∀n ∈ N)

2.
√
2 /∈ Q

6.4.1 Solution

Exercise 01 (6p)

1. f (e1) = e2.

Proof: We have e1 = e1 ∗ e1, so f (e1) = f (e1 ∗ e1)
f hom
= f (e1) ⊥ f (e1). This implies

f (e1) = e2.

2. ∀x ∈ G1 : [f(x)]′ = f (x′).

Proof: We have f (x′) ⊥ f(x) = f (x′ ∗ x) = f (e1)
(1)
= e2. Therefore, (f(x))′ = f (x′).

3. ker(f) is a subgroup of G1.

ker(f) is a subgroup of G1 if and only if

∀(x, y) ∈ ker(f)× ker(f) =⇒ x ∗ y′ ∈ ker(f).

For any x, y ∈ ker(f), we have f(x) = e2 and f(y) = e2. To show that x ∗ y′ ∈ ker(f), we

evaluate f (x ∗ y′) as follows:

f (x ∗ y′) = f(x) ⊥ f (y′)
(1)
= f(x) ⊥ [f(y)]′ = e2 ⊥ e2 = e2.

Thus, f (x ∗ y′) = e2 implies x ∗ y′ ∈ ker(f).
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4. (ker(f) = {e1}) ⇐⇒ (f is injective).

=⇒) Assume that ker(f) = {e1}. Let x1, x2 ∈ G1 such that f (x1) = f (x2). We

have f (x′
1) ⊥ f (x1) = f (x′

1) ⊥ f (x2). Since f is a homomorphism, we obtain

e1 = f (x′
1 ∗ x2), which implies x′

1 ∗ x2 ∈ ker(f) = {e1}. Therefore, x′
1 ∗ x2 = e1,

which implies x1 = x2. This shows that f is injective.

⇐=) Assume that f is injective.

Let x ∈ ker(f). Then f(x) = e2 = f (e1), which implies x = e1 (since f is injective).

Thus, ker(f) = {e1}.

Exercise 02 (8p) Let g : E −→ F be a function, and let A and B be two subsets of F . We

need to show the following:

1. x ∈ A\B ⇐⇒ x ∈ A ∧ x /∈ B ⇐⇒ x ∈ A ∧ x ∈ CFB ⇐⇒ x ∈ A ∩ CFB

2.

x ∈ CF (A ∪B) ⇐⇒ x ∈ F ∧ (x /∈ (A ∪B))

⇐⇒ x ∈ F ∧ (x /∈ A ∧ x /∈ B)

⇐⇒ (x ∈ F ∧ x /∈ A) ∧ (x ∈ F ∧ x /∈ B)

⇐⇒ x ∈ F\A ∧ x ∈ F\B

⇐⇒ x ∈ CFA ∩ CFB

3.

x ∈ g−1(A ∪B) ⇐⇒ g(x) ∈ A ∪B

⇐⇒ g(x) ∈ A ∨ g(x) ∈ B

⇐⇒ x ∈ g−1(A) ∨ x ∈ g−1(B)

⇐⇒ x ∈ g−1(A) ∪ g−1(B)
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4.

x ∈ g−1(A ∩B) ⇐⇒ g(x) ∈ (A ∩B)

⇐⇒ g(x) ∈ A ∧ g(x) ∈ B

⇐⇒ x ∈ g−1(A) ∧ x ∈ g−1(B)

⇐⇒ x ∈ g−1(A) ∩ g−1(B)

5. x ∈ g−1 (CFB) ⇐⇒ g(x) ∈ CFB ⇐⇒ g(x) /∈ B ⇐⇒ x /∈ g−1(B) ⇐⇒ x ∈ CEg
−1(B)

6. g−1(A∆B) = g−1((A\B)∪(B\A)) (2)
= g−1(A\B)∪g−1(B\A) (1)

= g−1 (A ∩ CFB)∪g−1 (CFA ∩B)

(3)
= (g−1(A) ∩ g−1 (CFB))∪(g−1 (CFA) ∩ g−1(B))

(4)
= (g−1(A) ∩ CEg

−1(B))∪(CEg
−1(A) ∩ g−1(B))

(4)
= (g−1(A) ∩ CEg

−1(B))∪(CEg
−1(A) ∩ g−1(B))

(1)
= (g−1(A)\f−1(B))∪(g−1(B)\g−1(A)) =

g−1(A)∆g−1(B)

Exercise 03 (6p) Prove the following propositions by contrapositive or by contradiction:

1. (n2 is even ) =⇒ (n is even ).(∀n ∈ N)

By contrapositive, it suffices to show the implication

(n is odd) =⇒
(
n2 is odd

)
.

Assume that n is odd. Then n = 2k + 1, which implies n2 = (2k + 1)2 = 2(k2 + k) + 1 =

2k′ + 1, where k′ is an integer. We see that n2 is odd. This proves the implication (∗),

which completes the proof.

2.
√
2 /∈ Q. We use proof by contradiction.

Suppose that
√
2 ∈ Q, so

√
2 = p

q
with p ∧ q = 1. Then we have 2 = p2

q2
, which implies

p2 = 2q2. It follows that p is even, and by the same reasoning, we find that q is even.

This contradicts the assumption that p ∧ q = 1.
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6.5 Exam 05

Exercise 01 (5p) Let
(
R∗

+,×
)
and (R,+) be two groups. Consider the function

f : R∗
+ −→ R

x 7→ f(x) = ln(x)

1. Show that f is a homomorphism from
(
R∗

+,×
)
to (R,+).

2. Calculate the ker(f). What can you conclude?

3. Is f surjective?

Exercise 02 (5p) Let g : E −→ F be a function. Let A,B, and C be subsets of E. Show

that:

1. A\B = A ∩ CEB

2. CE(A ∪B) = CEA ∩ CEB

3. A\(B ∪ C) = (A\B) ∩ (A\C)

4. [g(A ∩B) = g(A) ∩ g(B)] =⇒ [g is injective].

Exercise 03 (5p) Let:

f : N −→ N

n 7→ f(n) = n+ 1
and

g : N −→ N

n 7→ g(n) =


0 if n = 0

n− 1 if n ̸= 0

1. Study the injectivity and surjectivity of f and g.

2. Calculate f ◦ g and g ◦ f .

Exercise 04 (4p) Let R be a binary relation on R3 defined by

(x, y, z)R(a, b, c) ⇐⇒ (|x− a| ≤ b− y and z = c)

1. Show that it is a partial order relation. Is it total?
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6.5.1 Solution

Exercise 01 (5p)

1. f is a homomorphism from
(
R∗

+, ·
)
to (R,+).

Let x1, x2 ∈ R∗
+. We have f (x1 · x2) = ln (x1 · x2) = ln (x1) + ln (x2) = f (x1) + f (x2).

2.
ker(f) =

{
x ∈ R∗

+ : f(x) = 0
}

=
{
x ∈ R∗

+ : ln(x) = 0
}

=
{
x ∈ R∗

+ : eln(x) = e0 = 1
}

=
{
x ∈ R∗

+ : x = 1
}

= {1}

Therefore, f is injective.

3. f is surjective because:

For any y ∈ R, there exists x = ey ∈ R∗
+ such that f(x) = f (ey) = ln (ey) = y.

Exercise 02 (5p) Let g : E −→ F be a function, and let A,B, and C be three subsets of E.

We need to prove the following:

1. x ∈ A\B ⇐⇒ x ∈ A ∧ x /∈ B ⇐⇒ x ∈ A ∧ x ∈ CEB ⇐⇒ x ∈ A ∩ CEB

2. x ∈ CE(A ∪B) ⇐⇒ x ∈ E ∧ (x /∈ (A ∪B)) ⇐⇒ x ∈ E ∧ (x /∈ A ∧ x /∈ B) ⇐⇒

(x ∈ E ∧ x /∈ A) ∧ (x ∈ E ∧ x /∈ B) ⇐⇒ x ∈ E\A ∧ x ∈ E\B ⇐⇒ x ∈ CEA ∩ CEB

3. A\(B ∪ C)
(1)
= A ∩ CE(B ∪ C)

(2)
= A ∩ (CEB ∩ CEC) = (A ∩ CEB) ∩ (A ∩ CEC) = (A\B) ∩

(A\C)

4. Let x1, x2 ∈ E such that g (x1) = g (x2).

Let A = {x1} and B = {x2}.

We have g (x1) = g (x2) ∈ g(A) ∩ g(B) = g(A ∩B).

Therefore, g(A ∩B) ̸= ∅, and consequently, A ∩B ̸= ∅.
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This implies x1 = x2.

Exercise 03 (6p)

1)

• f is injective if and only if ∀n1, n2 ∈ N : f (n1) = f (n2) =⇒ n1 = n2.

Let n1, n2 ∈ N such that f (n1) = f (n2). Then n1 + 1 = n2 + 1, which implies

n1 = n2. Thus, f is injective.

• f is not surjective because: ∃y = 0 ∈ N such that ∀n ∈ N, f(n) ̸= y.

• g is not injective because: ∃n1 = 0, n2 = 1 ∈ N such that g(0) = 0 = g(1) but 0 ̸= 1.

• g is surjective if and only if: ∀y ∈ N, ∃n = y + 1 ∈ N such that g(n) = g(y + 1) = y.

2)

• For any n ∈ N, (f ◦ g)(n) = f(g(n)) = g(n) + 1 =

 1 if n = 0

n if n ̸= 0
.

• For any n ∈ N, (g ◦ f)(n) = g(f(n)) = g(n+ 1) = n.

Exercise 04 (4p)

1) R is reflexive if (x, y, z)R(x, y, z). Since (|x− x| = 0 ≤ y − y = 0 and z = z), we have R is

reflexive.

2) R is anti-symmetric if [(x, y, z)R(a, b, c) and (a, b, c)R(x, y, z)] =⇒ (x, y, z) = (a, b, c). Sup-

pose (x, y, z)R(a, b, c) and (a, b, c)R(x, y, z). This implies [(|x−a| ≤ b−y(∗) and |a−x| ≤

y− b(∗∗)) and z = c], then (∗)+ (∗∗) gives x = a, replacing x = a in (∗) and (∗∗) we find

y = b.

Therefore, (x, y, z) = (a, b, c), and R is anti-symmetric.

3) R is transitive if (x, y, z)R(a, b, c) and (a, b, c)R(α, β, γ) =⇒ (x, y, z)R(α, β, γ). Suppose

(x, y, z)R(a, b, c) and (a, b, c)R(α, β, γ), this implies [(|x− a| ≤ b− y (∗) and |a− α| ≤

β − b(∗∗)) and z = c = γ]. Then (∗) + (∗∗) gives (|x− a| + |a− α| ≤ b− y + β − b and
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z = c = γ), and since (|x− α| = |x− a+ a− α| ≤ |x− a|+ |a− α| ≤ y + β and z = γ),

we have (x, y, z)R(α, β, γ).

Therefore, R is transitive. From (1), (2), and (3), we can conclude that R is a partial

order relation on R3.

• R is not total because ∃(x, y, z) = (0, 0, 2) ∈ R3 and (a, b, c) = (0, 0, 3) ∈ R3 such that

(0, 0, 2)R(0, 0, 3) and (0, 0, 3)R(0, 0, 2).

Exercise 05 (4p) Let f : E −→ F and g : F −→ G be two arbitrary functions.

1. (If f and g are injective) =⇒ g ◦ f is injective.

2. (If f and g are surjective) =⇒ g ◦ f is surjective.

3. (If f and g are bijective) =⇒ ((g ◦ f)−1 = f−1 ◦ g−1).

6.6 Exam 06

Exercise 01 (6p)

I) Let P1,P2, and P3 be propositions. Prove that:

1. (P1 ∨ (P2 ∧ P3)) ⇔ ((P1 ∨ P2) ∧ (P1 ∨ P3))

II) Let R be an equivalence relation on a set E. Show that:

1. ∀x, y ∈ E, xRy ⇐⇒ x̄ = ȳ.

2. ∀x, y ∈ E, xRy =⇒ x̄ ∩ ȳ = ∅

Exercise 02 (6p) Let g : E −→ F be a function. Let A and B be two subsets of F . Show

that:

1. A\B = A ∩ CFB

2. CF (A ∪B) = CFA ∩ CFB

3. g−1(A ∪B) = g−1(A) ∪ g−1(B)
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4. g−1(A ∩B) = g−1(A) ∩ g−1(B)

5. g−1 (CFB) = CEg
−1(B)

6. Explicitly determine the set g−1(A∆B)

Exercise 03 (3p) Consider the groups (R,+) and
(
R∗

+,×
)
. Let the function

f : R −→ R∗
+

x 7→ f(x) = 2x

1. Show that f is a homomorphism from (R,+) to
(
R∗

+,×
)
.

2. Calculate ker(f). What do you conclude?

3. Is f surjective?

Exercise 04 (5p) Let h : E −→ F be a function. B is a subset of F . Show that

(
B = h

(
h−1(B)

))
⇐⇒ (h is surjective )

6.6.1 Solution

Exercise 01 (5p)

I) (P1 ∨ (P2 ∧ P3)) ⇔ ((P1 ∨ P2) ∧ (P1 ∨ P3)).

P1 P2 P3 (P2 ∧ P3) P1 ∨ (P2 ∧ P3) P1 ∨ P2 P1 ∨ P3 (P1 ∨ P2) ∧ (P1 ∨ P3) ⇐⇒

1 1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1 1

1 0 1 0 1 1 1 1 1

1 0 0 0 1 1 1 1 1

0 1 1 1 1 1 1 1 1

0 1 0 0 0 1 0 0 1

0 0 1 0 0 0 1 0 1

0 0 0 0 0 0 0 0 1
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II)

1) Let z ∈ x̄.

z ∈ x̄ ⇐⇒ xRz

(since xRy) ⇐⇒ zRx

⇐⇒ zRy

⇐⇒ z ∈ ȳ

2) We will prove the contrapositive (x̄ ∩ ȳ ̸= ∅ =⇒ xRy).

z ∈ x̄ ∩ ȳ =⇒ z ∈ x̄ and z ∈ ȳ

=⇒ xRz and zRy

=⇒ xRy

Exercise 02 (7p) Let g : E −→ F be a function. Let A and B be two subsets of F . Show

that:

1. x ∈ A\B ⇐⇒ x ∈ A ∧ x /∈ B ⇐⇒ x ∈ A ∧ x ∈ CFB ⇐⇒ x ∈ A ∩ CFB

2. x ∈ CF (A ∪B) ⇐⇒ x ∈ F ∧ (x /∈ (A ∪B)) ⇐⇒ x ∈ F ∧ (x /∈ A ∧ x /∈ B) ⇐⇒

(x ∈ F ∧ x /∈ A) ∧ (x ∈ F ∧ x /∈ B) ⇐⇒ x ∈ F\A ∧ x ∈ F\B ⇐⇒ x ∈ CFA ∩ CFB

3. x ∈ g−1(A ∪B) ⇐⇒ g(x) ∈ A ∪B ⇐⇒ g(x) ∈ A ∨ g(x) ∈ B

⇐⇒ x ∈ g−1(A) ∨ x ∈ g−1(B) ⇐⇒ x ∈ g−1(A) ∪ g−1(B)

4. x ∈ g−1(A ∩B) ⇐⇒ g(x) ∈ (A ∩B) ⇐⇒ g(x) ∈ A ∧ g(x) ∈ B ⇐⇒

x ∈ g−1(A) ∧ x ∈ g−1(B) ⇐⇒ x ∈ g−1(A) ∩ g−1(B)

5. x ∈ g−1 (CFB) ⇐⇒ g(x) ∈ CFB ⇐⇒ g(x) /∈ B ⇐⇒ x /∈ g−1(B) ⇐⇒ x ∈ CEg
−1(B)

6. g−1(A∆B) = g−1((A\B)∪(B\A)) (2)
= g−1(A\B)∪g−1(B\A) (1)

= g−1 (A ∩ CFB)∪g−1 (CFA ∩B)

(3)
= (g−1(A) ∩ g−1 (CFB))∪(g−1 (CFA) ∩ g−1(B))

(4)
= (g−1(A) ∩ CEg

−1(B))∪(CEg
−1(A) ∩ g−1(B))

(4)
= (g−1(A) ∩ CEg

−1(B))∪(CEg
−1(A) ∩ g−1(B))

(1)
= (g−1(A)\f−1(B))∪(g−1(B)\g−1(A)) =

g−1(A)∆g−1(B).

6.6. Exam 06



Chapter 6. Solved Exams 98

Exercise 03 (5p)

1. f is a homomorphism from (R,+) to
(
R∗

+, ·
)
.

Let x1, x2 ∈ R. We have f (x1 + x2) = 2x1+x2 = 2x1 · 2x2 = f (x1) · f (x2).

2.
ker(f) = {x ∈ R : f(x) = 1}

= {x ∈ R : 2x = 1}

= {x ∈ R : ln (2x) = ln(1) = 0}

= {x ∈ R : x ln(2) = 0}

= {x ∈ R : x = 0}

= {0}

Therefore, f is injective.

3. f is surjective because:

∀y ∈ R∗
+,∃x = ln(y)

ln(2) ∈ R : f(x) = f
(

ln(y)
ln(2)

)
= 2

ln(y)
ln(2) = eln(2ln(y) ln(2)

)
= e

ln(y)
ln(2) ln(2) = eln(y) =

y

Exercise 04 (3p)

1) (B = h (h−1(B))) =⇒ (h is surjective) Suppose B = h (h−1(B)) for any subset B of F .

[(h is surjective ) ⇐⇒ (h(E) = F )] We have h(E) ⊂ F because h is a function, and it

remains to show that F ⊂ h(E). According to the proposition, we have F = h (h−1(F )),

but h−1(F ) ⊂ E, so h (h−1(F )) ⊂ h(E), and therefore F ⊂ h(E).

2) ( h is surjective) =⇒ (B = h (h−1(B))) Suppose h is surjective, and we need to show that

B = h (h−1(B)):

(i) B ⊂ h (h−1(B)), let y ∈ B then ∃x ∈ E such that h(x) = y (since h is surjective), so

h(x) ∈ B =⇒ x ∈ h−1(B) =⇒ h(x) ∈ h (h−1(B)) =⇒ y ∈ h (h−1(B))

(ii) h (h−1(B)) ⊂ B, let y ∈ h (h−1(B)) then ∃x ∈ h−1(B), h(x) = y so h(x) = y ∈ B.
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6.7 Exam 07

Exercise 01 (4p)

1) Let n ∈ N. Prove by cases that n(n2 + 2) is a multiple of 3.

2) Prove by contradiction that (∀n ∈ N∗,∃p ∈ N∗ : n = p2) ⇒ (∀q ∈ N∗ : 2n ̸= q2).

Exercise 02 (6p)

1. Solve the equation −x2 + x = 0 in R.

2. For each a ∈ R, solve the equation −x2 + x− a = 0 in R.

3. Let f : R → R′ be a function defined by: For all x ∈ R, f(x) = x(1− x). Is f injective? Is

f surjective?

4. Show that the function g :
[
1
2
,+∞[→]−∞, 1

4

]
defined by g(x) = f(x) is bijective.

Exercise 03 (4p)

Let R be the relation defined on Z as:

∀a, b ∈ Z : aRb ⇔ (a− b is divisible by 2 or by 3)

• Study the reflexivity, symmetry, antisymmetry, and transitivity of R. Conclude.

Exercise 04 (6p)

Let ∗ be the composition law defined on R as: ∀x, y ∈ R : x ∗ y = x+ y + 1
10
.

1. Show that (R, ∗) is an abelian group.

2. Show that the function g defined as: g(x) = 5x + 1
2
is a homomorphism from the group

(R, ∗) to the group (R,+).

3. Let H =
{

2n−1
10

, n ∈ Z
}
. Show that (H, ∗) is a subgroup of (R, ∗).
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6.7.1 Solution

Exercise01 (4p)

1) Let n ∈ N. We have:

1st case : If n = 3k, with k ∈ N, then n(n2 + 2) = 3k((3k)2 + 2), which is a multiple of

3.

2nd case : If n = 3k + 1, with k ∈ N, then n(n2 + 2) = (3k + 1)((3k + 1)2 + 2) =

(3k + 1)(9k2 + 6k + 1 + 2)

= 3(3k + 1)(3k2 + 2k + 1) which is a multiple of 3

.

3rd case : If n = 3k + 2, with k ∈ N, then

n(n2 + 2) = (3k + 2)((3k + 2)2 + 2) = (3k + 2)(9k2 + 12k + 4 + 2)

= 3(3k + 2)(3k2 + 4k + 2) which is a multiple of 3.

Therefore, in all cases, n(n2 + 2) is a multiple of 3.

2) Suppose that (∀n ∈ N∗,∃p ∈ N∗ : n = p2) and (∃q ∈ N∗ : 2n = q2).

Let n ∈ N∗, then n = p2 and 2n = q2 with p, q ∈ N∗, so 2p2 = q2, which implies
√
2 = q

p
∈ Q, which is absurd since

√
2 is irrational.

Exercise02 (6p)

1) −x2 + x = 0 ⇔ x(1− x) = 0 ⇔ (x = 0 or x = 1), so the set of solutions is S = {0, 1}.

2) −x2 + x− a = 0 is a quadratic equation, let’s calculate its discriminant: ∆ = 1− 4a

If a > 1
4
, then ∆ < 0, so there are no solutions in R.

If a ≤ 1
4
, then ∆ ≥ 0, so we have the solutions: x1 =

1+
√
1−4a
2

and x2 =
1−

√
1−4a
2

.

3) From 1), we have: f(1) = f(0) but 1 ̸= 0, so f is not injective.

From 2), we have: y = 1 has no pre-image, so f is not surjective.
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4.1) Let x1, x2 ∈
[
1
2
,+∞[ :

g (x1) = g (x2) ⇒ x1 (1− x1) = x2 (1− x2) ⇒ x1 − x2 = x1
2 − x2

2

⇒ x1 − x2 = (x1 − x2) (x1 + x2) ⇒ (x1 − x2) (x1 + x2 − 1) = 0

⇒ (x1 − x2 = 0) or (x1 + x2 − 1 = 0) ⇒ (x1 = x2) or (x1 = 1− x2)

⇒ (x1 = x2) or
(
x1 = x2 =

1

2

)
, because 1− x2 ≥

1

2
⇒ x2 ≤

1

2
⇒ x2 =

1

2

⇒ x1 = x2

Therefore, g is injective.

4.2) Let y ∈]−∞, 1
4

]
. According to 2), the equation g(x) = y has at least one solution x in

R.

We have x1 − 1
2
= 1+

√
1−4y
2

− 1
2
=

√
1−4y
2

≥ 0 which implies x1 ≥ 1
2
.

and x2 − 1
2
= 1−

√
1−4y−1
2

= −
√
1−4y
2

≤ 0 which implies x2 ≤ 1
2
.

Therefore, we can take x = 1+
√
1−4y
2

∈
[
1
2
,+∞[ , to have y = g(x).

Hence, g is surjective.

Therefore, g is bijective.

Exercice03 (4p)

1) Let a ∈ Z. We have a− a = 0 which is divisible by 2 or by 3, i.e., aRa.

Therefore, R is reflexive.

2) Let a, b ∈ Z. We have:

aRb ⇒ a− b is divisible by 2 or by 3

⇒ b− a is divisible by 2 or by 3

⇒ bRa

Therefore, R is symmetric.

3) For example, (6 − 3) is divisible by 2 or by 3, and (3 − 6) is divisible by 2 or by 3, but

(3 ̸= 6).
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This means that there exist a, b ∈ Z such that aRb, bRa, and a ̸= b.

Therefore, R is not antisymmetric.

4) For example, (6− 3) is divisible by 2 or by 3, (3− 1) is divisible by 2 or by 3, but (6− 1)

is not divisible by 2 or by 3.

This means that there exist a, b, c ∈ Z such that aRb, bRc, and aRc.

Therefore, R is not transitive.

From the above observations, we conclude that R is neither a relation of order nor a

relation of equivalence.

Exercice04 (6p)

1.1) Let x, y ∈ R. We have x+ y + 1
10

∈ R, which means x ∗ y ∈ R.

Therefore, ∗ is an internal law in R.

1.2) Let x, y ∈ R. We have:

x ∗ y = x+ y + 1
10

= y + x+ 1
10

= y ∗ x

Therefore, ∗ is a commutative law.

1.3) Let x, y, z ∈ R. We have:

(x ∗ y) ∗ z =
(
x+ y + 1

10

)
∗ z = x + y + 1

10
+ z + 1

10
=

(
x+

(
y + z + 1

10

)
+ 1

10

)
=(

x+ (y ∗ z) + 1
10

)
= x ∗ (y ∗ z)

Therefore, ∗ is associative.

1.4) Let’s find e ∈ R such that for all x ∈ R, x ∗ e = e ∗ x = x.

We have: x ∗ e = x ⇔ x+ e+ 1
10

= x ⇔ e = − 1
10

Since − 1
10

∈ R and ∗ is commutative, e = − 1
10

is the neutral element of the law ∗.

1.5) Let x ∈ R. We are looking for x′ ∈ R such that x ∗ x′ = x′ ∗ x = − 1
10
.

We have: x ∗ x′ = − 1
10

⇔ x+ x′ + 1
10

= − 1
10

⇔ x′ = −x− 1
5

6.7. Exam 07



Chapter 6. Solved Exams 103

Since −x− 1
5
∈ R and ∗ is commutative, x′ = −x− 1

5
is the inverse of x with respect to

the law ∗.

Therefore, (R, ∗) is an abelian group.

2) Let x, y ∈ R. We have:

g(x ∗ y) = g
(
x+ y + 1

10

)
= 5

(
x+ y + 1

10

)
+ 1

2
= 5x+5y+ 1

2
+ 1

2
=

(
5x+ 1

2

)
+
(
5y + 1

2

)
=

g(x) + g(y).

Therefore, g is a homomorphism from the group (R, ∗) to the group (R,+).

3) We have: e = − 1
10

= 2(0)−1
10

∈ H.

Let x, y ∈ H. Then ∃n,m ∈ Z such that x = 2n−1
10

and y = 2m−1
10

. We have:

x ∗ y−1 = x ∗
(
−y −

1

5

)
=

(
2n− 1

10

)
∗
(
−
2m− 1

10
−

1

5

)
=

(
2n− 1

10

)
∗
(
−2m− 1

10

)
=

2n− 1

10
+

−2m− 1

10
+

1

10

=
2(n−m)− 1

10
∈ H, since n−m ∈ Z.

Therefore, (H, ∗) is a subgroup of (R, ∗).
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