final exam of PW-Phy

final exam of PW-Physic

Mohamed Boudiaf University of M'sila

Faculty of sciences and technology

Practical work of physic for 1 st year license common Base

Credit=2,Coefficient =1, Hourly volume,24 h in each semesters

Email:gouri.amel@univ-msila. dz

Dr.Gouri

1.0 May2024

Table of contents

Objectives	3
I - final exam	4
1. Part 1. Estimation Of The Inaccuracy In Physical Measurements (10point)	4
1.1. Questions :	4
2. Part 2:Elastic collision (10point)	5
2.1. QUESTION	5
II - standard correction	6
1. part 1(10point)	6
2. part 2(10point)	7

Objectives

The successful student would thus be ready to move on to the next level.

I final exam

1. Part 1. Estimation Of The Inaccuracy In Physical Measurements (10point)

We want to determine the surface of a rectangle (figure 1). We measure its length I and its width d. The surface is given by the function $s = I^*d$.

Figure 1. The surface of a rectangle of length I and width d.

The values noted are as follows:

n° mesure	1	2	3	4	5
d	4.1	4.3	4.2	4.5	4.6
1	6	5.9	6.2	6.1	5.8
S					

1.1. Questions :

- 1- Calculate the mean measured value. \overline{s} =
- 2- Calculate the error mean absolute $\Delta s =$
- 3-Calculate the absolute uncertainty and relative ΔI =..... $\Delta I/\Gamma$ =....
- 4- Calculate the absolute uncertainty and relative Δd =..... $\Delta d/d$ ⁻.....
- 5- gives the expressions of absolute uncertainty Δs as a function of d, I, Δd and ΔI .
- 6 Write the measured value in the fom : $s = s \pm \Delta s$; s =

2. Part 2: Elastic collision (10point)

• Assemble the setup as shown in Figure 2.

• Adjust the distance between the optical barriers so that the collision occurs between them.

• Before the collision, one of the carts, with a fixed mass of m1 = 765 grams, is in motion while the other cart, with additional "ms" masses, has a variable mass of m2 = mcart + ms = 265 + ms grams and is at rest.

- When they pass through, the chronometer records the corresponding time " $\delta t1$."

• After the collision, both carts in motion move in opposite directions, each passing through an optical barrier. The chronometer records two more passage times, "δt'1" and "δt'2."

M_2 (grs)	265	765	1265
δt_1 (s)	0.003	0.003	0.003
ot (s)	0.005	0.00	0.031
$\partial t_{1}(s)$	0.030	0.008	0.007
$v = \delta x / \delta t_1$ (m/s)			
$v'_1 = \delta x / \delta t'_1 (m/s)$			
$v'_2 = \delta x / \delta t'_2 (m/s)$			
$E_{cl} = m_l . v_l^2 / 2$ (J)			
$E'_{cl} = m_l \cdot v'^2_l /2 (J)$			
$E'_{c2}=m_2.v'^2_2/2$ (J)			
$P_1=m_1.v_1$			
$P'_{l}=m_{l}.v'_{l}$			
$P'_2 = m_2 \cdot v'_2$			
$(P_1+P_2)/(P'_1+P'_2)$			
$(E_{cl}+E_{c2})/(E'_{cl}+E'_{c2})$			

2.1. QUESTION

1- Complete the table.

2- Based on the table's results, what concluding

II standard correction

1. part 1(10point)

rectangle , length I and its width w. The surface is given by the function s = I * w."

Figure 1. The surface of a rectangle of length I and width d.

К

determine the surface of a rectangle 1 point

}

	n° mesure	1	2	3	4	5
	d	4.1	4.3	4.2	4.5	4.6
	1	6	5.9	6.2	6.1	5.8
	s	24.5	25.37	26.04	27.45	26.68
1- the mean measured value. <i>s⁻=26.008</i> (1point)						
2- the error mean absolute $\Delta s^-=0.86$						
3- the absolute uncertainty and relative $\Gamma = 6$						

5- gives the expressions of absolute uncertainty Δ*s* as a function of *d*, *l*, Δ*d* and Δ*l*......(2.75point)

6-: s= s¯±∆s; s=.....(0.25)

2. part 2(10point)

Elastic collsion

M ₂ (grs)	265	765	1265
δt_1 (s)	0.003	0.003	0.003
ot (s)	0.005	0.00	0.031
ot (s)	0.030	0.008	0.007
$v = \delta x / \delta t_1$ (m/s)	1.66	1.66	1.66
$v'_1 = \delta x / \delta t'_1 (m/s)$	0.652	0.51	0.714
$v'_2 = \delta x / \delta t'_2 (m/s)$	1.66	1.25	0.164
$E_{cl} = m_l . v_l^2 / 2 (J)$	0.151	0.625	0.275
$E'_{cl} = m_l \cdot v'^2_l / 2 (J)$	1.25	0.002	0.002
$E'_{c2}=m_2.v'^2_2/2$ (J)	0.27	0.95	0.76
$P_1=m_1.v_1$	0.002	0.5	0.332
$P'_{l}=m_{l}.v'_{l}$	0.156	0.031	0.032
$P'_2 = m_2 \cdot v'_2$	0.49	0.312	0.214
$(P_1+P_2)/(P'_1+P'_2)$	1.5	1.54	1.33
$(E_{cl}+E_{c2})/(E'_{cl}+E'_{c2})$	1.6	1.2	1.3

calculated the momentum and kinetic energy by measuring the velocities of the object before and after the collision

* *

The momentum and kinetic energy are conserved for elastic collisions