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Objectifs

The objectives of numerical analysis ( (2 nd year CP 2 (Preparatory cycle Department ) ) are
manifold and depend on the context in which it is used. However, here are some general
objectives of numerical analysis:

Solving complex mathematical problems: One of the main objectives of numerical
analysis is to provide methods and tools for solving complex mathematical problems
that cannot be solved analytically. This includes solving differential equations,
approximating functions, finding the roots of equations, etc.

Obtain accurate numerical solutions: Numerical analysis aims to obtain accurate
numerical solutions that can be used to approximate analytical solutions or to solve
practical problems in various fields such as engineering, physics, finance, etc.

Studying the behaviour of dynamic systems: In many fields, it is necessary to study the
behaviour of dynamic systems using mathematical models. Numerical analysis
provides methods for simulating and studying the behaviour of these systems over
time.

Optimisation: Numerical analysis is used to solve optimisation problems, i.e. to find the
optimal values of an objective function under given constraints. This is common in
fields such as engineering, economics, data science, etc.

Studying the stability and convergence of numerical methods: Another important
objective of numerical analysis is to study the stability, accuracy and convergence of
numerical methods used to solve mathematical problems. This ensures that the
solutions obtained are reliable and accurate.

Development of new numerical methods: Numerical analysis also involves the
development and improvement of new numerical methods to solve specific problems
more efficiently, accurately and quickly.

In short, the aims of numerical analysis are to provide methods and tools for solving complex
mathematical problems accurately, efficiently and reliably, and to study the behaviour of
dynamic systems using mathematical models.

In the other hand, the overall goal of the field of numerical analysis is the design and analysis
of techniques to give approximate but accurate solutions to a wide variety of hard problems,
many of which are infeasible to solve symbolically:

1. Computing the trajectory of a spacecraft requires the accurate numerical solution of a
system of ordinary differential equations.

2. Advanced numerical methods are essential in making numerical weather prediction
feasible.

3. Car companies can improve the crash safety of their vehicles by using computer
simulations of car crashes. Such simulations essentially consist of solving  partial
differential equations2 numerically.

4. Airlines use sophisticated optimization algorithms to decide ticket prices, airplane and
crew assignments and fuel needs. Historically, such algorithms were developed within
the overlapping field of operations research3.

2. https://en.wikipedia.org/wiki/Partial_differential_equation
3. https://en.wikipedia.org/wiki/Operations_research
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5. Car companies can improve the crash safety of their vehicles by using computer
simulations of car crashes. Such simulations essentially consist of solving  partial
differential equations4 numerically.

6. Insurance companies use numerical programs for actuarial5 analysis.

4. https://en.wikipedia.org/wiki/Partial_differential_equation
5. https://en.wikipedia.org/wiki/Actuary

Objectifs
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Introduction

Numerical Analysis  refers to the process of in-depth analysis of algorithms and natural
approximations. It is considered a part of both computer science and mathematical
sciences. It is used in several disciplines like engineering, medicine, social science, etc.
Because this branch is concerned with understanding, creating, and implementing the
algorithms for common problems. 

Some commonly used numerical computation methods include differential equations (that
help predict planetary motion), linear algebra, etc. 

Numerical analysis is a branch of mathematics that solves continuous problems using
numeric approximation. It involves designing methods that give approximate but accurate
numeric solutions, which is useful in cases where the exact solution is impossible or
prohibitively expensive to calculateBrezinski, C.; Zaglia, M.R. (2013). Extrapolation methods:
theory and practice. Elsevier. ISBN 978-0-08-050622-7.Brezinski, C.; Zaglia, M.R. (2013). Extrapolation

methods: theory and practice. Elsevier. ISBN 978-0-08-050622-7.∗. Numerical analysis also involves
characterizing the convergence, accuracy, stability, and computational complexity of these
methods.Bultheel, Adhemar; Cools, Ronald, eds. (2010). The Birth of Numerical Analysis. Vol.
10. World Scientific. ISBN 978-981-283-625-0.Bultheel, Adhemar; Cools, Ronald, eds. (2010). The Birth of

Numerical Analysis. Vol. 10. World Scientific. ISBN 978-981-283-625-0.∗

Numerical analysis can be divided into the following fields:Brenner, S.; Scott, R. (2013). The
mathematical theory of finite element methods (2nd ed.). Springer. ISBN 978-1-4757-3658-
8.Brenner, S.; Scott, R. (2013). The mathematical theory of finite element methods (2nd ed.). Springer. ISBN 978-

1-4757-3658-8.∗

(1) Numerical Solutions of Linear Algebraic Equations.

(2) Numerical Solutions of Nonlinear Algebraic Equations.

(3) Interpolation and Extrapolation.

(4) Approximation Theory and Curve Fitting.

(5) Numerical Differentiation.

(6) Numerical Integration.

(7) Numerical Optimization.

(8) Numerical Solutions

One of the goals of numerical analysis is to compute answers within a specified level of
accuracy.Working in double precision means that we store and operate on numbers that are
kept to 52-bit accuracy, about 16 decimal digits.Quarteroni, A.; Saleri, F.; Gervasio, P. (2014).
Scientific computing with MATLAB and Octave (4th ed.). Springer. ISBN 978-3-642-45367-
0.Quarteroni, A.; Saleri, F.; Gervasio, P. (2014). Scientific computing with MATLAB and Octave (4th ed.). Springer.

ISBN 978-3-642-45367-0.∗Brezinski, C.; Zaglia, M.R. (2013). Extrapolation methods: theory and
practice. Elsevier. ISBN 978-0-08-050622-7.Brezinski, C.; Zaglia, M.R. (2013). Extrapolation methods:

theory and practice. Elsevier. ISBN 978-0-08-050622-7.∗
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I Preconditions

1. Introduction

Peconditions (les prérequis)

2. Preconditions (Les prérequis)

The prerequisites for numerical analysis depend on your level of study and the specific
field in which you wish to specialise. However, here are some useful general skills and
prerequisite knowledge:

Fundamental mathematics: A solid understanding of differential and integral
calculus is essential. This includes knowledge of derivatives, integrals, series, ordinary
and partial differential equations and convergence.

Linear Algebra: A good understanding of linear algebra concepts such as vectors,
matrices, vector spaces, linear transformations, eigenvalues and eigenvectors is
required.

Real analysis: Knowledge of real analysis concepts such as convergence of series,
continuity, differentiability and integrability of functions is important.

Basic Numerical Methods: You should have a basic understanding of common
numerical methods such as solving non-linear equations, interpolation, function
approximation, numerical integration and solving linear systems.

Computer programming: Experience of programming, preferably in a language
suitable for numerical analysis such as Python, MATLAB, or Julia, is very useful.

Computer programming: Experience of programming, preferably in a language
suitable for numerical analysis such as Python, MATLAB, or Julia, is very useful. You
should be able to implement the numerical methods you learn and apply them to
real-world problems.

Error theory: Understanding how to assess and minimise errors in numerical
calculations is crucial to obtaining accurate and reliable results.

Application-specific knowledge: Depending on your specific field of application
(engineering, physics, finance, etc.), you may need to acquire additional knowledge in
this area to apply numerical analysis effectively.
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II Chapter 1 : Notation of errors

1. Numbers representation in Computer

Digital computers serve as the primary tool for numerical analysis, making it crucial to
comprehend their functioning. This section delves into the representation of numbers in
computers and explores the implications of computerized number representation and
arithmetic.

Most computers feature two modes for representing numbers: integer and floating-point.
The integer mode is exclusively for integers and will not be further discussed here. The
floating-point mode, however, is employed for representing real numbers. While the
allowed numbers can vary greatly in size, there are constraints on both their magnitude
and the number of digits they can contain. The representation of floating-point numbers
closely resembles scientific notation, as found in many high school mathematics
textbooks.

Decimal notation entails representing a number in the form of a fraction with the base 10,
accompanied by a decimal point. It comprises digits ranging from 0 to 9, divided into two
components: a whole number and a fractional part, with the decimal point serving as the
separator between them.

Définition : (Scientific Notation)

Let k be a real number, then k can be written in the following form

k = m × 10n, 1 ≤ m < 10

where m is any real number and the exponent n is a whole number (integer) is said to be
in standard form is an integer. This notation is called the scientific notation or scientific
form and sometimes referred to as standard form.

Exemple : Scientific notation

Express the following numbers in scientific notation :

Numbers

2

300

4321.768

-53000

6720000000

0.2

987

0.00000000751
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The scientific notations :

1.1. Floating-Point Numbers

In the decimal system any real number

a ≠ 0

can be written in the decimal normalized oating-point form in the following way

a = ±0. d1d2d3 ⋯ dkdk+1dk+2 ⋯ × 10n, 1 ≤ d1 ≤ 9, 0 ≤ di ≤ 9,

for each i=2,..., and n is an integer called the exponent ( ncan be positive, negative or zero).
In computers we use a finite number of digits in representing the numbers and we obtain
the following form

b = ±0. d1d2d3 ⋯ dk × 10n, 1 ≤ d1 ≤ 9, 0 ≤ di ≤ 9,

for each i=2, ..., k. These numbers are called k-digits decimal machine numbers.

2. Errors

Errors are inevitable in the realm of scientific computing. However, numerical analysts
dedicate their efforts to exploring potential and optimal methods for error minimization.
The examination, estimation, and mitigation of errors constitute fundamental aspects of
error analysis.

2.1. Errors analysis

In numerical analysis, we approximate the exact solution of a problem using numerical
methods, thereby inevitably introducing errors. The numerical error is defined as the
difference between the exact solution and the approximate solution.

Définition : (Numerical Error)

Let x be the exact solution of the underlying problem and x∗ its approximate solution, then
the error (denoted by e ) in solving this problem is

e = x − x∗

 Decimal notation   Scientific notation 

2 2 × 100

300 3 × 102

4321.768 4.321768 × 103

−53000 −5.3 × 104

6720000000 6.72 × 109

0.2 2 × 10−1

987 9.87 × 102

0.00000000751 7.51 × 10−9

Chapter 1 : Notation of errors
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a) Sources of Error in Numerical Computations

Errors caused by human mistakes and oversights can be minimized through careful
attention during scientific investigations. Such errors contribute to the overall error of the
underlying problem and can significantly impact the accuracy of the solution.

Modeling Errors: These errors emerge during the modeling process when scientists
overlook influential factors in the model to simplify the problem. They are also known
as formulation errors.

Data Uncertainty: These errors stem from the uncertainty surrounding the physical
problem data and are also referred to as data errors.

Discretization Errors: Computers represent a function of continuous variables using
a series of discrete values. Scientists also approximate and substitute complex
continuous problems with discrete ones, resulting in discretization errors.

i) Absolute and Relative Errors

Absolute and Relative Errors

Définition : Absolute Error

The absolute error Δx of the error e is defined as the absolute value of the error e :

Δx = |x − x∗|

Définition : Relative Error

The relative error δx of the error e is defined as the ratio between the absolute error Δx and
the absolute value of the exact solution x :

δx =
Δx

|x|
,x ≠ 0

Absolute and relative errors are two main types of measurement errors. There are some
major differences between these two, which are given below.

Subject Absolute
Error Relative Error

Definition

The
difference
between
the actual
valueand
the
measured
value of a
quantity
iscalled
absolute
error.

The ratio of
absolute error
of
ameasurement
and the actual
value ofthe
quantity is
known as a
relativeerror.

Determination

It
determines
how large
the error is.

It determines
how good or
bad the error is.

Chapter 1 : Notation of errors
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Size of the
quantity

It varies
depending on
the size of
thequantity.

It doesn't
depend on the
size of
thequantity.

3. Exercice : 1

Compute the absolute error and the relative error for  : a + b, a − b, a × b, a ÷ b in the
following cases :

Case (1) a = 2.89 ± 0.2 , b = 3.01 ± 0.4

Case (2) a = 8.9 ± 0.15 , b = 2.45 ± 0.14

Solution :
1. Case (1) : a = 2.89 ± 0.2, b = 3.01 ± 0.4:

Addition : (a + b):

Absolute Error: Δa + Δb = 0.2 + 0.4 = 0.6

Relative Error: Δa+Δb

|a+b|
≈ 0.6

|2.89+3.01|
≈ 0.1034

Subtraction : (a − b)

Absolute Error: Δa + Δb = 0.2 + 0.4 = 0.6

Relative Error: Δa+Δb

|a−b|
≈ 0.6

|2.89−3.01|
≈ 1.5

Multiplication : (a × b)

Absolute Error: |a|Δb + |b|Δa = |2.89| ⋅ 0.4 + |3.01| ⋅ 0.2 = 1.156 + 0.602 = 1.758

Relative Error: δa + δb = Δa×b

a×b ≈ 1.758
2.89⋅3.01 ≈ 0.2031

Division : (a ÷ b)

Absolute Error: |a|Δb+|b|Δa

b2 = 1.156+0.602
(3.01)2 ≈ 0.133

Relative Error: δa + δb = Δa×b

(a/b)2 ≈ 1.758
(2.89/3.01)2 ≈ 0.1987

2. Case (2) : a = 8.9 ± 0.15b = 2.45 ± 0.14

Addition : (a + b):

Absolute Error: Δa+b = 0.15 + 0.14 = 0.29

Relative Error: δa+b = Δa+b

|a+b| ≈ 0.02557

Subtraction : (a − b)

Absolute Error: Δa×b = |a|Δb + |b|Δa = 1.246 + 0.3675 = 1.6135

Relative Error: δa×b = 0.0157 + 0.0575 = 0.0732

Multiplication : (a × b)

 Operations   Absolute error   Relative error 

x ± y Δx + Δy
Δx+Δy

|x±y|

x × y |x|Δy + |y|Δx δx + δy

x
y

, y ≠ 0 |x|Δy+|y|Δx

y2 = Δx×y

y2 δx + δy

Chapter 1 : Notation of errors

11



Absolute Error: |a|Δb+|b|Δa

b2 ≈ 0.2674

Relative Error: δa÷b = 0.0157 + 0.0575 = 0.0732

Division : (a ÷ b)

Absolute Error: |a|Δb+|b|Δa

b2 = 1.156+0.602
(3.01)2 ≈ 0.133

Relative Error: δa + δb = Δa×b

(a/b)2 ≈ 1.758
(2.89/3.01)2 ≈ 0.1987

4. Round-off and Truncation Errors

4.1. Round-off error

Computers represent numbers with a finite number of digits, meaning that certain
quantities cannot be represented precisely. The error that arises from substituting a
number with its nearest machine number is termed the round-off error, and the
procedure is referred to as correct rounding.

There are two common rounding rules, round-by-chop and round-to-nearest. The IEEE
standard uses round-to-nearest.

1. Round-by-chop: The base- β expansion of x is truncated after the (p − 1)-th digit.

This rounding rule is biased because it always moves the result toward zero.

2. Round-to-nearest: fl(x is set to the nearest floating-point number to  x. When there
is a tie, the floating-point number whose last stored digit is even (also, the last digit,
in binary form, is equal to 0) is used.

For IEEE standard where the base β   is  2, this means when there is a tie it is
rounded so that the last digit is equal to 0.

This rounding rule is more accurate but more computationally expensive.

Rounding so that the last stored digit is even when there is a tie ensures that it
is not rounded up or down systematically. This is to try to avoid the possibility of
an unwanted slow drift in long calculations due simply to a biased rounding.

Exemple :

The following example illustrates the level of roundoff error under the two rounding
rules.  The rounding rule, round-to-nearest, leads to less roundoff error in general.

x  Round-by-chop   Roundoff Error   Round-to-nearest   Roundoff Error 

1.649 1.6 0.049 1.6 0.049

1.650 1.6 0.050 1.6 0.050

1.651 1.6 0.051 1.7 −0.049

1.699 1.6 0.099 1.7 −0.001

1.749 1.7 0.049 1.7 0.049

1.750 1.7 0.050 1.8 −0.050

Chapter 1 : Notation of errors
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5. Truncation Errors

Truncation errors  are the difference between the actual value of the function and the
truncated value of the given function. The truncated value of the functions is the
approximated value up to a given number of digits. For example, the speed of light in
vacuum is 2.99792458 × 108 ms-1. The truncated value up to two decimal places is 2.99 ×
108. Hence the truncation error is the difference between 2.99792458 × 108 and 2.99 × 108,
which is 0.00792458 × 108, or in scientific notation, it is 7.92458 × 105.

5.1. Truncation Errors

What is a truncation error?

A truncation error is the difference between an actual and a truncated, or cut-off, value. A
truncated quantity is represented by a numeral with a fixed number of allowed digits, with
any excess digits chopped off -- hence, the expression truncated.

Exemple :

Truncation error explained with Taylor series

In mathematical and computing applications, the true or analytical derivative or value of a
function may be different from the value obtained by numerical approximation. The
truncation error is the difference between these two values. It refers to the discrepancy
that arises from executing a finite number of steps to approximate an infinite process -- a
process known as discretization6 -- usually for ease of calculation.

Infinite series

A summation series for ex is given by an infinite series such as

ex = 1 + x + x2

2! + x3

3! + x4

4! + ⋯

In reality, we can only use a finite number of these terms as it would take an infinite
amount of computational time to make use of all of them. So let's suppose we use only
three terms of the series, then

ex ≈ 1 + x + x2

2!

In this case, the truncation error is x
3

3! + x4

4! + ⋯

6. https://www.techtarget.com/searchenterpriseai/post/Wrangling-data-with-feature-discretization-stan
dardization

Chapter 1 : Notation of errors

13

https://www.techtarget.com/searchenterpriseai/post/Wrangling-data-with-feature-discretization-standardization
https://www.techtarget.com/searchenterpriseai/post/Wrangling-data-with-feature-discretization-standardization


Exemple :

Alternating Convergent Series Theorem

Maclaurin series of ln(1 + x)

S = x − x2

2 + x3

3 − x4

4 + … = ∑∞
n=1(−1)n−1 xn

n
(−1 < x ≤ 1)

With n = 5,

S = 1 − 1
2 + 1

3 − 1
4 + 1

5 = 0.7833333340

ln 2 = 0.693

Error estimated using the althemating convergent the actual error series theorem

|R| = |S − ln 2| = 0.16666

5.2. Estimation of Truncation Error for Geometric Series

Let S be an infinite geometric series if its terms are such that |tj + 1| ≤ k|tj| where 0 ≤ k ≤ 1 for
every j ≥ n, then while approximating the series up to n terms, the truncation error Rn  is
given by

For example, we have to calculate the truncation error |R6| of the infinite geometric series

S = 1 + 1
π2 + √2

π4 + √3
π6 + … + √j

π2j + …

Clearly,

tj = √j

π2j

Now, we to find k such that |tj+1| ≤ k|tj| where Now, we to find k such that |tj+1| ≤ k|tj|
where 0 ≤ k ≤ 1 for every j ≥ n(n = 6) ≤ k ≤ 1 for every j ≥ n(n = 6)

|tj+1| ≤ k|tj| = |tj+1|/|tj| ≤ k = √(1 + 1/j)π−2

⇒ |tj+1|/|tj| ≤ √(1 + 1/6)π−2 < 0.11 as j ≥ 6

Therefore, by |Rn| ≤ [k|tn|]/(1 − k)$and$t6 < 3 × 10−6

|R6| ≤ [k|tn|]/(1 − k) < [0.11 × 3 × 10−6]/(1 − 0.11)

6. Significant figures

Significant figures, also referred to as  significant digits  or  sig figs, are
specific  digits7  within a number written in  positional notation8  that carry both reliability
and necessity in conveying a particular quantity. When presenting the outcome of a
measurement (such as length, pressure, volume, or mass), if the number of digits exceeds
what the measurement instrument can resolve, only the number of digits within
the resolution9's capability are dependable and therefore considered significant.

|Rn| = tn+1 + tn+2 + tn+3 + …

≤ tn+1 + k|tn+1| + k2|tn+1| + k3|tn+1| + …

= |tn+1|(1 + k2 + k3 + …)
= |tn+1|/(1 − k)

⇒ |Rn| ≤ [kn|tn|/(1 − k)

7. https://en.wikipedia.org/wiki/Numerical_digit
8. https://en.wikipedia.org/wiki/Positional_notation
9. https://en.wikipedia.org/wiki/Measurement_resolution

Chapter 1 : Notation of errors
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6.1. Rules to identify significant figures in a number

Note that identifying the significant figures in a number requires knowing which digits are
reliable (e.g., by knowing the measurement or reporting resolution with which the number
is obtained or processed) since only reliable digits can be significant; e.g., 3 and 4 in
0.00234 g are not significant if the measurable smallest weight is 0.001 g.

Non-zero digits within the given measurement or reporting
resolution are significant.

91 has two significant figures (9 and 1) if they are measurement-allowed digits.

123.45 has five significant digits (1, 2, 3, 4 and  5) if they are within the
measurement resolution. If the resolution is 0.1, then the last digit  5 is not
significant.

Zeros between two significant non-zero digits are significant (significant trapped
zeros).

101.12003 consists of eight significant figures if the resolution is to 0.00001.

125.340006 has seven significant figures if the resolution is to 0.0001: 1, 2, 5, 3, 4,
0, and 0.

Zeros to the left of the first non-zero digit (leading zeros10) are not significant.

If a length measurement gives 0.052 km, then 0.052 km = 52 m so 5 and 2 are
only significant; the leading zeros appear or disappear, depending on which
unit is used, so they are not necessary to indicate the measurement scale.

0.00034 has 2 significant figures (3 and 4) if the resolution is 0.00001.

Zeros to the right of the last non-zero digit (trailing zeros11) in a number with the
decimal point  are  significant  if they are within the measurement or reporting
resolution.

1.200 has four significant figures (1, 2, 0, and  0) if they are allowed by the
measurement resolution.

0.0980 has three significant digits (9, 8, and the last zero) if they are within the
measurement resolution.

120.000 consists of six significant figures (1, 2, and the four subsequent zeroes) if,
as before, they are within the measurement resolution.

Trailing zeros in an integer  may or may  not  be significant, depending on the
measurement or reporting resolution.

45,600 has 3, 4 or 5 significant figures depending on how the last zeros are
used. For example, if the length of a road is reported as 45600  m without
information about the reporting or measurement resolution, then it is not clear
if the road length is precisely measured as 45600 m or if it is a rough estimate. If
it is the rough estimation, then only the first three non-zero digits are
significant since the trailing zeros are neither reliable nor necessary; 45600 m
can be expressed as 45.6  km or as 4.56 × 104  m in  scientific notation12, and
neither expression requires the trailing zeros.

An exact number has an infinite number of significant figures.

10. https://en.wikipedia.org/wiki/Leading_zero
11. https://en.wikipedia.org/wiki/Trailing_zero
12. https://en.wikipedia.org/wiki/Scientific_notation

Chapter 1 : Notation of errors
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If the number of apples in a bag is 4 (exact number), then this number is
4.0000... (with infinite trailing zeros to the right of the decimal point). As a result,
4  does not impact the number of significant figures or digits in the result of
calculations with it.

A mathematical or physical constant has significant figures to its known digits.

π  is a specific real number13 with several equivalent definitions. All of the digits
in its exact decimal expansion 3.14159265358979323... are significant. Although
many properties of these digits are known — for example, they do not repeat,
because π  is irrational — not all of the digits are known. As of 19 August 2021,
more than 62  trillion digits[4]  have been calculated. A 62 trillion-digit
approximation has  62 trillion significant digits. In practical applications, far
fewer digits are used. The everyday approximation 3.14 has three significant
figures and 7 correct binary14 digits. The approximation 22/7 has the same three
correct decimal digits but has 10  correct binary digits. Most calculators and
computer programs can handle the 16-digit expansion 3.141592653589793,
which is sufficient for interplanetary navigation calculations.[5]

The  Planck constant15  is  h = 6.62607015 × 10 − 34J ⋅ s  and is defined as an
exact value so that it is more properly defined as 
h = 6.62607015(0) × 10 − 34J ⋅ s.

13. https://en.wikipedia.org/wiki/Real_number
14. https://en.wikipedia.org/wiki/Binary_number
15. https://en.wikipedia.org/wiki/Planck_constant
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