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Chapter2 : Numerical resolution ofan
algebraic equation I

1. Objectives

objectives
In summary, the main objective of numerically solving an algebraic equation is to obtain accurate,
efficient and reliable solutions that meet the requirements of the problem or application at hand.

2. Problem statement

The growth of a population can o�en be modeled over short periods of time by assuming that the
population grows continuously with time at a rate proportional to the number present at that time.
Suppose that N(t) denotes the number in the population at time t and λ denotes the constant birth
rate of the population. Then the population satisfies the differential equation

dN(t)

dt
= λN(t),

whose solution is N(t) = N0e
λt,where N0 denotes the initial population.

This exponential model is valid only when the population is isolated, with no immigration. If
immigration is permitted at a constant rate v, then the differential equation becomes

dN(t)

dt
= λN(t) + v,

whose solution is

N(t) = N0e
λt +

v

λ
(eλt − 1).

Suppose a certain population contains N(0) = 1,000,000 individuals initially, that 435,000 individuals
immigrate into the community in the first year, and that N(1) =1,564,000 individuals are present at the
end of one year. To determine the birth rate of this population, we need to findλ in the equation

1, 564, 000 = 1, 000, 000eλ +
435, 000

λ
(eλ − 1).

It is not possible to solve explicitly for λ in this equation, but numerical methods discussed in this
chapter can be used to approximate solutions of equations of this type to an arbitrarily high accuracy.
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3. The Bisection Method

In this chapter, we consider one of the most basic problems of numerical approximation, the root-
finding problem. This process involves finding a root, or solution, of an equation of the form f(x) = 0,
for a given function f . A root of this equation is also called a zero of the function f  .

The problem of finding an approximation to the root of an equation can be traced back at least as far as
1700 B.C.E. A cuneiform table in the Yale Babylonian Collection dating from that period gives a
sexigesimal (base-60) number equivalent to 1.414222 as an approximation to √2, a result that is
accurate to within 10−5.

As its name implies, to “bi-sect” is to divide (in this case an interval) into two (in this case even) parts.

In computer science, the process of dividing a set continually in half to search for the solution to a
problem, as the bisection method does, is known as a binary search procedure.AhoAho p.30

Desciption Méthode

The first technique, based on the Intermediate Value Theorem, is called the Bisection method. Suppose
f is a continuous function defined on the interval [a, b], with f (a) and f (b) of opposite sign. By the
Intermediate Value Theorem, there exists a number p in (a, b) with f (p) = 0. Although the procedure will
work when there is more than one root in the interval (a, b), we assume for simplicity that the root in
this interval is unique. The method calls for a repeated halving of subintervals of [a, b] and, at each
step, locating the half containing p.Brown, K. M., A quadratically convergent Newton-like method based
upon Gaussian elimination, SIAM Journal on Numerical Analysis 6, No. 4 (1969), 560–569, QA297.A1S2
652Brown, K. M., A quadratically convergent Newton-like method based upon Gaussian elimination, SIAM Journal on

Numerical Analysis 6, No. 4 (1969), 560–569, QA297.A1S2 652 p.28

To begin, set a1 = aand b1 = b, and let p1 be the midpoint of [a, b]; that is,

p1 = a1 +
b1 − a1

2
=

a1 + b1

2
.

If f(p1) = 0, then p = p1, and we are done. If f(p1) ≠ 0, then f(p1) has the same sign as either
f(a1) or f(b1). When f(p1) and f(a1) have the same sign, p ∈ (p1, b1), and we set a2 = p1 and
b2 = b1. When f(p1) and f(a1) have opposite signs, p ∈ (a1, p1), and we set a2 = a1 and b2 = p1.
We then reapply the process to the interval [a2, b2]. This produces the method described in Algorithm
2.1. (See Figure 2.1.)

Figure 2.1

Chapter2 : Numerical resolution ofan algebraic equation
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Algorithm 2.1

Other stopping procedures can be applied in Step 4 of Algorithm 2.1 or in any of the iterative
techniques in this chapter. For example, we can select a tolerance ε > 0and generate p1, . . . , pN  until
one of the following conditions is met:

Unfortunately, difficulties can arise using any of these stopping criteria. For example, sequences
pn∞

n = 0 with the property that the differences pn − pn−1 can converge to zero while the sequence
itself diverges.

When using a computer to generate approximations, it is good practice to set an upper bound on the
number of iterations. This will eliminate the possibility of entering an infinite loop, a situation that can
arise when the sequence diverges (and also when the program is incorrectly coded). This was done in
Step 2 of Algorithm 2.1 where the bound N0 was set and the procedure terminated if i > N0.

3.1. Examples

Example 1 Exemple

The equation f(x) = x3 + 4x2 − 10 = 0 has a root in [1, 2] since f(1) = −5 and f(2) = 14. The
Bisection Algorithm gives the values in Table 2.1.

A�er 13 iterations, $p_{13}=1.365112305$ approximates the root $p$ with an error

|p − p13| < |b14 − a14| = |1.365234375 − 1.365112305| = 0.000122070.

Since |a14| < |p|,
|p−p13|

|p|
< |b14−a14|

|a14|
≤ 9.0 × 10−5,

so the approximation is correct to at least four significant digits. The correct value of p, to nine decimal
places, is p = 1.365230013. Note that p9 is closer to p than is the final

Table 2.1

|pN − pN−1| < ε,
|pN−pN−1|

|pN |
< ε, pN ≠ 0,  or 

|f(pN)| < ε.

Chapter2 : Numerical resolution ofan algebraic equation
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The Bisection method, though conceptually clear, has significant drawbacks. It is slow to converge
(that is, N might become quite large before |p − pN |is sufficiently small), and a good intermediate
approximation can be inadvertently discarded. However, the method has the important property that it
always converges to a solution, and for that reason it is o�en used as a starter for the more efficient
methods we will present later in this chapter

Example 2 Exemple

Find a root of the function f(x) = x3 + x − 1 by using the Bisection Method on the interval [0, 1].

As noted, f(a0)f(b0) = (−1)(1) < 0, so a root exists in the interval. The interval midpoint is
c0 = 1/2. The first step consists of evaluating f(1/2) = −3/8 < 0 and choosing the new interval
[a1, b1] = [1/2, 1], since f(1/2)f(1) < 0. The second step consists of

evaluating f(c1) = f(3/4) = 11/64 > 0, leading to the new interval [a2, b2] = [1/2, 3/4].
Continuing in this way yields the following intervals:

3.2. Number of iterations

Number of iterations for the bisection method Méthode

uppose that f ∈ C[a, b] and f(a) ⋅ f(b) < 0. The Bisection method generates a sequence pn∞
n=1

approximating a zero p of f with :

|pn − p| ≤ b−a
2n ,  when  n ≥ 1. 

Proof Complément

For each n ≥ 1, we have

bn − an = 1
2n−1 (b − a) and p ∈ (an, bn).

Since pn = 1
2 (an + bn) for all n ≥ 1, it follows that

|pn − p| ≤ 1
2 (bn − an) = b−a

2n . 

Since

|pn − p| ≤ (b − a) 1
2n ,

Example Exemple

To determine the number of iterations necessary to solve $f(x)=x^3+4 x^2-10=0$ with accuracy
undefined0^{-3}$ using $a_1=1$ and $b_1=2$ requires finding an integer $N$ that satisfies

|pN − p| ≤ 2−N(b − a) = 2−N < 10−3. 

To determine $N$ we will use logarithms. Although logarithms to any base would suffice, we will use
base-10 logarithms since the tolerance is given as a power of 10 . Since 2−N < 10−3 implies that
log10(2)−N < log10(10)−3 = −3, we need to

have

− Nlog10(2) < −3, so N > 3
log10(2)

≈ 9.96.

Chapter2 : Numerical resolution ofan algebraic equation
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Hence, ten iterations will ensure an approximation accurate to within 10−3. Table 2.1 on page 49 shows
that the value of p9 = 1.365234375 is accurate to within 10−4. Again, it is important to keep in mind
that the error analysis gives only a bound for the number of iterations, and in many cases this bound is
much larger than the actual number required.

Links to a practicals examples Conseil

We give the following links to illustrate the proposed method by giving some numericals examples with
videos :

Bisection method - an example :2https://www.youtube.com/watch?v=14etsIN_2Fs3

Bisection Method | Solved Examples | Easiest Tricks : https://www.youtube.com/watch?v=iSkx
y13h6NQ

Bisection Method Example Numerical Analysis Root Finding : https://www.youtube.com/watc
h?v=ECUAvaTnQ2M

4. False Position Method (Regula Falsi Method)

Each successive pair of approximations in the Bisection method brackets a root p of the equation; that
is, for each positive integer n, a root lies between an and bn. This implies that, for each n, the Bisection
method iterations satisfy

|pn − p| < 1
2 |an − bn|,

In mathematics, an ancient method of solving an equation in one variable is the false position
method (method of false position) or regula falsi method. In simple words, the method is described as
the trial and error approach of using “false” or “test” values for the variable and then altering the test
value according to the result. In this article, you will learn how to solve an equation in one variable using
the false position method. Also, get solved examples on the regula falsi method hereFalse Position Method (or)

Regula Falsi Method p.31. https://byjus.com/maths/false-position-method/

The method of False Position (also called Regula Falsi) generates approximations in the same manner
as the Secant method, but it includes a test to ensure that the root is always bracketed between
successive iterations. Although it is not a method we generally recommend, it illustrates how
bracketing can be incorporated.

First choose initial approximations p0 and p1 with f ( p0) · f ( p1) < 0. The approximation p2 is chosen in
the same manner as in the Secant method, as the x-intercept of the line joining ( p0, f ( p0)) and ( p1, f (
p1)). To decide which secant line to use to compute p3, consider f ( p2) · f ( p1), or more correctly sgn f (
p2) · sgn f ( p1).

• If sgn f ( p2) · sgn f ( p1) < 0, then p1 and p2 bracket a root. Choose p3 as the x-intercept

of the line joining ( p1, f ( p1)) and ( p2, f ( p2)).

• If not, choose p3 as the x-intercept of the line joining ( p0, f ( p0)) and ( p2, f ( p2)), and

then interchange the indices on p0 and p1.

In a similar manner, once p3 is found, the sign of f ( p3) · f ( p2) determines whether we use p2 and p3 or
p3 and p1 to compute p4. In the latter case a relabeling of p2 and p1 is performed. The relabeling
ensures that the root is bracketed between successive iterations.

The process is described in Algorithm 2.5, and Figure 2.11 shows how the iterations can differ from
those of the Secant method. In this illustration, the first three approximations are the same, but the
fourth approximations differ.

2. Bisection method - an example - https://www.youtube.com/watch?v=14etsIN_2Fs
3. ssss - Bisection method - an example

Chapter2 : Numerical resolution ofan algebraic equation
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Méthode

The term Regula Falsi, literally a false rule or false position, refers to a technique that uses results that
are known to be false, but in some specific manner, to obtain convergence to a true result. False
position problems can be found on the Rhind papyrus, which dates from about 1650 b.c.e.

Remarque

Geometrical representation of the roots of the equation f(x) = 0 can be shown as:

Example 1 Exemple

To make a reasonable comparison we will use the same initial approximations as in the Secant
method, that is, p0 = 0.5 and p1 = π/4. Table 2.6 shows the results of the method of False Position
applied to f (x) = cos x−x

Example 2 Exemple

Find the positive root of the equation 3x+sinx-ex using Regula Falsi method and correct upto 4 decimal
places.

f(1) = -7

f(2) = 16

Therefore, root lies between 1 and 2

a = 1; f(a) = -7

b = 2; f(b) = 16

Chapter2 : Numerical resolution ofan algebraic equation
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Substituting the values in the formula,

x = bf(a)−af(b)
f(a)−f(b)

,

we get x1 = 2(−7) − 16 − 7 − 16 = 1.304347826; f(x1) = −1.334757952

Therefore,x1 becomes a to find the next point.

X2 =
2(−1.334757952)−(1.304347826)16

−1.334757952−16 = 1.357912305; f(x2) = −0.229135731

Therefore, X2 becomes a to find the next point.

X3 =
2(−0.229135731)−(1.357912305)16

−0.229135731−16 = 1.366977805; f(x3) = −0.038591868

Therefore, X3 becomes a to find the next point.

X4 =
2(−0.038591868)−16(1.366977805)

−0.038591868−16 = 1.368500975; f(x4) = −6.478731338 ∗ 10−3

Therefore, X4 becomes a to find the next point.

X5 =
2(−6.478731338∗10−3)−16(1.368500975)

(−6.478731338∗10−3)−16 = 1.368756579; f(x5) = −1.087052822 ∗ 10−3

Therefore X5 becomes a to find the next point.

X6 =
2(−1.087052822∗10−3)−16(1.368756579)

(−1.087052822∗10−3)−16
= 1.368799463; f(x6) = −1.823661977 ∗ 10−4*

Therefore X6 becomes a to find the next point.

X7 = 2(−1.823661977∗10−4)−16(1.368799463)
(−1.823661977∗10−4)−16

= 1.368806657; f(x7) = −3.0601008 ∗ 10−5

Therefore X7 becomes a to find the next point.

X8 =
2(−3.0601008∗10−5)−1.368806657(16)

(−3.0601008∗10−5)−16 = 1.368807864.

Therefore, the positive root corrected to 4 decimal places is 1.3688.

5. Fixed Point iteration Method

Rappel

Fixed-point results occur in manyDavis, P.J.; Rabinowitz, P. (2007). Methods of numerical integration. Courier

Corporation. ISBN 978-0-486-45339-2. p.28 areas of mathematics, and are a major tool of economists for
proving results concerning equilibria. Although the idea behind the technique is old, the terminology
was first used by the Dutch mathematician L.E.J. Brouwer (1881–1966) in the early 1900s.Davis, P.J.;
Rabinowitz, P. (2007). Methods of numerical integration. Courier Corporation. ISBN 978-0-486-45339-
2.Davis, P.J.; Rabinowitz, P. (2007). Methods of numerical integration. Courier Corporation. ISBN 978-0-486-45339-2. p.28

5.1. Fixed Point Iteration

A number p is a fixed point for a given function g if g(p) = p. In this section we consider the problem of
finding solutions to fixed-point problems and the connection between the fixed-point problems and
the root-finding problems we wish to solve.

Root-finding problems and fixed-point problems are equivalent classes in the following sense:

Given a root-finding problem f(p) = 0, we can define functions g with a fixed point at p in a number of
ways, for example, as g(x) = x − f(x) or as g(x) = x + 3f(x). Conversely, if the function g has a
fixed point at p, then the function defined by f(x) = x − g(x) has a zero atp.

Chapter2 : Numerical resolution ofan algebraic equation
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Although the problems we wish to solve are in the root-finding form, the fixed-point form is easier to
analyze, and certain fixed-point choices lead to very powerful root-finding techniques.Bultheel,
Adhemar; Cools, Ronald, eds. (2010). The Birth of Numerical Analysis. Vol. 10. World Scientific. ISBN 978-
981-283-625-0.Bultheel, Adhemar; Cools, Ronald, eds. (2010). The Birth of Numerical Analysis. Vol. 10. World Scientific. ISBN

978-981-283-625-0. p.28

We first need to become comfortable with this new type of problem and to decide when a function has
a fixed point and how the fixed points can be approximated to within a specified accuracy.Ames, W.F.
(2014). Numerical methods for partial differential equations (3rd ed.). Academic Press. ISBN 978-0-08-
057130-0.Ames, W.F. (2014). Numerical methods for partial differential equations (3rd ed.). Academic Press. ISBN 978-0-08-

057130-0. p.27

Exemple

The function g(x) = x2 − 2, for −2 ≤ x ≤ 3, has fixed points atx = −1and x = 2 since
g(−1) = (−1)2 − 2 = −1 and g(2) = 22 − 2 = 2.

This can be seen in the following Figure.

Graphique 1

The following theorem gives sufficient conditions for the existence and uniqueness of a fixed point.

a) Theorem 1

a. If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], then g has a fixed point in [a, b].

If, in addition, g
′
(x) exists on [a, b] and a positive constant k < 1 exists with |g

′
(x)| ≤ k, for all

x ∈ (a, b),

then the fixed point in [a, b] is unique. (See the following figure )

i) ALGORITHM

ALGORITHM Fondamental

We give the following algoritme for the fixed point iteration method as follos :

Chapter2 : Numerical resolution ofan algebraic equation
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1 Example

The equation x3 + 4x2 − 10 = 0 has a unique root in [1, 2]. There are many ways to change the
equation to the fixed-point form x = g(x) using simple algebraic manipulation. For example, to obtain
the function g described in previous theorem, we can manipulate the equation

x3 + 4x2 − 10 = 0as follows:

4x2 = 10 − x3, so x2 = 14(10 − x3), and x = ± 1
2 (10 − x3)

1
2 .

To obtain a positive solution, g3(x) is chosen. It is not important to derive the functions shown here,
but you should verify that the fixed point of each is actually a solution to the original equation,
x3 + 4x2 − 10 = 0.

x = g1(x) = x − x3 − 4x2 + 10

x = g2(x) = ( 10
x − 4x)

1/2

x = g3(x) = 1
2
(10 − x3)

1
2

x = g4(x) = ( 10
4+x )

1
2

x = g5(x) = x − x3+4x2−10
3x2+8x

With p0 = 1.5 Table 2.2 lists the results of the fixed-point iteration for all five choices of g.

The actual root is 1.36523001. Comparing the results to the Bisection Algorithm given in that example,
it can be seen that excellent results have been obtained for choices (c), (d), and (e), since the Bisection
method requires 27 iterations for this accuracy. It is interesting to note that choice (a) was divergent
and that (b) became undefined because it involved the square root of a negative number

How can we find a fixed-point problem that produces a sequence that reliably and rapidly converges to
a solution to a given root-finding problem?

The following theorem and its corollary give us some clues concerning the paths we should pursue
and, perhaps more importantly, some we should reject.

5.2. Theorem 2 (Fixed-Point Theorem)

Let g ∈ C[a, b] be such that g(x) ∈ [a, b], for all x ∈ [a, b]. Suppose, in addition, that g exists on [a, b]
and that a constant 0 < k < 1 exists with :

|g
′
(x)| ≤ k, ∀x ∈ [a, b].

Then, for any number p0 in[a, b], the sequence defined by

pn = g(pn − 1),n ≥ 1,

converges to the unique fixed point p in[a, b].

a) Corollary ( Number of iterations )

Complément

If g satisfies the hypotheses of Theorem 2 (Fixed-Point Theorem), then bounds for the error involved in
using pn to approximate p are given by

Chapter2 : Numerical resolution ofan algebraic equation
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|pn − p| ≤ kn max(p0 − a, b − p0)

and

|pn − p| ≤ kn

1−k |p1 − p0|, for all n ≥ 1.

Remarque

Both inequalities in the corollary relate the rate at which (pn)∞
n=0 converges to the bound k on the first

derivative. The rate of convergence depends on the factor kn. The smaller the value ofk, the faster the
convergence, which may be very slow if k is close to 1.

5.3. Exercices
a) Exercice 1

Consider the equation x = cosx.

(a) Show graphically that there exists a unique positive root α. Indicate, approximately, where it
is located.

(b) Prove local convergence of the iteration xn+1 = cosxn.

(c) For the iteration in (b) prove: if xn ∈ [0, π
2 ], then

|xn+1 − α| < (sin α+π/2
2

)|xn − α|.

In particular, one has global convergence on $\le�[0, \frac{\pi}{2}\right]$.

i) Solution 1

From the graph below one sees that α ≈ π
4

 .

The iteration function is φ(x) = cosx. Since φ′(x) = − sinx, we have |φ′(α)| = sinα < 1,
implying local convergence.

If x0 ∈ [0, π
2
], then clearly xn ∈ [0, 1] for all n ≥ 1. Furthermore,

1 Exercice 2

Consider the equation

x = e−x.

(a) Show that there is a unique real root $\alpha$ and determine an interval containing it.

(b) Show that the fixed point iteration $x_{n+1}=\mathrm{e}^{-x_n}, n=0,1,2, \ldots$, converges
locally to $\alpha$ and determine the asymptotic error constant.

(c) Illustrate graphically that the iteration in (b) actually converges globally, that is, for arbitrary
$x_0>0$. Then prove it.

An equivalent equation is

|xn+1 − α| = |cosxn − cosα| = 2 sin 1
2

(xn + α) sin 1
2

(xn − α)

< sin 1
2 (xn + α) ⋅ |xn − α| < sin( α+π/2

2 )|xn − α|.∣ ∣Chapter2 : Numerical resolution ofan algebraic equation
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x = ln 1
x

Does the iteration xn+1 = ln 1
xn

 also converge locally? Explain.

1 Solution 2

(a) Letting f(x) = x − e−x, we have f ′(x) = 1 + e−x ≥ 1 for all real x. Consequently, f
increases monotonically on R from $−∞$ to +∞, hence has exactly one real zero, α. Given
that f(0) = −1 and $f(1) = 1 − e−1 > 0$, we have (a) Letting $f(x) = x − e−x$, we have
$f′(x) = 1 + e−x ≥ 1$ for all real x. Consequently, f  increases monotonically on R from −∞
to +∞, hence has exactly one real zero, α. Given that f(0) = −1 and f(1) = 1 − e−1 > 0 , we
have 0 < α < 1. .

(b) The fixed point iteration is xn+1 = φ(xn) with φ(x) = e−x. Clearly, α = φ(α), and
φ′(α) = −e−α, hence (b) The fixed point iteration is xn+1 = φ(xn) with φ(x) = e−x. Clearly,
α = φ(α), and φ′(α) = −e−α, hence 0 < |φ′(α)| = e−α < 1. Therefore, we have local
convergence, the asymptotic error constant being c = −e−α. 0 < |φ′(α)| = e−α < 1.
Therefore, we have local convergence, the asymptotic error constant being c = −e−α.

(c) For definiteness, assume x0 > α. Then the fixed point iteration behaves as indicated in the
figure below: the iterates "spiral" clockwise around, and into, the fixed point α. The same
spiraling takes place if (c) For definiteness, assume x0 > α. Then the fixed point iteration
behaves as indicated in the figure below: the iterates "spiral" clockwise around, and into, the
fixed point α. The same spiraling takes place if 0 < x0 < α (simply relabel x1 in the figure as x0

). < x0 < α (simply relabel x1 in the figure as x0 ).

Proof of global convergence. From the mean value theorem of calculus, applied to the function
$\mathrm{e}^{-x}$, one has

|xn+1 − α| = |e−xn − e−α| = e−ξn |xn − α|,

where $ξn$ is strictly between α and xn. Letting μ = min(x0,x1), it is clear from the graph above that
$μ > 0$ and

xn ≥ μ ( all n ≥ 0), α > μ.

Therefore, ξn being stricly between α and xn, we have that ξn > μ for all n, hence

|xn+1 − α| < e−μ|xn − α|.

Applying this repeatedly gives |xn − α| < e−μn|x0 − α| → 0 as n → ∞.

1 Exercice 3

The equation x2 − 2 = 0 can be written as a fixed point problem in different ways, for example,

(a) x = 2
x $

(b) x = x2 + x − 2

(c) x = x+2
x+1 .

How does the fixed point iteration perform in each of these three cases? Be as specific as you can.
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1 Solution 3

This is a fixed point iteration with iteration function

φ(x) =
x(x2+3a)

3x2+a
.

Clearly, φ(α) = α. Differentiating repeatedly the identity

(3x2 + a)φ(x) = x3 + 3ax,

one gets first

6xφ(x) + (3x2 + a)φ′(x) = 3x2 + 3a,

hence 4aφ′(α) = 6a − 6αφ(α) = 6a − 6α2 = 0, then

6φ(x) + 12xφ′(x) + (3x2 + a)φ′′(x) = 6x,

hence 4aφ′′(α) = 6α − 6α = 0, and finally

18φ′(x) + 18xφ′′(x) + (3x2 + a)φ′′′(x) = 6,

hence 4aφ′′′(α) = 6, that is, φ′′′(α) ≠ 0. This shows that the iteration converges with order p = 3.

The asymptotic error constant, is

c = 1
3!
φ′′′(α) = 1

6
⋅ 6

4a
= 1

4a
.

6. Newoton's Method

Isaac Newton and Joseph Raphson
Isaac Newton (1642– 1727) was one of the most brilliant scientists of all time. The late 17th century
was a vibrant period for science and mathematics and Newtonʼs work touched nearly every aspect of
mathematics. His method for solving equations was introduced to find a root of x3 − 2x − 5 = 0, a
problem we consider in Exercise 5(a). Although he demonstrated the method only for polynomials, it is
clear that he realized its broader applications.

Joseph Raphson (1648– 1715) gave a description of the method attributed to Isaac Newton in 1690,
acknowledging Newton as the source of the discovery. Neither Newton nor Raphson explicitly used the
derivative in their description since both considered only polynomials. Other mathematicians,
particularly James Gregory (1636–1675), were aware of the underlying process at or before this time.

6.1. Description of Newtonʼs Method

Newtonʼs (or the Newton–Raphson) method is one of the most powerful and well-known numerical
methods for solving a root-finding problem. There are many ways of introducing Newtonʼs
method.Watson, G.A. (2010). "The history and development of numerical analysis in Scotland: a personal
perspective" (PDF). The Birth of Numerical Analysis. World Scientific. pp. 161–177. ISBN
9789814469456.Watson, G.A. (2010). "The history and development of numerical analysis in Scotland: a personal

perspective" (PDF). The Birth of Numerical Analysis. World Scientific. pp. 161–177. ISBN 9789814469456. p.29

If we only want an algorithm, we can consider the technique graphically, as is o�en done in calculus.
Another possibility is to derive Newtonʼs method as a technique to obtain faster convergence than
offered by other types of functional iteration. A third means of introducing Newtonʼs method, discussed
next, is based on Taylor polynomials.Ezquerro Fernández, J.A.; Hernández Verón, M.Á. (2017). Newton's
method: An updated approach of Kantorovich's theory. Birkhäuser. ISBN 978-3-319-55976-6.Ezquerro

Fernández, J.A.; Hernández Verón, M.Á. (2017). Newton's method: An updated approach of Kantorovich's theory. Birkhäuser.

ISBN 978-3-319-55976-6. p.28
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Suppose thatf ∈ C2[a, b]. Let p0 ∈ [a, b] be an approximation to the solution p of f(x) = 0 such that
f(p0) = 0 and |p − p0| is “small.” Consider the first Taylor polynomial for f(x)expanded about p0,
and evaluated at x = p,

f(p) = f(p0) + (p − p0)f
′
(p0) +

(p−p0)2

2 f
′′
(ϵ(p)),

where ϵ(p) lies between p and p0. Since f(p) = 0, this equation gives

0 = f(p0) + (p − p0)f
′
(p0) +

(p−p0)2

2 f
′′
(ϵ(p)),

Newtonʼsmethod is derived by assuming that since |p − p0| is small, the terminvolving (p − p0)2 is
much smaller, so

0 ≈ f(p0) + (p − p0)f(p0).

Solving for p gives

p ≈ p1 ≡ p0 −
f(p0)

f ′(p0)

This sets the stage for Newtonʼs method, which starts with an initial approximation p0 and generates
the sequence (pn)∞

n=0 by

pn+1 = pn − f(pn)

f
′
(pn)

.∀n ≥ 0

Figure 2.7 illustrates how the approximations are
obtained using successive tangents. Starting with the
initial approximation p0, the approximation p1 is the x-
intercept of the tangent line to the graph of f at
(p0, f(p0)). The approximation p2 is the x-intercept of
the tangent line to the graph of f at(p1, f(p1)) and so
on. Algorithm 2.3 follows this procedureQuarteroni, A.;
Saleri, F.; Gervasio, P. (2014). Scientific computing with
MATLAB and Octave (4th ed.). Springer. ISBN 978-3-642-
45367-0.Quarteroni, A.; Saleri, F.; Gervasio, P. (2014). Scientific

computing with MATLAB and Octave (4th ed.). Springer. ISBN 978-3-

642-45367-0. p.28

6.2. Algorithm and procedure of Newton method

Algorithm Méthode

To find a solution to f(x) = 0 given an initial approximationp0 :

INPUT initial approximation p0; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

The stopping-technique inequalities given with the Bisection method are applicable to Newtonʼs
method. That is, select a tolerance ε > 0, and construct p1, . . . pN  , until

|pN − pN−1| < ϵ,

|pN−pN−1|
|pN | < ϵ, pN = 0,

|f(pN)| < ϵ

Chapter2 : Numerical resolution ofan algebraic equation
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Example Of Newton's method Exemple

Suppose we would like to approximate a solution to f(x) = cosx − x = 0. A solution to this root-
finding problem is also a solution to the fixed-point problem x = cosx, and the graph in Figure 2.8
implies that a single fixed-point p lies in [0, π/2]. Table 2.3 shows the results of fixed-point iteration
with p0 = π/4. The best we could conclude from these results is that p ≈ 0.74.

To approach this problem differently, define f(x) = cosx − x and apply Newtonʼs method. Since
f(x) = −sinx − 1, the sequence is generated by

pn = pn−1 − cos pn−1−pn−1

− sin pn−1−1 ,  for n ≥ 1

With p0 = π/4, the approximations in Table 2.4 are generated. An excellent approximation is obtained
with n = 3. We would expect this result to be accurate to the places listed because of the agreement of
p3 and p4.

n pn.

0 0.7853981635

1 0.7395361337

2 0.7390851781

3 0.7390851332

4 0.7390851332

Table 2.4

Remarque

The Taylor series derivation of Newtonʼs method at the beginning of the section points out the
importance of an accurate initial approximation. The crucial assumption is that the term involving (p −
p0)2 is, by comparison with |p − p0|, so small that it can be deleted. This will clearly be false unless p0

is a good approximation to p. If p0 is not sufficiently close to the actual root, there is little reason to
suspect that Newtonʼs method will converge to the root. However, in some instances, even poor initial
approximations will produce convergence

Conseil

The following convergence theorem for Newtonʼs method illustrates the theoretical importance of the
choice of p0.

Chapter2 : Numerical resolution ofan algebraic equation
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6.3. Convergence theorem for Newtonʼs method

Fondamental

Let f ∈ C2[a, b]. If p ∈ [a, b] is such that f(p) = 0 and f ′(p) ≠ 0, then there exists a δ > 0 such that
Newton's method generates a sequence {pn}∞

n=1 converging to p for any initial approximation
p0 ∈ [p − δ, p + δ].

a) Proof

The proof is based on analyzing Newton's method as the functional iteration scheme pn = g(pn−1),
for n ≥ 1, with

g(x) = x −
f(x)

f ′(x)
.

Let k be in [0, 1]. We first find an interval [p − δ, p + δ] that g maps into itself and for which
|g′(x)| ≤ k, for all x ∈ (p − δ, p + δ).

Since f ′ is continuous and f ′(p) ≠ 0, implies that there exists a $δ1 > 0$, such that
f ′(x) ≠ 0$for$x ∈ [p − δ1, p + δ1] ⊆ [a, b]. Thus, g is defined and continuous on [p − δ1, p + δ1].
Also,

g′(x) = 1 −
f ′(x)f ′(x)−f(x)f ′′(x)

[f ′(x)]
2 =

f(x)f ′′(x)

[f ′(x)]
2 ,

for x ∈ [p − δ1, p + δ1], and, since f ∈ C2[a, b], we have g ∈ C1[p − δ1, p + δ1].

By assumption, f(p) = 0, so

g′(p) = f(p)f ′′(p)

[f ′(p)]2
= 0 .

Since g′ is continuous and Since g′ is continuous and 0 < k < 1, we will have δ$,with$0 < δ < δ1,
and 0 < k < 1, implies that there exists a δ, with 0 < δ < δ1, and

|g′(x)| ≤ k,  for all x ∈ [p − δ, p + δ].

We now need to show that g maps [p − δ, p + δ] into [p − δ, p + δ]. If x ∈ [p − δ, p + δ], then the
Mean Value Theorem implies that for some number ξ between x and p, we have
|g(x) − g(p)| = |g′(ξ)||x − p|. So

|g(x) − p| = |g(x) − g(p)| = |g′(ξ)||x − p| ≤ k|x − p| < |x − p|.

Since x ∈ [p − δ, p + δ], it follows that |x − p| < δ and that |g(x) − p| < δ. Hence, g maps
[p − δ, p + δ] into [p − δ, p + δ].

All the hypotheses of the Fixed-Point Theorem are now satisfied, so the sequence {pn}∞
n=1, defined by

pn = g(pn−1) = pn−1 −
f(pn−1)
f ′(pn−1) ,  for n ≥ 1,

converges to p for any p0 ∈ [p − δ, p + δ].

Remarque

Newtonʼs method is an extremely powerful technique, but it has a major weakness: the need to know
the value of the derivative of f at each approximation. Frequently, f(x)is far more difficult and needs
more arithmetic operations to calculate than f(x).
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6.4. Exercices
a) Exercice 1

Use Newton's method to find solutions accurate to within undefined 10−5 for the following problems.

ex + 2−x + 2 cosx − 6 = 0$forundefined ≤ x ≤ 2

ln(x − 1) + cos(x − 1) = 0$forundefined.3 ≤ x ≤ 2

2x cos 2x − (x − 2)2 = 0 $for$2 ≤ x ≤ 3$and$3 ≤ x ≤ 4

(x − 2)2 − lnx = 0 $forundefined ≤ x ≤ 2$and$e ≤ x ≤ 4

ex − 3x2 = 0$fore. $ex − 3x2 = 0$for$0 ≤ x ≤ 1$and$3 ≤ x ≤ 5$ ≤ x ≤ 1$and$3 ≤ x ≤ 5

sinx − e−x = 0 $forf. $ sinx − e−x = 0 $for$0 ≤ x ≤ 1, 3 ≤ x ≤ 4$and$6 ≤ x ≤ 7$ ≤ x ≤

i) Solution 1

(a) For p0 = 1, we have p8 = 1.829384.

(b) For p0 = 1.5, we have p4 = 1.397748.

(c) For p0 = 2, we have p4 = 2.370687; and for p0 = 4, we have p4 = 3.722113.

(d) For p0 = 1, we have p4 = 1.412391; and for p0 = 4, we have p5 = 3.057104.

(e) For p0 = 1, we have p4 = 0.910008; and for p0 = 3, we have p9 = 3.733079.

(f) For p0 = 0, we have p4 = 0.588533; for p0 = 3, we have p3 = 3.096364; and for p0 = 6, we have
p3 = 6.285049.

1 Exercice 2

The following describes Newton's method graphically: Suppose that f ′(x) exists on [a, b] and that
f ′(x) ≠ 0 on [a, b]. Further, suppose there exists one p ∈ [a, b] such that f(p) = 0, and let p0 ∈ [a, b]
be arbitrary. Let p1 be the point at which the tangent line to f  at (p0, f(p0)) crosses the x-axis. For
each n ≥ 1, let pn be the x-intercept of the line tangent to f  at (pn−1, f(pn−1)$). Derive the formula
describing this method.

1 Solution 2

The equation of the tangent line is

y − f(pn−1) = f ′(pn−1)(x − pn−1).

To complete this problem, set y = 0 and solve for x = pn.

1 Exercice 3

Use Newton's method to approximate, to within $10^{-4}$, the value of $x$ that produces the point on
the graph of $y=1 / x$ that is closest to $(2,1)$.

1 Solution 3

 For p0 = 2, we have p2 = 1.866760. The point is (1.866760, 0.535687). 
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1 Exercice 4

The accumulated value of a savings account based on regular periodic payments can be determined
from the annuity due equation,

A = P
i

[(1 + i)n − 1].

In this equation, A is the amount in the account, P  is the amount regularly deposited, and i is the rate
of interest per period for the n deposit periods. An engineer would like to have a savings account
valued at 750, 000 upon retirement in 20 years and can afford to put 1500 per month toward this goal.
What is the minimal interest rate at which this amount can be invested, assuming that the interest is
compounded monthly?

1 Solution 4

 The minimal annual interest rate is 6.67%. 

1 Exercice 5

Let f(x) = 33x+1 − 7 ⋅ 52x

a. Use the Maple commands solve and fsolve to try to find all roots of f.

b. Plot $f(x)$ to find initial approximations to roots of f.

c. Use Newton's method to find roots of f  to within undefined 10−16.

d. Find the exact solutions of f(x) = 0 without using Maple.

1 Solution 5

(a) solve (3−(3 ∗ x + 1) − 75−(2x),x) and fsolve (3−(3x + 1) − 75−(2 ∗ x),x) both fail.

(b) plot (3∧(3x + 1) − 75∧(2 ∗ x),x = a… b) generally yields no useful information. However,
a = 10.5 and b = 11.5 in the plot command show that f(x) has a root near x = 11.

(c) With p0 = 11, p5 = 11.0094386442681716 is accurate to undefined 10−16.

(d) p = ln(3/7)
ln(25/27)

1 Exercice 6

Repeat the previous exercise 29 using f(x) = 2x2 − 37x+1.

1 Solution 6

(a) solve (2(x2) − 3 ∗ 7(x+1),x fails and fsolve (2(x2) − 3 ∗ 7(x+1),x returns -1.118747530.

(b) plot(2(x∧2) − 3 ∗ 7(x+1), x = −2.4) shows there is also a root near x = 4.

(c) With p0 = 1, p4 = −1.1187475303988963 is accurate to 10−16; with
p0 = 4, p6 = 3.9261024524565005 is accurate to −16

(d) The roots are : ln(7)±√[ln(7)]2+4 ln(2) ln(4)
2 ln(2)

1 Exercice 7

Consider the equation

f(x) = 0,  where f(x) = tanx − cx, 0 < c < 1.

(a) Show that the smallest positive root $\alpha$ is in the interval $\le�(\pi, \frac{3}{2}
\pi\right)$.
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(b) Show that Newton's method started at x0 = π is guaranteed to converge to α if c is small
enough. Exactly how small does c have to be?

1 Solution 7

(a) This is readily seen by plotting the graphs of y = tanx and y = cx for x > 0, and observing
that they intersect for the first time in the interval (π, 3π

2 ).

(b) Note that

so that f  on the interval (π, 3π
2 ) is convex and monotonically increasing from −cπ to ∞. Therefore,

Newton's method converges with x0 = π if x1 < 3π
2 , which translates to

π + cπ
1−c < 3π

2 ,

that is, $c < 1
3 $.

1 Exercice 8

Let us suppose that the equation

cosx coshx − 1 = 0

has exactly two roots αn < βn in each interval [− π
2

+ 2nπ, π
2

+ 2nπ] n = 1, 2, 3 …. Show that
Newton's method applied to (∗) converges to αn when initialized by x0 = − π

2 + 2nπ, and to βn
when initialized by x0 = π

2
+ 2nπ.

1 Solution 8

We have

Clearly, f ′′(x) > 0 on [− π
2

+ 2nπ, 2nπ] and f ′′(x) < 0 on [2nπ, π
2

+ 2nπ]. Furthermore,
f(− π

2
+ 2nπ) = f( π

2
+ 2nπ) = −1 and f(2nπ) = cosh(2nπ) > 1. Since f  is convex on the first

half of the interval [− π
2 + 2nπ, π

2 + 2nπ], Newton's method started at the le� endpoint converges
monotonically decreasing (except for the first step) to αn, provided the first iterate is to the le� of the
midpoint. This is the case since, with x0 = − π

2
+ 2nπ, we have, for n ≥ 1,

Since f  is concave on the second half of the interval, Newton's method started at the right endpoint
converges monotonically decreasing to βn.

f ′(x) = 1 + tan2 x − c > 0,

f ′′(x) = 2 tanx(1 + tan2 x),

f(x) = cosx coshx − 1,

f ′(x) = − sinx coshx + cosx sinhx,

f ′′(x) = −2 sinx sinhx.

x1 = x0 − f(x0)
f ′(x0)

= − π
2 + 2nπ + 1

cosh(− π
2 +2nπ)

< − π
2

+ 2nπ + 1
cosh( 3π

2 )
= 2nπ − 1.55283 … < 2nπ.
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7. Exercice

What is the main objective of the fixed-point iteration method?

 To solve algebraic equations directly

 To find the root of a function

 To find a fixed point of a function

 To approximate the derivative of a function

8. Exercice

Which of the following is a requirement for the convergence of the fixed-point iteration method?

 Stability of the domain of definition by the function

 The function must have a root

 The function must have a Lipschitz and contractant continuous derivative
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Exercice : Selected exercices II

Exercice 1

Suppose a positive sequence {εn} converges to zero with order p > 0. Does it then also converge to zero
with order p′ for any 0 < p′ < p ?

Solution

By assumption,

limn → ∞ εn+1
ε
p
n

= c, c ≠ 0

which implies
εn+1

εp
′
n

= εn+1

εpn
ε
p−p′

n ∼ cε
p−p′

n → 0 as n → ∞ when p′ < p.

Exercice 2

The sequence εn = e−en ,n = 0, 1, …, clearly converges to zero as n → ∞. What is the order of
convergence?

Solution 2

We have
εn+1

ε
p
n

= e−en+1

e−pen = e−en(e−p).

As $n → ∞$, this tends to a nonzero constant if and only if $p = e$. Hence, the order of convergence is
e = 2.71828 ….

Exercice 3

Give an example of a positive sequence {εn} converging to zero in such a way that limn→∞
εn+1

εpn
= 0 for

some p > 1, but not converging (to zero) with any order p′ > p.

Solution 3

Take, for example, εn = exp (−npn). Then

εn+1

εpn
=

exp(−(n+1)pn+1)
exp(−npn+1)

= exp (−pn+1) → 0 as n → ∞,

but
εn+1

ε
p′
n

= exp (−(n + 1)pn+1 + np′pn) = exp (pn[(p′ − p)n − p]) → ∞

for any p′ > p.
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Exercice 4

(a) Consider the iteration $xn+1 = x3
n$. Give a detailed discussion of the behavior of the sequence

{xn} in dependence of x0.

(b) Do the same as (a), but for $xn+1 = x
1/3
n ,x0 >0$.

Solution 4

(a) If |x0| > 1, then xn → sgn (x0) ⋅ ∞. If |x0| = 1, then trivially xn = sgn (x0) for all n. If
|x0| < 1, then xn → 0 monotonically decreasing, if x0 > 0, and monotonically increasing, if
x0 < 0, the order of convergence being p = 3 in either case.

(b) Now, xn converges to α = 1, monotonically increasing if (b) Now, xn converges to α = 1,
monotonically increasing if 0 < x0 < 1, monotonically decreasing if x0 > 1, and trivially if
x0 = 1. Since for the iteration function φ(x) = x1/3 we have φ′(α) = 1/3, convergence is linear
with asymptotic error constant equal to 1/3.

Exercice 5

Consider the quadratic equation x2 − p = 0, p > 0. Suppose its positive root α = √p is computed by
the method of false position starting with two numbers $a, b$ satisfying $0 < a < α < b$. Determine
the asymptotic error constant $c$ as a function of b and α. What are the conditions on b for 0 < c < 1

2  to
hold, that is, for the method of false position to be (asymptotically) faster than the bisection method?

Solution 5

When f(x) = x2 − p, we have

Thus, there holds Thus, there holds $0<c<\frac{1}{2}$ precisely if <c<\frac{1}{2}$ precisely if

α < b < 3α.

Exercice 6 ( home work )

Consider the iteration

xn+1 = φ(xn), φ(x) = √2 + x.

(a) Show that for any positive x0 the iterates xn remain on the same side of α = 2 as x0 and
converge monotonically to α.

(b) Show that the iteration converges globally, that is, for any $x0 > 0$, and not faster than
linearly (unless x0 = 2 ).

(c) If (c) If 0 < x0 < 2, how many iteration steps are required to obtain α with an error less than
10−10 ? 0 < x0 < 2, how many iteration steps are required to obtain α with an error less than
10−10 ?

c = 1 − (b − α)
f ′(α)

f(b)
= 1 − (b − α)

2α

b2 − p

= 1 −
(b − α) ⋅ 2α

(b − α)(b + α)
= 1 −

2α

b + α

=
b − α

b + α
.
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Exercice 7 ( home work )

Consider "Kepler's equation"

f(x) = 0, f(x) = x − ε sinx − η, 0 < |ε| < 1, η ∈ R,

where $ε, η$ are parameters constrained as indicated.

(a) Show that for each ε, η there is exactly one real root α = α(ε, η). Furthermore,
η − |ε| ≤ α(ε, η) ≤ η + |ε|.

(b) Writing the equation in fixed point form

x = φ(x), φ(x) = ε sinx + η,

show that the fixed point iteration xn+1 = φ(xn) converges for arbitrary starting value x0.

(c) Let m be an integer such that mπ < η < (m + 1)π. Show that Newton's method with starting
value

x0 = {

is guaranteed to converge (monotonically) to α(ε, η).

(d) Estimate the asymptotic error constant $c$ of Newton's method.

(m + 1)π if (−1)mε > 0,

mπ otherwise 

Exercice : Selected exercices

24



Exam III

1. Final Exam Of Numerical Analysis

Final Exam Of Numerical Analysis

1.1. Exercice 1

Among the following functions, which ones are contracting and on which intervals if it is not indicated:

g(x) = 5 − 1
4 cos(3x), 0 ≤ x ≤ 2π

3

g(x) = 2 + 1
2 |x|, − 1 ≤ x ≤ 1

g(x) = 1
x , x ∈ [2, 3]

g(x) = √x + 2

1.2. Exercice 2

Among the following functions, which ones are contracting and on which intervals if it is not indicated:

1.3. Exercice 3

Consider the problem of calculating √2 . This amounts to finding the positive zero α = √2of the
function f(x) = x2 − 2 , i.e., solving a nonlinear equation. Verify that α = √2 is a fixed point of the
function g(x) = − 1

4
x2 + x + 1

2  Then, prove that for x(0) ∈ [1, 2], there exists a constant C > 0

such that |x(k) − α| ≤ Ck|x(0) − α| ∀k > 0 What is the behavior of the sequence {x(k)}as
k → ∞ ? How many iterations of the fixed point method are necessary to find an approximate value of
√2 that is accurate to the tenth decimal place? (Hint: an estimation of the constant C is needed).

1.4. Exercice 4

Let α be a double root of the function f, i.e., f(α) = f ′(α) = 0.

Taking into account that we can write the function f  as
f(x) = (x − α)2h(x) where h(α) ≠ 0, verify that Newton's method for approximating
the root α is only of order 1.

Consider the following modified Newton's method: x(k+1) = x(k) − 2 f(x(k))

f ′(x(k))
 Verify that this

method is of order 2 when approaching α.
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Conclusion

Numerical Analysis is very important in numerous engineering and scientific problems. Through different
types of numerical methods, we will understand the meaning and its applications.

Numbers play an important role in solving different problems. Whenever we want to make a rational
decision in the stock market or something that is very unpredictable, we try to analyze the past numbers
to get a clear picture of stocks and the variables. This analysis is possible because there is a specialized
branch of mathematics that is dedicated to the analysis of these numerical methods and algorithms. This
branch is called numerical analysis. 

In this lecture, we looked at one of the most important branches of mathematics used for approximations
and calculations, called Numerical Analysis. From the introduction of Numerical Analysis to its
application, we understood how it plays a major role in scientific, engineering, and other disciplines. We
also looked at different types of Numerical computation methods like linear and non linear algebraic
equations,
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