Ministry of Higher Education and Scientific Research
 Mohamed Boudiaf University of M'sila
 Institute of Urban Techniques Management
 Department of Architecture

Exercise 1 In $\mathbb{R}^{2 \times 2}$, consider the following matrix:

$$
A=\left(\begin{array}{ll}
5 & -4 \\
4 & -3
\end{array}\right), \quad I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- Determine the matrix $B \in M_{2}(\mathbb{R})$ such that $A=I_{2}+4 B$.
- Calculate $A^{2}, B^{2}, A^{T}, B^{T}, \operatorname{Tr}(A, B)$ (lower and upper triagular of A, B.
- Calculate the matrix $-A^{2}+2 A-I_{2}$.
- Conclude that the matrix A is invertible and determine its inverse A^{-1}.

Exercise 2 Let A and B two matrices in $\mathbb{R}^{3 \times 3}$ matrix, and matrix B defined as follows:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \quad B=\left[\begin{array}{lll}
2 & 4 & 6 \\
1 & 2 & 3 \\
3 & 6 & 9
\end{array}\right]
$$

1. Calculate the determinants of matrices A and B.
2. Find the inverse of the invertible matrix.

Exercise 3 Given an upper triangular matrix A:

$$
A=\left[\begin{array}{ccc}
1+c & c & a \\
0 & 5-2 b & b \\
0 & 0 & 9+a
\end{array}\right]
$$

1. Calculate the determinant of matrix A.
2. Find the values of a, b, and c for which A is invertible.

Now, find x, y and z where

$$
\begin{cases}2 x+y+z & =2 \tag{1}\\ y+2 z & =1 \\ 10 z & =5\end{cases}
$$

