Course Plan

Biophysic

Dr. Malika MERZOUGUI

Syllabus			
Course name			
University : University of M'sila	Academic Year : 2023/2024		
Faculty : Sciences	Level: 2 St year		
Department: Common Trunk Natural and	Semester : First		
Life Sciences			
Getting to know the educational material			
Education unit : Decouverte	Subject: Biophysics		
Credit : 5	Coefficient : 3		
Weekly hourly volume : 04h30min	Course (hours per week): 01h30min		
Directed work (hours per week): 01h30min	Practical work (hours per week): 01h30min		
Course director			
First and last name: Malika MERZOUGUI			
E-mail: merzougui.malika@univ-msila.dz			
Telephone number:0667160935			
Description of the	educational course		
Prerequisites: The chimie of liquid solutions			
The general objective of the educational course: Know the composition, statics,			
dynamics, and different properties of living matter.			
Learning objectives (skills to be achieved):			
1. Understand the different characteristics of solutions and electrolyte solutions.			
2. Know the biological applications of the movement of matter through membranes			
(diffusion phenomenon, Donnan equilibrium, and cryoscopic lowering).			
3. Know the flow of fluids and surface energies.			
Course content			
Chapter I : generality of solutions			
Chapter II : Phenomenos of Diffusion			
Chapter III : Study of solid-liquid interfaces			
Chapter VI : Study of solid-gas interfaces			
Chapter IV : hemodynamic			

The expected time distribution of the course program

Chapter I (3 Weeks)

- 1. Definition of solution
- 2. Classification of solutions Concentration of solutions
- 3. Definition of electrolytic solution
- 4. Conductivity mechanism in ionic solutions

Chapter II (6 Weeks)

- 1. Diffusion of solute un liquid phase
- 2. Experimental demonstration of the phenomenon
- 3. Fick's Law
- 4. Diffusion and biology: transmembrane transport
- 5. Application : Artifical Kideny
- 6. Donnan equilibrium
- 7. Osmosis phenomenon

Chapter III (3Weeks)

- 1. Electrochemical double layer theory
- 2. Solid-liquid interface ion exchange
- 3. Biological application

Chapter VI (3Weeks)

- 1. Highlighting the liquid-gas interfaces (surface tension)
- 2. biological measurement and application

Chapter IV (3Weeks)

- 1. Study of viscosity (definition, measurement and biological application)
- 2. Study of the sementation (definition, measurement and biological application

Reference

- Aurengo, A. y Petitclerc, T. (2015). Biofísica: Madrid, Spain: McGraw-Hill España.
- Smedley, S. I. (2012). The interpretation of ionic conductivity in liquids. Springer Science & Business Media.
- Jove Science Education Database. General Chemistry. Solutions and Concentrations. Jove, Cambridge, MA, (2024).

Evaluation method			
Percentage evaluation	Note	Relative weight of evaluation	
Exam	20/20	Course weight	66 %
Interrogation	10	Weight of	
Participate in the section	05	directed and	34 %
Presence/absence	05	applied work	

For subjects taught in the form of courses and directed/practical work, or whose evaluation is like examination and continuous monitoring, the subject average is measured by the

weighting of the course and directed work:

Course Note*0.66 + Directed Work Note *0.34= Course rate