University of M'sila			2 St year CT-NLS
Faculty of Sciences/ CT-NLS			Duration: 1h30 min
Examination of biophysics 2023/2024			
Nom:	First name:	Gr:	Note:

Exercise 1

A bottle of sulfuric acid (H₂SO₄) supports the following indications: $\rho = 1.83$ g/cm—, the mass percentage of sulfuric acid is 96% and its molar mass is 98.08 g/mol.

1. Calculate the ponderal, molar, and molal concentration of this solution.

Exercise 2

One litre of an aqueous solution contains:

5.85 g NaCl, 3.28 g PO₄Na 3,9 g glucose, 0.6 g urea. It is supposed that NaCl and PO₄Na₃ are completely dissociated.

Calculate the molarity, osmolarity, ionic, and equivalent concentration of the solution.

The molar masses of NaCl=58.5, PO₄Na₃=164, glucose=180, and urea=60 g/mol.

Exercise 3

Two compartments A and B are separated by a membrane permeable to glucose molecules with a dx= 0.1 mm. Compartments A and B contain glucose solutions at concentrations of 36 g/l and 18 g/l, respectively. It is supposed that glucose molecules are spherical with a radius r=3 Å. The viscosity coefficient of glucose is η =10⁻³ poiseuille, and its molar mass is 180 g/mol.

1. Calculate the initial mass and molar flux of glucose diffusion at 25 and 0 $^{\circ}$ C.

Exercise 4

Consider a hemoglobin solution with a concentration of 10^{-4} mol/l wich diffuses through a membrane of diffusing surface 20 cm² up to a concentration of 1.4 10^{-4} mol/l . the diffusion coefficient of hemoglobin as D=6.9×10⁻⁷ cm²/s and its molar mass as M= 68×10³ g/mol.

1. Calculate the mass of hemoglobin that has moved 5cm during 1 min in g.