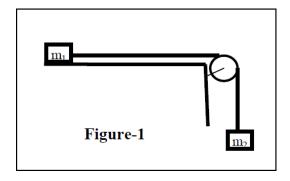
TP 02: 2nd law of Newton

1.TP N02

Conduct of the experiment://
Corrector teacher:
Report made by:

Name	First name	group	Subgroup	Prep_note	Final note
				/5	/20
				/5	/20
				/5	/20
				/5	/20
				/5	/20
				/5	/20
				/5	/20
				/5	/20
				/5	/20

College year :2023/2024


1.Purpose of the experiment

"The goal is to demonstrate Newton's second law with a simple experiment." $\ll \vec{F} = m\vec{a} \gg [1]$. thus to determine the value "g" of the acceleration of gravity.

2. Preparation work

In Figure -1- a weight "m2" is shown immersed in the Gravitational field, acquiring a movement. It drives, via an inextensible wire, a self-supporting mobile of mass "m1" which slides on a rail without friction. We neglect the mass of the pulley as well as the friction of the wire passing through its throat.

1- Take inventory of the external forces applied to the self-supporting mobile of mass "m1" and to the weight "m2» in figure -1-

2-	Apply Newton's second law to the self-supporting mobile (m1) and the weight (m2)
3	- By projecting these onto different axes. Write the force equations for each mass
3-	Derive the literal expression for the acceleration (a) of the system as a function of m1, m2 and g.
5	5-What is the type of movement?
6	-Give the temporary equation of this movement

3. Practice

3.1 Study of distance variations as a function of time

Set up the experimental setup for Figure 2:

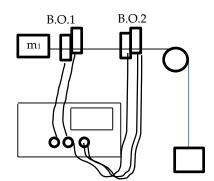

- m1: trolley with overload.
- m2: weights.
- B.O.1: Optical barrier.
- B.O.2: Optical barrier.
- Weigh the mass of trolley m1 and then add a 100g mass.
- Place a 55g mass on the mass port such that m2 = 60g.
- Place the small rod on the trolley and measure its width.
- Initially position the optical barrier at a specific location.
- Start the air blower.
- Set the stopwatch to zero and release the motion.
- Take two measurements.
- Choose a new step distance of 10 cm and repeat the previous steps.

Table 1

$S = S_f - S_0(cm)$	30	40	50	60	70
t_1					
t_2					
t_{moy}					
t_{moy}^2					
γ					
g					
Δg					

Questions

1.	Fill in Table 1.
2.	Plot the curve $S = f(t^2)$ (figure below). Then deduce the value of g_{exp}
	···r
3.	Deduce from the table the value of g for the city of M'sila and express it as $g_{exp} = \bar{g} \pm \Delta g$
	·
4.	What short or long distances do you use to obtain the best value of g_{exp}
	?

3.2 Relationship between acceleration and force

We study the relationship between the acceleration of the system and the accelerating force (F), while keeping the total mass m1 + m2 of the system constant. We take the acceleration due to gravity g_{exp} from the first part.

- To vary F, we remove mass from one side and add it to the other.
- Fix the optical barriers at long distances.
- Record in Table 2 the respective values of the passage times δ_t where δ_t is for the rod of width $\delta x = 5mm$. Repeat the operation a second time.
- Return the trolley to the initial position and set the stopwatch so that it indicates the time t it takes to pass through each optical barrier. Repeat the operation a second time.

Questions

Fill in Table 2.
What do you observe about the ratio F/γ ?
Plot the variation of « F » with « γ » (figure below).
What does the slope represent? Compare it to the ratio (F/γ) ?

Table 2

$m_2(g)$	5	10	20	30	40
m_1					
$[m_1+m_2](g)$	305	305	305	305	305
$F=m_{_{2}}\overline{g}(N)$					
$t_{1}(s)$					
$t_2(s)$					
$\delta t_{_{1}}(s)$					
$\delta t_{2}(s)$					
$v_{1} = \delta x / \delta t_{1} (m / s)$					
$v_1 = \delta x / \delta t_2 (m / s)$					
$\gamma = v_2 - v_1 / t_2 - t_1$					
F/γ					

<u>clusion</u>	