
QoS and Multimedia TP1: Image Manipulation
with Python
This project is part of the QoS and Multimedia TP1, focusing on setting up
tools and starting image manipulation using Python.

Table of Contents
• Project Description
• Installation
• Usage
• Using Jupyter Notebook
• Dependencies
• Contributing

Project Description
The goal of this project is to provide tools and resources for working with mul-
timedia data, specifically images, using Python. You will learn how to set up
the necessary tools, manipulate images, and explore various multimedia-related
tasks.

Installation
Provide instructions on how to install and set up your project, including any
prerequisites.

Windows Installation

1. Download Python.
2. Run the installer and follow the prompts. Be sure to check ”Add Python

x.x to PATH.”

Linux Installation

1. Check if Python is already installed by running python --version. If
not, use your distribution’s package manager to install Python.

Setting Up a Virtual Environment

1. Install virtualenv (if not already installed) using pip install
virtualenv.

2. Create a virtual environment using virtualenv venv (replace ’venv’ with
your desired environment name).

3. Activate the virtual environment:
• Windows Command Prompt:

venv\Scripts\activate

1

• Windows PowerShell:
.\venv\Scripts\Activate

• Linux:
source venv/bin/activate

Installing Dependencies

1. Install NumPy using pip install numpy.
2. Install OpenCV using pip install opencv-python.

Usage
Explain how to use your project, including code examples and screenshots if
applicable.

Reading an Image

import cv2

Read an image using OpenCV
image = cv2.imread('input_image.jpg')

Check if the image was successfully loaded
if image is None:

print("Error: Unable to read the input image.")
else:

Display the original image
cv2.imshow('Original Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

Creating a Random Image

import numpy as np
import cv2
import random

Create a random image using NumPy
height, width, channels = 500, 500, 3 # Adjust these values as needed
random_image = np.random.randint(0, 256, (height, width, channels), dtype=np.uint8)

Display the random image
cv2.imshow('Random Image', random_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

2

Save the random image
cv2.imwrite('random_image.jpg', random_image)
print("Random image saved as 'random_image.jpg'")

Using Jupyter Notebook
Jupyter Notebook is an interactive computing environment that allows you to
create and share documents that contain live code, equations, visualizations,
and narrative text. It is a powerful tool for data analysis, scientific computing,
and running code interactively.

Installing Jupyter Notebook

To use Jupyter Notebook with your project, you first need to install it. If you
haven’t already installed it in your virtual environment, you can do so with pip:

pip install jupyter

Launching Jupyter Notebook

1. Make sure your virtual environment is activated.
2. Open a terminal or command prompt.
3. Navigate to your project directory.
4. Start Jupyter Notebook by running the following command:

jupyter notebook
This will open a new tab in your web browser with the Jupyter Notebook
interface.

Creating and Running Notebooks

With Jupyter Notebook, you can create interactive notebooks with code cells,
markdown cells, and more. Here’s how you can create and run a new notebook:

In the Jupyter Notebook interface, click the ”New” button and select ”Python
3” to create a new Python notebook.

You can add code cells and markdown cells to your notebook. Code cells are
where you can write and execute Python code, while markdown cells are for
documentation and explanations.

To run a code cell, select it and press Shift + Enter. The output will be displayed
below the cell.

Benefits of Using Jupyter Notebook

Interactive Development: Jupyter Notebook allows you to run code cells inter-
actively, making it ideal for experimentation and data analysis.

3

Documentation: You can include detailed documentation, explanations, and
visualizations alongside your code, making it easier to understand and share
your work.

Data Visualization: Jupyter Notebook supports various data visualization
libraries, making it convenient for creating plots and charts.

Reproducibility: Notebooks capture the entire workflow, making it easy to
reproduce and share your analysis with others.

Collaboration: You can share your Jupyter notebooks with colleagues or col-
laborators, enabling collaborative coding and analysis.

Feel free to create Jupyter notebooks within your project directory to document
and run code related to your project. It can be a valuable tool for showcasing
and sharing your work.

Dependencies

List the dependencies and versions required for your project.

. Python x.x . NumPy x.x . OpenCV x.x . Jupyter Notebook (optional)

4

