University of Msila Faculty of Mathematics and Computer Science Departement of Computer Science

> Semestriel Exam Speciality: Master 1 RTIC

QoS and Multimedia (Duration: 1h30m) 14 January 2024

Course Question (06 pts)

- 1. Can the process of converting a color image to grayscale be reversed? Please provide an explanation for your response. (1,5pt).
- 2. What is the sample rate? and what is the impact on audio quality when an audio file is downsampled from 44 kHz to 8 kHz?(1,5pt).
- 3. Two lossless compression algorithms A_1 and A_2 will be applied on a Source S. How can you choose the best algorithm between them?. (1,5pt).
- 4. List three image formats.(1,5pt).

Exercice 1 (09 pts)

Consider the image I of size 7×7 , encoded with 3 bits:

1	1	3	6	1	6	6
3	1	1	1	7	5	5
3	1	1	1	1	3	3
3	1	1	5	5	7	7
1	1	1	5	5	1	1
5	7	1	3	5	6	1
6	3	6	3	7	6	7

- Ι
- 1. Calculate the size of image I in pixels and then in bits. (0,5pt).
- 2. Explain with an algorithm how one can calculate the histogram H from $I.(\mathbf{1,5pt})$.

3. Represent the histogram of I.(1pt).

We are foccusing to compress I. Based on the histogram:

- 4. Calculate the Entropy of I.(1pt).
- 5. Apply Shannon-Fano coding (1,5pt), and Huffman coding (1,5pt) on I.
- 6. Calculate the Average codeword length of these two compressions. (1pt).
- 7. Based on the efficiency, Decide what is the best of them we will use for *I*. (1pt).

Exercice 2 (05 pts)

Let R, G, and B be the three color components of the image I_c . R, G, and B are encoded on 8 bits each.

	255	0	255	0	255
ĺ	0	0	255	255	255
ĺ	0	255	255	0	255
	255	0	255	255	255
ĺ	0	0	255	255	255

0	0	255	0	255
255	0	0	255	0
0	255	255	0	255
0	0	255	255	0
255	255	255	255	255

	0	0	255	255	255
7	0	255	255	0	255
	255	0	255	0	255
7	255	0	0	0	255
	255	0	255	0	255

R

G

B

- Give, in bytes, the size of the image I_c.(1pt).
 we want to Convert I_c Color image to a 3-bit Color Indexed Image J using the look-up table LUT:
- 2. Explain with an algorithm how one can implement this conversion. (2pt).
- 3. Represent the image J.(1pt).
- 4. Calculate the size of J in bytes -LUT should be calculated also -.(1pt).

Index	R	G	В
0	0	0	0
1	0	0	255
2	0	255	0
3	0	255	255
4	255	0	0
5	255	0	255
6	255	255	0
7	255	255	255

3-bit Color Indexed Image Look-Up Table (LUT)

Good Luck