
Computer Science I

Dr. BENTATA khadidja

UNIVERSITY OF M'SILA

FACULTY OF SCIENCE AND TECHNOLOGY

EMAIL: KHADIDJA.BENTATA@UNIV-MSILA.DZ
1.0 JANUARY 2024

Attribution - Pas d’Utilisation Commerciale : http://creativecommons.org/licenses/by-nc/1.0/fr/

Dr. BENTATA khadidja

Computer Science I

2

Table des matières

Objectifs 4

Introduction 6

I - Overview of Computer Science and Programming 8

1. Computer Science 8
1.1. Hardware 9
1.2. Software (SW) 9

2. Exercice : Exercise 1 10

3. Exercice : EXERCISE 3EXERCIEX 10

4. Programming Environment (PE) 10
4.1. Design 11
4.2. Program Production 11

5. Exercice : EXERCISE 4EX 12

6. Exercice : EXERCISE 5EX 12

...
...

..

...

..

...
...

..

...

...

3

Objectifs

By the end of this module, the student will be pro�cient in this subject area according to the
cognitive actions speci�ed by Bloom. Here is a detailed breakdown for each level of Bloom's
Taxonomy:

1. Knowledge Level

This level involves the ability to recall basic information and facts.

1.a. Basic De�nitions and Concepts:

· Hardware comprises the physical components of a computer system.

· Software encompasses the programs, applications, and data that run on a computer
system.

1.b. Components of Hardware:

· Central Processing Unit (CPU): Often referred to as the 'brain' of the computer.

· Memory: Also known as RAM (Random Access Memory).

2. Comprehension Level

This level involves understanding and interpreting the presented information.

2.a Explaining Component Functions:

· The CPU executes instructions stored in memory.

· Memory temporarily holds data and instructions that the CPU needs to access quickly.

·2.b Describing Software Processes:

· The design phase of software development involves conceptualizing the structure and
functionality of a program.

3. Application Level

This level involves using knowledge in new or practical situations.

Applying Concepts in Programming:

· Writing Code: Translating the design speci�cations into executable code using a
programming language.

· Testing: Validating the functionality and correctness of the software through various testing
techniques.

4. Analysis Level

This level involves breaking down information into its basic components and understanding
its structure.

4.a. Analyzing Software Development Phases:

· Overview of the software development lifecycle, including requirements analysis, design,
implementation, testing, and maintenance phases.

·4.b. Analyzing Programming:

· Algorithm Design: Developing algorithms to solve speci�c computational problems
ef�ciently.

5. Synthesis Level

4

This level focuses on combining information to create something new or propose innovative
solutions.

5.a. System Design:

· System Design: De�ning the architecture, components, and interactions of the software
system.

5.b. Innovative Software Creation:

· Designing data structures to organize and manage data effectively.

6. Evaluation Level

This level involves assessing information or ideas using speci�c criteria.

6.a. Evaluating Programming Performance:

· Debugging: Identifying and �xing errors (bugs) in the code to ensure the software behaves
as expected.

·6.b. Comprehensive System Review:

· Through diligent inquiry and critical re�ection, we invite readers to embark on a journey of
intellectual exploration and discovery.

Objectifs

5

Introduction

Graphique 1 Map of computer sciences module modu

11In our introductory discourse on Computer Science Essentials, we embark on a scholarly
endeavor to unravel the intricate fabric of fundamental principles and essential concepts
that de�ne the realm of computer science. Through meticulous inquiry and rigorous
exploration, we endeavor to shed light on the foundational elements that underpin this
dynamic �eld, catering to the diverse needs and aspirations of learners at all stages of their
academic journey[1]1.

Our discourse commences with an exploration of the historical evolution and contemporary
signi�cance of computer science, delving into its theoretical underpinnings and practical
applications. Through a critical lens, we examine the intricate interplay between
computational theory and real-world problem-solving, seeking to elucidate the inherent
complexities and inherent opportunities inherent in this burgeoning �eld.

Central to our discourse is a comprehensive examination of core concepts such as number
systems, algorithms, and data structures. By distilling these intricate topics into digestible
insights, we endeavor to empower learners with a nuanced understanding of the
fundamental building blocks that form the bedrock of computational thinking[2]2.

Furthermore, our discourse navigates the multifaceted landscape of programming
languages and paradigms, emphasizing the cultivation of practical skills and problem-
solving strategies. Through experiential learning and hands-on experimentation, we aim to
equip learners with the requisite tools and techniques to navigate the dynamic terrain of
software development and computational innovation.

As we draw our discourse to a close, we re�ect on the dynamic nature of computer science
and the imperative of lifelong learning in an ever-evolving technological landscape. By
fostering a culture of inquiry and intellectual curiosity, we seek to inspire learners to embark
on a journey of continuous discovery and innovation, poised to confront the myriad
challenges and opportunities that lie ahead in the boundless expanse of computer
science[3]3.

6

In summary, our discourse serves as a scholarly exposition into the realm of Computer
Science Essentials, offering a comprehensive overview of its foundational principles and
practical applications. Through diligent inquiry and critical re�ection, we invite readers to
embark on a journey of intellectual exploration and discovery, as we unravel the mysteries
and marvels of the digital age[4]4.

Introduction

7

I Overview of Computer
Science and Programming

1. Introduction

This chapter serves as a gateway to understanding the fundamental principles and essential
concepts that underpin the �eld of computer science, while also introducing the core
elements of programming. Through a systematic examination of hardware, software, and
programming environments, learners are introduced to the key components and processes
involved in computational thinking and problem-solving. By delving into the intricacies of
hardware components, such as CPUs and memory, alongside software systems and
programming languages, learners gain insights into the inner workings of computing
systems. Moreover, this chapter sets the stage for subsequent explorations into more
specialized topics within computer science and programming, laying a solid foundation for
further study and application.

2. Computer Science

Dé�nition :

Computer science (CS) stands at the intersection of theory and practice, encompassing
the study of computational systems, algorithms, and their applications. It examines the
theoretical foundations of computing, such as automata theory, complexity theory, and
algorithms, while also addressing practical considerations related to hardware, software,
and programming[3]3.

Figure 1.1: Diagram illustrating the components of a computer system, including
hardware, software, and input/output devices.

8

2.1. Hardware

Dé�nition :

1Hardware comprises the physical components of a computer system, each playing a
crucial role in its operation[1]1.

Figure 1.2: Overview of the software development lifecycle, including requirements
analysis, design, implementation, testing, and maintenance phases.

HWKey components include:

Central Processing Unit (CPU): Often referred to as the "brain" of the computer, the
CPU executes instructions stored in memory[2]2.

Memory: Also known as RAM (Random Access Memory), memory temporarily holds
data and instructions that the CPU needs to access quickly[3]3.

Storage Devices: These devices, such as hard disk drives (HDDs) and solid-state drives
(SSDs), store data persistently even when the computer is turned off[1]1.

Input/Output (I/O) Devices: These include peripherals such as keyboards, mice,
monitors, and printers, allowing users to interact with the computer[3]3.

Networking Hardware: Facilitates communication between computers and other
devices, enabling data exchange over networks[2]2.

2.2. Software (SW)

Dé�nition :

Software encompasses the programs, applications, and data that run on a computer
system. It includes operating systems, utility programs, compilers, interpreters, and
applications. Software can be divided into two main categories: system software and
application software[4]4.

Overview of Computer Science and Programming

9

Figure 1.3: Schematic representation of a programming environment, highlighting the
components such as IDEs, text editors, compilers, and debuggers.

It can be categorized into:

System Software: Includes operating systems (e.g., Windows, macOS, Linux), device
drivers, and utility programs (e.g., antivirus software, disk utilities) that manage
computer hardware and provide essential services[2]2.

Application Software: Consists of programs designed for end-users to perform
speci�c tasks, such as word processors, web browsers, and video editing software[1]1.

3. Exercice : Exercise 1

Question: Explain the difference between system software and application software
with examples.

4. Exercice : EXERCISE 3EXERCIEX

Given a simple problem, choose an appropriate programming language and development
environment, and justify your choice.

5. Programming Environment (PE)

Dé�nition :

A programming environment provides the tools and resources necessary for
developing software applications. This includes integrated development
environments (IDEs), text editors, compilers, debuggers, and version control
systems[3]3.

Common components include:

Integrated Development Environments (IDEs): Software applications that provide
comprehensive tools for software development, including text editors, compilers,
debuggers, and project management features[2]2.

Text Editors: Programs used for writing and editing source code, with features such
as syntax highlighting and code completion[2]2.

Overview of Computer Science and Programming

10

Compilers: Software that translates source code written in a high-level programming
language into machine code that can be executed by the computer[1]1.

Debuggers: Tools used to identify and �x errors (bugs) in software code[2]2.

Version Control Systems: Software tools that track changes to source code �les,
enabling collaboration among developers and maintaining a history of revisions[3]3.

Comparison of Programming Languages

5.1. Design

Dé�nition :

The design phase of software development involves conceptualizing the structure and
functionality of a program. This includes de�ning requirements, creating diagrams
(such as �owcharts and UML diagrams), and designing algorithms and data
structures[4]4.

including:

Requirements Analysis: Gathering and documenting the functional and non-
functional requirements that the software must meet.

System Design: De�ning the architecture, components, and interactions of the
software system.

Algorithm Design: Developing algorithms to solve speci�c computational problems
ef�ciently.

Data Structure Design: Designing data structures to organize and manage data
effectively[4]4.

Comparison of Operating Systems

5.2. Program Production

Dé�nition :

Once the design phase is complete, the program production phase begins. This
involves writing code according to the design speci�cations, testing the code for
errors (bugs), debugging and �xing any issues, and documenting the code for future
reference[4]4.

Overview of Computer Science and Programming

11

This process involves:

Writing Code: Translating the design speci�cations into executable code using a
programming language.

Testing: Validating the functionality and correctness of the software through various
testing techniques, such as unit testing, integration testing, and system testing.

Debugging: Identifying and �xing errors (bugs) in the code to ensure the software
behaves as expected.

Documentation: Writing documentation that describes the software's functionality,
usage, and implementation details, aiding in future maintenance and
understanding[5]5.

Hardware Components of a Computer System

6. Exercice : EXERCISE 4EX

Analyze the advantages and disadvantages of different data structure designs for a given
problem.

7. Exercice : EXERCISE 5EX

Create a detailed �owchart for a software application that involves multiple functionalities
such as input processing, data storage, and output generation.

Overview of Computer Science and Programming

12

Overview of Computer Science and Programming

13

	Computer Science I
	Table des matières
	Objectifs
	Introduction
	Overview of Computer Science and Programming
	Introduction
	Computer Science
	Hardware
	Software (SW)

	Exercice : Exercise 1
	Exercice : EXERCISE 3EXERCIEX
	Programming Environment (PE)
	Design
	Program Production

	Exercice : EXERCISE 4EX
	Exercice : EXERCISE 5EX

