Functions sequences

We consider the set (I, R), of all functions defined on I (I interval of R) with values in R, namely,

F(U,R)={f|f: I—R, f function}.
Definition 1. We call sequence of functions on I any application
f:N— Z([,R)

n— f(n)

We denote f(n) by f, and we denote the sequence by (f,,),en-

2.1. Simple convergence (pointwise) of a sequence of

functions

Definition 2. We say that a sequence of functions (f,,),cy Simply converges on I to a function

f (or else converges point by point on I) if
for all x € I, the numerical sequence (f,,(x)),ey converges tof (x),
In other words,
Vx€lI,Ve>0,AN,, €N,VneN:(n> N, = |f,(x)— f(x)| <e).
f is called the simple limit of the sequence (f,),cy and we write

fnﬁfonI.




This means that

Vx€I,Ve>0,IN,, €N,VneN:(n> N, = |f,(x)— f(x)| < ¢&).

Example 1.
. . 1
1. Let be the sequence of functions f,(x) = sin (x + —); x €R.
n

1
For all x € R, we have, f,(x) = sin (x + —) —— sin(x). Then the sequence of
n

n—+00

functions (f,,),en- converges simply to the function f(x) = sin(x) on R.

2. The sequence of functions f,(x) = converges simply on R", because

1+nx
0 ifx=0
lim f,(x)= ,
n—+o0o

1 ifx>0

5 0 six=0

and then, f, — f on R", where f(x) =
1 six>0.

3. Let be the sequence of functions v, (x) = nexp(—nx), x € R*. It is clear that for
any strictly positive real 1, (x) P 0. So the sequence of functions (v,,),cy Simply
n—+0oo

converges to the identically zero function, on R*.
If x <0, then han P, (x) =—00, so (VY,),ey does not simply converge on | — oo, 0[.
n—+0oQo

Remark 1. The previous example shows that the continuity of the functions f, does not
necessarily imply the continuity of the limit function f and the integral of the limit f is not

necessarily equal to the limit of the integrals of the functions f,.

Is there a concept of convergence of sequences of functions which allows us to ensure that,
a. The limit function f is continuous on the interval I if all the functions f,, are continuous.
B. Is the permutation between the limit and the integral correct?

We will study this question in the following paragraph.



2.2. Uniform convergence of a sequence of functions

Definition 3. Let (f,,),cy De a sequence of functions defined from I into R andletf : I — R
be a function.
We say that the sequence of functions (f,,),cy converges uniformly to the function f on I
if
lim sup|f,(x)—f(x)| =0, 2.2.1)
=400 yef
namely,

Ve>0,IN, e N/VneN,Vx €E: (n >N, = |f,(x)— f(x)| < ¢).

By posing ||f, — f || = sup |f,(x) — f (x)|, then (2.2.1) translates as
x€l
Ve>0,IN, eN/VneN: (n>N,=||f,— fll < ¢).

We also say that f, converges to f for the norm of uniform convergence and that f is the uniform

limit on I of the sequence (f,),.

convergence uniformly ucC 1]
And we note, f, fonlorelse f, — f onlorelse f, — f.

2.2.1. Graphical interpretation of uniform convergence

If we plot the representative curves of the functions f — ¢ and f + €. To say that the sequence
(f.)nen converges uniformly towards f is equivalent to saying that from a certain rank the curve of

fn lies between the other two.

UC-1.pdf

Figure 2.1: Illustration of uniform convergence



Example 2.
1. For any integer n, let
fn : [O: 1] — R

x — x"(1—x).

The sequence of functions (f,),, simply converges on [0, 1], to the zero function.

Let us calculate sup |f,(x)—f(x)|on[0,1]. By studying the variations of the function
x€[0,1]

|f,(x)—f(x)]=x"(1—x) on [0, 1], we find that

le[lol,)l] e =l :f”(n—ril- 1) B (n—?— 1)n (1n_+n_$l)

Or

nf1—-
vn>0,0<(——) | —= |<1-——,
n+1 n+1 n+1
hence, according to the Three sequence theorem, ligrn Ilf, —fll =0, thus, f, X 0on
n—+oo

[0,1].

2. The sequence of functions defined on [0, 1], by f,(x) = x" is not uniformly convergent

on[0,1].

In fact, it is clear that the sequence (f,), simply converges to the function f on [0, 1]

such that,
0 sixe[0,1[
f(x)= ,
1 six=1
but,
sup [f(x)—f(x)|= sup [x"—0|= sup [x"—0|= sup x",
x€[0,1] x€[0,1] x€[0,1] x€[0,1]
because f,,(1)— f(1) = 0. And since sup x" =1 (the function x — x" is increasing
x€[0,1]
on [0,1]). Then sup |f,(x)— f(x)| does not tend to 0. Thus the sequence (f,,), is not

x€[0,1]
uniformly convergent on [0, 1].

The following proposition ensures the uniform convergence of a sequence of functions (f,,),cy ON

an interval I, without knowing the limit function f.



Theorem 1 ( Cauchy’s theorem for uniform convergence). A sequence of functions (f,),ey

converges uniformly on I if and only if
Ye>0,IN eN/Vp,qeN,Vxe€l: (p>q=N=|f,—f,|<¢)

hence,

Ve>0,INeN/Vp,qeN: (p>q=N=|f,—fill <e)

Proposition 1 ( Sufficient condition for uniform convergence). For a sequence of functions
(f)nen to converge uniformly on I to a function f, it suffices that there exists a numerical

sequence (u, ), such that,

If,(x)—f(x)| <u,,VneN,¥x€land lim u,=0.

n—+0o

Example 3.

1. Study the simple and uniform convergence of the sequence of functions (f,),, on [0, 1]

such that

ne™ + x?
fulx) = ———.
n+x

In fact, for any x € [0,1], han fa(x)=e> (.e., f, 2 e on [0,1]).
n—>+0oo

For uniform convergence. We have for all x €[0, 1],

ne ™ +x* | |xe*—x?
— —e¢

—X|< X <2n—>+000
= -
n+x “n+x n ’

n+x n+x

so according to the previous proposition, (f,),cy converges uniformly to e on [0, 1].

2.2.2. Some operations

Proposition 2. Let (f,), and (g,), be two sequences of functions defined on I converging
uniformly to f and g respectively. If A and u are two real numbers, then the sequence of

functions (Af, + ug,), converges uniformly to the function Af + ug on I.




Proposition 3. Let (f,), and (g,), be two sequences of functions defined on I converging

uniformly respectively to f and g on I. If the limit functions f and g are bounded on I, then

the sequence of functions (f, g,), converges uniformly to f g on I.

Uniform convergence implies simple convergence, and this is a consequence of the following

proposition.

Proposition 4. Let (f,),ey De a sequence of functions defined on I. Then

fngf surI:>fn£>f sur I.

Remark 2. The converse of the previous proposition is generally false. Indeed, let us take
the sequence of functions (f,,), defined on [0, 1] with a value in R, by f,(x) = x". It is clear

that (f,,),, simply converges on [0, 1] to the function

0 ifxel0,1]
flx)=
1 ifx=1

but the sequence (f,),, does not converge uniformly on [0, 1], since

sup |f,(x)—f(x)[=1 » O.
x€[0,1] B=rES

2.3. Properties of sequences of uniformly convergent

functions

2.3.1. Continuity

Theorem 2 ( Seidel continuity). Let (f,,), be a sequence of functions defined from an interval

I of Rinto R. Leta €I, if
i) for any integer n, the function f, is continuous in a,

ii) the sequence of functions (f,), converges uniformly on I to a function f.




Then f is continuous at a.
We can immediately deduce the following Corollary:.

Corollary 1. Let (f,), be a sequence of functions defined from an interval I of R to R. If,
i) for any integer n, the function f, is continuous on I,
ii) the sequence (f,,), converges uniformly on I to a function f.

Then f is continuous on I.

One method of showing that a sequence of functions (f,,),, does not converge uniformly to its
simple limit f on a domain I, is the contrapositive of the previous Corollary, more precisely we

have,

Proposition 5. Let (f,,), be a sequence of functions which converges simply on I to f. If for

any integer n, the function f, is continuous on I, then

q q q uc
f is discontinuous at x, € I = f, — f on I.

Example 4. Let the sequence of functions (f,), be defined on [0,+00o[ with a value in R,

by £,(x) = ———.

We note that for any integer n, the function f, is continuous on [0, +co[. Furthermore,

.. sc .
it is easy to see that f, — f on [0, +00o[ with

0 ifx>0,
flx)=
1 ifx=0.

The function f is not continuous at x, = 0, hence according to the previous Proposition the

sequence of functions (f,), does not converge uniformly on [0, +0o[.
We have seen that simple convergence does not imply uniform convergence, but under certain
conditions it does.

Theorem 3 ( Dini’s theorem). Let (f,), be a sequence of functions that converges simply

on [a, b],(C R) to a function f continuous on [a, b]. If the sequence of functions (f,), is



monotone on [a, b], then (f,), converges uniformly to f on [a, b].

2.3.2. Integration

Theorem 4 ( Integration theorem). Let (f,), be a sequence of functions such that, for all
n € N, the function f, is integrable on [a, b].
If (f,), converges uniformly to f on [a, b], then the function f is integrable on [a, b].

Moreover

b b b
lim f f(x)dx = f HEJIrnoofn(x) dx = f f(x)dx.

n—+09o

Corollary 2. Let (f,), be a sequence of functions such that, for all n € N, the function f, is
integrable on [a, b].

If (f,,), converges un1formly to f on[a, b]then,forall a € [a, b], the sequence of functions
(F,), such that F,(x) = J f.(t)dt, converges uniformly to the function F(x) = J f(t)dt

on [a, b]. Moreover, for all x > [a,b]

X

lim F,(x)= lim J fn(t)dtzf
n—+00 n—-+00 "

a

im  f(e)de = f f(t)dt = F(x).

2.3.3. Derivation

Theorem 5 (Derivative theorem). Let (f,,), be a sequence of functions such that, for all
n € N the function f, is continuously differentiable on I (i.e., f, € C' on I) and converges
simply to a function f on I. If the sequence of functions (f), converges uniformly to a
function g on I, then the function f is continuously differentiable on I (i.e., f € C' on I)
and

flx)=g(x) Vxel,

in other words

( lim fn(x)) = lim _f/(x) Vxel

n—+00
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