Functions sequences

Chapter

2

We consider the set $\mathscr{F}(I,\mathbb{R})$, of all functions defined on *I* (*I* interval of \mathbb{R}) with values in \mathbb{R} , namely,

 $\mathscr{F}(I,\mathbb{R}) = \{f \mid f : I \longrightarrow \mathbb{R}, f \text{ function}\}.$

Definition 1. We call *sequence of functions* on *I* any application

$$
f:\mathbb{N}\longrightarrow \mathscr{F}(I,\mathbb{R})
$$

 $n \mapsto f(n)$ We denote $f(n)$ by f_n and we denote the sequence by $(f_n)_{n\in\mathbb{N}}.$

2.1. Simple convergence (pointwise) of a sequence of functions

 $\mathbf{Definition~2.~}$ We say that a sequence of functions $(f_n)_{n\in\mathbb{N}}$ *simply converges on* I *t*o a function *f* (or else converges point by point on *I*) if

for all $x \in I$, the numerical sequence $(f_n(x))_{n \in \mathbb{N}}$ converges to $f(x)$,

In other words,

$$
\forall x \in I, \forall \varepsilon > 0, \exists N_{\varepsilon,x} \in \mathbb{N}, \forall n \in \mathbb{N} : (n \geq N_{\varepsilon,x} \Rightarrow |f_n(x) - f(x)| < \varepsilon).
$$

 f is called the *simple limit* of the sequence $(f_n)_{n\in\mathbb{N}}$ and we write

$$
f_n \xrightarrow{SC} f \text{ on } I.
$$

This means that

$$
\forall x \in I, \forall \varepsilon > 0, \exists N_{\varepsilon,x} \in \mathbb{N}, \forall n \in \mathbb{N} : (n \geq N_{\varepsilon,x} \Rightarrow |f_n(x) - f(x)| < \varepsilon).
$$

Example 1.

1. Let be the sequence of functions $f_n(x) = \sin\left(x + \frac{1}{x}\right)$ 1 *n* $\bigg); x \in \mathbb{R}.$ For all $x \in \mathbb{R}$, we have, $f_n(x) = \sin\left(x + \frac{1}{x}\right)$ 1 *n* −−−−→ *n*→+∞ sin(*x*). Then the sequence of functions $(f_n)_{n \in \mathbb{N}^*}$ converges simply to the function $f(x) = \sin(x)$ on \mathbb{R} .

2. The sequence of functions
$$
f_n(x) = \frac{nx}{1 + nx}
$$
 converges simply on \mathbb{R}^+ , because
\n
$$
\lim_{n \to +\infty} f_n(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}
$$
\nand then, $f_n \xrightarrow{SC} f$ on \mathbb{R}^+ , where $f(x) = \begin{cases} 0 & \text{si } x = 0 \\ 1 & \text{si } x > 0. \end{cases}$

3. Let be the sequence of functions $\psi_n(x) = n \exp(-nx)$, $x \in \mathbb{R}^+$. It is clear that for any strictly positive real $\psi_n(x) \longrightarrow 0$. So the sequence of functions $(\psi_n)_{n \in \mathbb{N}}$ simply converges to the identically zero function, on \mathbb{R}^+ .

If $x < 0$, then $\lim_{n \to +\infty} \psi_n(x) = -\infty$, so $(\psi_n)_{n \in \mathbb{N}}$ does not simply converge on $]-\infty,0[$.

Remark 1. The previous example shows that the continuity of the functions f_n does not necessarily imply the continuity of the limit function *f* and the integral of the limit *f* is not necessarily equal to the limit of the integrals of the functions *fⁿ* .

Is there a concept of convergence of sequences of functions which allows us to ensure that,

- a. The limit function f is continuous on the interval I if all the functions f_n are continuous.
- B. Is the permutation between the limit and the integral correct?

We will study this question in the following paragraph.

2.2. Uniform convergence of a sequence of functions

Definition 3. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions defined from *I* into $\mathbb R$ and let $f: I \longrightarrow \mathbb R$ be a function.

We say that the sequence of functions $(f_n)_{n\in\mathbb{N}}$ *converges uniformly* to the function f on I if

$$
\lim_{n \to +\infty} \sup_{x \in I} |f_n(x) - f(x)| = 0,
$$
\n(2.2.1)

namely,

$$
\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}/\forall n \in \mathbb{N}, \forall x \in E: (n \geq N_{\varepsilon} \Rightarrow |f_n(x) - f(x)| < \varepsilon).
$$

By posing $||f_n - f|| = \sup_{x \in I} |f_n(x) - f(x)|$, then [\(2.2.1\)](#page-2-0) translates as

$$
\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}/\forall n \in \mathbb{N}: (n \geq N_{\varepsilon} \Rightarrow ||f_n - f|| < \varepsilon).
$$

We also say that f_n converges to f for the norm of uniform convergence and that f is the *uniform limit* on *I* of the sequence $(f_n)_n$.

And we note, $f_n \xrightarrow{\text{convergence uniformly}} f$ on *I* or else $f_n \xrightarrow{UC} f$ on *I* or else $f_n \xrightarrow{||\cdot||} f$.

2.2.1. Graphical interpretation of uniform convergence

If we plot the representative curves of the functions $f - \varepsilon$ and $f + \varepsilon$. To say that the sequence $(f_n)_{n\in\mathbb{N}}$ converges uniformly towards f is equivalent to saying that from a certain rank the curve of fn lies between the other two.

Figure 2.1: Illustration of uniform convergence

Example 2.

1. For any integer *n*, let

$$
:[0,1] \longrightarrow \mathbb{R}
$$

$$
x \longmapsto x^{n}(1-x).
$$

The sequence of functions $(f_n)_n$ simply converges on [0, 1], to the zero function.

 f_n

Let us calculate sup $|f_n(x) - f(x)|$ on [0, 1]. By studying the variations of the function *x*∈[0,1] $|f_n(x) - f(x)| = x^n(1-x)$ on [0, 1], we find that

$$
\sup_{x \in [0,1]} |f_n(x) - f(x)| = f_n\left(\frac{n}{n+1}\right) = \left(\frac{n}{n+1}\right)^n \left(\frac{1 - \frac{n}{n+1}}{n+1}\right).
$$

Or

$$
\forall n \geqslant 0, 0 \leqslant \left(\frac{n}{n+1}\right)^n \left(\frac{1-\frac{n}{n+1}}{n+1}\right) \leqslant 1-\frac{n}{n+1},
$$

hence, according to the Three sequence theorem, $\lim_{n\to+\infty}||f_n - f|| = 0$, thus, $f_n \xrightarrow{UC} 0$ on [0, 1].

2. The sequence of functions defined on [0, 1], by $f_n(x) = x^n$ is not uniformly convergent on [0, 1].

In fact, it is clear that the sequence $(f_n)_n$ simply converges to the function f on $[0,1]$ such that,

> $f(x) =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ 0 si *x* ∈ [0, 1[1 $\sin x = 1$

,

but,

$$
\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} |x^n - 0| = \sup_{x \in [0,1]} |x^n - 0| = \sup_{x \in [0,1]} x^n,
$$

because $f_n(1) - f(1) = 0$. And since $\sup_{x \in [0,1]} x^n = 1$ (the function $x \mapsto x^n$ is increasing
on [0,1]). Then $\sup_{x \in [0,1]} |f_n(x) - f(x)|$ does not tend to 0. Thus the sequence $(f_n)_n$ is not
uniformly convergent on [0, 1].

The following proposition ensures the uniform convergence of a sequence of functions $(f_n)_{n\in\mathbb{N}}$ on an interval *I*, without knowing the limit function *f* .

Theorem 1 (Cauchy's theorem for uniform convergence). A sequence of functions $(f_n)_{n\in\mathbb{N}}$ converges uniformly on *I* if and only if

$$
\forall \varepsilon > 0, \exists N \in \mathbb{N} / \forall p, q \in \mathbb{N}, \ \forall x \in I : (p > q \geq N \Rightarrow |f_p - f_q| < \varepsilon)
$$

hence,

$$
\forall \varepsilon > 0, \exists N \in \mathbb{N} / \forall p, q \in \mathbb{N}: \ (p > q \geq N \Rightarrow \|f_p - f_q\| < \varepsilon)
$$

Proposition 1 (Sufficient condition for uniform convergence)**.** For a sequence of functions $(f_n)_{n\in\mathbb{N}}$ to converge uniformly on I to a function $f,$ it suffices that there exists a numerical sequence $(u_n)_n$ such that,

$$
|f_n(x)-f(x)| \leq u_n, \forall n \in \mathbb{N}, \forall x \in I \text{ and } \lim_{n \to +\infty} u_n = 0.
$$

Example 3.

1. Study the simple and uniform convergence of the sequence of functions $(f_n)_n$, on $[0,1]$ such that

$$
f_n(x) = \frac{ne^{-x} + x^2}{n + x}.
$$

In fact, for any $x \in [0, 1]$, $\lim_{n \to +\infty} f_n(x) = e^{-x}$ (i.e., $f_n \xrightarrow{SC} e^{-x}$ on [0, 1]).

For uniform convergence. We have for all $x \in [0,1]$,

$$
\left|\frac{ne^{-x}+x^2}{n+x}-e^{-x}\right|=\left|\frac{xe^{-x}-x^2}{n+x}\right|=\frac{|x|\cdot|xe^{-x}-x|}{n+x}\leqslant\frac{x}{n+x}\leqslant\frac{2}{n}\xrightarrow{n\to+\infty}0,
$$

so according to the previous proposition, $(f_n)_{n \in \mathbb{N}}$ converges uniformly to e^{-x} on [0, 1].

2.2.2. Some operations

Proposition 2. Let (*fⁿ*)*ⁿ* and (*gⁿ*)*ⁿ* be two sequences of functions defined on *I* converging uniformly to f and g respectively. If λ and μ are two real numbers, then the sequence of functions $(\lambda f_n + \mu g_n)_n$ converges uniformly to the function $\lambda f + \mu g$ on *I*.

Proposition 3. Let (*fⁿ*)*ⁿ* and (*gⁿ*)*ⁿ* be two sequences of functions defined on *I* converging uniformly respectively to *f* and *g* on *I*. If the limit functions *f* and *g* are bounded on *I*, then the sequence of functions $(f_n g_n)_n$ converges uniformly to f g on I .

Uniform convergence implies simple convergence, and this is a consequence of the following proposition.

Proposition 4. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions defined on *I*. Then $f_n \xrightarrow{UC} f$ sur $I \Rightarrow f_n \xrightarrow{SC} f$ sur *I*.

Remark 2. The converse of the previous proposition is generally false. Indeed, let us take the sequence of functions $(f_n)_n$ defined on [0, 1] with a value in \mathbb{R} , by $f_n(x) = x^n$. It is clear that $(f_n)_n$ simply converges on $[0,1]$ to the function

$$
f(x) = \begin{cases} 0 & \text{if } x \in [0,1[\\ 1 & \text{if } x = 1 \end{cases}
$$

but the sequence (*fⁿ*)*ⁿ* does not converge uniformly on [0, 1], since

$$
\sup_{x\in[0,1]}|f_n(x)-f(x)|=1 \underset{n\to+\infty}{\to} 0.
$$

2.3. Properties of sequences of uniformly convergent functions

2.3.1. Continuity

Theorem 2 (Seidel continuity). Let $(f_n)_n$ be a sequence of functions defined from an interval *I* of $\mathbb R$ into $\mathbb R$. Let $a \in I$, if

- i) for any integer *n*, the function f_n is continuous in a ,
- ii) the sequence of functions $(f_n)_n$ converges uniformly on *I* to a function f .

Then *f* is continuous at *a*.

We can immediately deduce the following Corollary.

Corollary 1. Let $(f_n)_n$ be a sequence of functions defined from an interval *I* of $\mathbb R$ to $\mathbb R$. If,

i) for any integer *n*, the function f_n is continuous on *I*,

ii) the sequence $(f_n)_n$ converges uniformly on *I* to a function f .

Then *f* is continuous on *I*.

One method of showing that a sequence of functions $(f_n)_n$ does not converge uniformly to its simple limit *f* on a domain *I*, is the contrapositive of the previous Corollary, more precisely we have,

Proposition 5. Let (*fⁿ*)*ⁿ* be a sequence of functions which converges simply on *I* to *f* . If for any integer *n*, the function f_n is continuous on *I*, then

f is discontinuous at $x_0 \in I \Rightarrow f_n \xrightarrow{UC} f$ on *I*.

Example 4. Let the sequence of functions $(f_n)_n$ be defined on $[0, +\infty[$ with a value in \mathbb{R} , by $f_n(x) = \frac{1}{1+x}$ $1 + nx$.

We note that for any integer *n*, the function f_n is continuous on $[0,+\infty[$. Furthermore, it is easy to see that $f_n \xrightarrow{SC} f$ on $[0, +\infty[$ with

$$
f(x) = \begin{cases} 0 & \text{if } x > 0, \\ 1 & \text{if } x = 0. \end{cases}
$$

The function *f* is not continuous at $x_0 = 0$, hence according to the previous Proposition the sequence of functions $(f_n)_n$ does not converge uniformly on $[0, +\infty[$.

We have seen that simple convergence does not imply uniform convergence, but under certain conditions it does.

Theorem 3 (Dini's theorem). Let $(f_n)_n$ be a sequence of functions that converges simply on $[a, b]$, ($\subset \mathbb{R}$) to a function *f* continuous on $[a, b]$. If the sequence of functions $(f_n)_n$ is

2.3.2. Integration

Theorem 4 (Integration theorem). Let $(f_n)_n$ be a sequence of functions such that, for all $n \in \mathbb{N}$, the function f_n is integrable on [*a*, *b*].

If $(f_n)_n$ converges uniformly to f on $[a, b]$, then the function f is integrable on $[a, b]$. Moreover

$$
\lim_{n\to+\infty}\int_a^b f_n(x)\,dx=\int_a^b \lim_{n\to+\infty}f_n(x)\,dx=\int_a^b f(x)\,dx.
$$

Corollary 2. Let $(f_n)_n$ be a sequence of functions such that, for all $n \in \mathbb{N}$, the function f_n is integrable on $[a, b]$.

If $(f_n)_n$ converges uniformly to f on $[a, b]$ then, for all $\alpha \in [a, b]$, the sequence of functions $(F_n)_n$ such that $F_n(x) = \int_0^x$ *α* $f_n(t)dt$, converges uniformly to the function $F(x) = \int_0^x$ *α f* (*t*)*d t* on $[a, b]$. Moreover, for all $x \underset{\alpha}{\in} [a, b]$

$$
\lim_{n \to +\infty} F_n(x) = \lim_{n \to +\infty} \int_a^x f_n(t) dt = \int_a^x \lim_{n \to +\infty} f_n(t) dt = \int_a^x f(t) dt = F(x).
$$

2.3.3. Derivation

Theorem 5 (Derivative theorem). Let $(f_n)_n$ be a sequence of functions such that, for all *n* ∈ $\mathbb N$ the function f_n is continuously differentiable on *I* (i.e., f_n ∈ C^1 on *I*) and converges simply to a function f on I . If the sequence of functions (f'_n) $\binom{1}{n}$ converges uniformly to a function *g* on *I*, then the function *f* is continuously differentiable on *I* (i.e., $f \in C^1$ on *I*) and

$$
f'(x) = g(x) \quad \forall x \in I,
$$

in other words

$$
\left(\lim_{n\to+\infty}f_n(x)\right)'=\lim_{n\to+\infty}f'_n(x)\quad\forall x\in I.
$$