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Definition 1. Let ( fn)n be a sequence of functions defined on I ⊂ R. Then the series
∑

fn(x)

is called a series of functions.

3.1. Simple or point convergence

Definition 2 (Simple convergence).

The series of functions
∑

fn(x) is said to be simply convergent on I , if the sequence of

partial sums (Sn)n (i.e. Sn(x) =
n
∑

k=0

fk(x)) simply converges to a function S on I .

Remark 1.

i To study the simple convergence on I , of a series of functions amounts to fixing x ∈ I ,

and studying the numerical series
∑

fn(x).

ii If the series of functions
∑

fn(x) converges simply to a function S on a domain D,

then

(a) the set D is called the domain of convergence of the series of functions
∑

fn(x),

(b) the limit function S is called the sum of the series
∑

fn(x).



3.2. Absolute, normal and uniform convergence

3.2.1. Absolute convergence

Definition 3. The series of functions
∑

fn(x) is said to be absolutely convergent on I , if

the series of general term | fn(x)| simply converges on I .

Remark 2. All the convergence criteria studied for numerical series with positive terms

remain valid for studying the convergence of series of functions with positive terms, in

particular the study of the absolute convergence of series of functions.

Example 1.

1. Let
∑

fn(x) such that ∀n > 1,∀x ∈ R : fn(x) =
sin(nx)

n
p

n
.

For all x ∈ R, we have,
�

�

�

�

sin(nx)
n
p

n

�

�

�

�

6
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n
p

n
,

or the Riemann series
∑ 1

n
3
2

is convergent. Thus, for all x ∈ R the series of functions
∑

fn(x) is convergent, that is to say it is simply convergent on R, hence the domain

of simple convergence is R.

2. Let the series of functions
∑

fn(x) be such that fn(x) = n!(x + 1)n. We have
�

�

�

�

fn+1(x)
fn(x)

�

�

�

�

= (n+ 1)|x + 1|,

which tends to +∞ if x 6= −1, and for all n ∈ N, fn(−1) = 0, thus the numerical series
∑

fn(−1) converges to 0. Hence the domain of convergence of the series of functions
∑

n!(x + 1)n is the set {−1}.



3.2.2. Normal convergence

Definition 4. The series of functions
∑

fn(x) is said to be normally convergent on I , if

the numerical series with general term ‖ fn‖ (where ‖ fn‖= sup
x∈I
| fn(x)|) is convergent.

Example 2. Let the series
∑

fn(x) on R+ be defined by

∀x ∈ R+,∀n ∈ N∗ : fn(x) =
e−nx

n2
.

It is clear that for all n ∈ N∗, the function fn is decreasing on R+. So

‖ fn‖= sup
x∈R+
| fn(x)|=

1
n2

,

or the Riemann series
∑ 1

n2
is convergent, so the series of functions

∑

fn(x) converges

normally on R+.

Condition suffisante de la convergence normale

Theorem 1 (Weierstrass). Let the series of functions
∑

fn(x) be defined on I . If there

exists a numerical sequence (un)n such that

| fn(x)|6 un,∀n ∈ N,∀x ∈ I .

and the series
∑

un converges then the series of functions
∑

fn(x) is normally convergent

on I .

Example 3. We take the previous example, namely

∀x ∈ R+,∀n ∈ N∗ : fn(x) =
e−nx

n2
.

We have,

∀n ∈ N∗ : fn(x) =
e−nx

n2
6

1
n2

∀x ∈ R+,



or the Riemann series
∑ 1

n2
converges, so according to the previous Theorem, the series

∑ e−nx

n2
is normally convergent on R+.

3.2.3. Uniform convergence

Definition 5. The series of functions
∑

fn(x) uniformly converges to the function S on I ,

if its sequence of partial sums (Sn)n uniformly converges to the function S on I . That is, the

numerical sequence with general term

sup
x∈I

�

�

�

�

�

n
∑

k=0

fk(x)− S(x)

�

�

�

�

�

converges to 0.

Remark 3. A series of functions
∑

fn(x) simply convergent on I to a function S, converges

uniformly on I if and only if, the sequence (Rn)n with remainder of order n (i.e., Rn(x) =
+∞
∑

k=n+1

fk(x)) converges uniformly to 0.

Proposition 1. Let be the series of functions
∑

fn(x) such that for all n ∈ N, fn ∈ F (I ,R). If

the series of functions
∑

fn(x) converges uniformly on I , then the series of functions ( fn)n

converges uniformly to the null function on I .

Remark 4. The previous proposition is useful because of its contrapositive. If ( fn)n does

not converge uniformly to 0 on I , then the series of functions
∑

fn(x) does not converge

uniformly on I .

Example 4. Let fn(x) be the series of functions such that for all n ∈ N∗, and for all x ∈ R+ :

fn(x) = nx2e−x
p

n.

• Study of the simple convergence of the series,
∑

fn(x) on R+.

If x = 0. ∀n ∈ N∗, fn(0) = 0, so the series
∑

fn(0) converges to 0.



If x > 0, we have,

lim
n→+∞

nx2e−x
p

n

1
n2

= lim
n→+∞

x2 n3

ex
p

n
= 0,

so the Riemann series
∑ 1

n2
converges, and therefore for all x > 0, the numerical

series
∑

fn(x) is convergent. Thus the series of functions converges simply on R+.

• Study of the uniform convergence of the series
∑

fn(x) on R+.

For all x ∈ R+, we have

f ′n(x) = nx(2− x
p

n)e−x
p

n,

then we deduce that

sup
x∈R+
| fn(x)|= sup

x∈R+
|nx2e−x

p
n|= fn

�

2
p

n

�

=
4
e2

n
p

n
9

n→+∞
0,

hence the sequence of functions ( fn)n does not converge uniformly to the zero function

on R+. Thus
∑

fn(x) does not converge uniformly on R+.

Sometimes it is not easy to calculate the limit function S(x) of such a series of functions
∑

fn(x),

so to study the uniform convergence of this series we can use the following theorem.

Theorem 2 (Cauchy’s criterion).

The series of functions
∑

fn(x) converges uniformly on I if and only if

∀ε > 0,∃Nε ∈ N/∀p, q ∈ N :

 

p > q > Nε,∀x ∈ I ⇒ |Sp(x)− Sq(x)|=

�

�

�

�

�

p
∑

k=q+1

fk(x)

�

�

�

�

�

< ε

!

.

(3.2.1)

In other words, (3.2.1) is equivalent to the following logical proposition

∀ε > 0,∃Nε ∈ N/∀p, q ∈ N :

 

p > q > Nε⇒ sup
x∈I
|Sp(x)− Sq(x)|= sup

x∈I

�

�

�

�

�

p
∑

k=q+1

fk(x)

�

�

�

�

�

< ε

!

.

Theorem 3 (Abel’s theorem for uniform convergence).

Let be the series
∑

fn(x)gn(x) which satisfies

i) ∃M > 0 : ∀n ∈ N,‖ f0 + f1 + · · ·+ fn‖6 M (i.e., the partial sums of the series
∑

fn(x)

are uniformly bounded),



ii) The series
∑

|gn+1 − gn| is convergent,

iii) The sequence of functions (gn(x))n converges uniformly to 0 on I (i.e., lim
n→+∞

‖gn‖ = 0).

Then, the series
∑

fn(x)gn(x) is uniformly convergent on I .

Example 5. Study the nature of the series of functions
∞
∑

n=1

e−nx

n
, x > α > 0 (i.e., on

[α,+∞[ with α > 0).

Indeed. We put fn(x) = e−nx and gn(x) =
1
n

.

On the one hand, it is clear that for any n ∈ N∗,

| f1(x) + f2(x) + . . .+ fn(x)|=

�

�

�

�

�

n
∑

k=1

�

e−x
�k

�

�

�

�

�

=

�

�

�

�

e−x − e−(n+1)x

1− e−x

�

�

�

�

6

�

�

�

�

e−x − e−(n+1)x

|1− e−x |

�

�

�

�

6
e−x − e−(n+1)x

1− e−x
,

because for any n ∈ N∗ and for any x ∈ [α,+∞[: e−x − e−(n+1)x > 0 and 1− e−x > 0 (the

function e−x is decreasing on R+). Thus,

| f1(x) + f2(x) + . . .+ fn(x)|6
e−x

1− e−x
6

e−α

1− e−α
= M .

The last inequality comes from the decrease of the function
e−x

1− e−x
on the domain [α,+∞[.

Thus

‖ f1 + f2 + . . .+ fn‖6 M .

On the other hand, we have

‖gn+1 − gn‖= sup
x∈[α,+∞[

|gn+1(x)− gn(x)|= sup
x∈[α,+∞[

1
n(n+ 1)

=
1

n(n+ 1)
+∞∼

1
n2

so the series of functions
∞
∑

n=1

‖gn+1 − gn‖ is convergent, and

‖gn‖= sup
x∈[α,+∞[

|gn(x)|= sup
x∈[α,+∞[

�

�

�

�

1
n

�

�

�

�

=
1
n
→

1
n
−→

n→+∞
0.

Hence, according to the previous theorem, the series of functions
∞
∑

n=1

e−nx

p
n

is uniformly

convergent on [α,+∞[, (α > 0).



Proposition 2. Let be the series
∑

n

fn(x)gn(x) which satisfies

1. ∃M > 0 : ∀n ∈ N,‖ f0 + f1 + . . .+ fn‖6 M , (i.e., the partial sums of the series
∑

n

fn(x)

are uniformly bounded),

2. For all x ∈ I , the sequence of functions (gn(x))n is monotone,

3. The sequence of functions (gn(x))n converges uniformly to 0 on I .

Then the series
∑

n

fn(x)gn(x) is uniformly convergent on I .

Example 6. Study the nature of the series of functions
∞
∑

n=1

xn

p
n

, |x |6 α < 1.

In fact. Let fn(x) = xn and gn(x) =
1

7pn
. On the one hand, it is clear that for any n ∈ N∗,

| f1(x) + f2(x) + . . .+ fn(x)|=

�

�

�

�

�

n
∑

k=1

x k

�

�

�

�

�

=

�

�

�

�

x − xn+1

1− x

�

�

�

�

6
|x |+ |x |n+1

|1− x |
6

2α
1−α

,

so,

‖ f1 + f2 + . . .+ fn‖6
2α

1−α
= M .

On the other hand, the series of functions gn is decreasing and converges uniformly to 0. Thus,

according to the previous proposition, the series of functions
∞
∑

n=1

xn

7pn
converges uniformly

on [−α,α] (α < 1).

3.2.4. Link between different types of convergence

Theorem 4. Let be the series of functions
∑

n

fn(x). Then

∑

n

fn(x) normally converges on I ⇒
∑

n

fn(x) uniformly converges on I .

Remark 5. The reciprocal of the previous theorem is false.



Example 7. The series of functions
∞
∑

n>1

(−1)n

x + n
converges uniformly on R+ because it is a

Leibniz series, but

sup
x∈R+

�

�

�

�

(−1)n

x + n

�

�

�

�

=
1
n

and the series
∞
∑

n>1

1
n

is divergent. Thus, the series of functions
∞
∑

nge1

(−1)n

x + n
is not normally

convergent on R+.

Proposition 3. Let be the series of functions
∑

n

fn(x), then

∑

n

fn(x)normally converges onI ⇒
∑

n

fn(x)absolutely converges onI .

The following diagram shows the relationship between the different types of convergence for series

of functions.

Normal convergence ⇒ Uniform convergence

⇓ ⇓

Absolute convergence ⇒ Simple convergence

Example 8.

1. We have already seen that the series of functions
∞
∑

n=1

(−1)n

x + n
converges uniformly on

R+.

However,

�

�

�

�

(−1)n

x + n

�

�

�

�

=
1

x + n
→

1
n

, ∀x > 0, and the series
∞
∑

n=1

1
n

diverges, so the series

∞
∑

n=1

(−1)n

x + n
does not converge absolutely on R+.

On the other hand, sup
x>0

�

�

�

�

(−1)n

x + n

�

�

�

�

=
1
n

and
∞
∑

n=1

1
n

diverges, so the series
∞
∑

n=1

(−1)n

x + n
does

not converge normally on R+.

Thus the series
∑

n>1

(−1)n

x + n
converges uniformly, but not normally, nor absolutely on R+.

2. Soit la série de fonctions
∑

n>1

(−1)n

x2n2 + n
, fn(x) =

(−1)n

x2n2 + n
avec x ∈ [0, 1].



We have,
�

�

�

�

(−1)n

x2n2 + n

�

�

�

�

=
1

x2n2 + n
6

1
n2n2 + n

=
1

x2n2
,∀x ∈ [0,1].

Or, the series
∑

n>1

1
x2n2

converges on ]0, 1] (Riemann series), so the series
∑

n>1

(−1)n

x2n2 + n
converges absolutely on ]0,1].

According to theorem ?? (Leibniz’s Theorem), we have

∀x ∈ [0,1], |Rn(x)|6 | fn+1(x)|=
1

x2(n+ 1)2 + n+ 1
=⇒ ∀x ∈ [0, 1], |Rn(x)|6

1
n+ 1

.

Hence,

0 6 sup
x∈[0,1]

|Rn(x)|6
1

n+ 1
,

i.e., Rn→UC
0 sur ]0,1], the series is therefore uniformly convergent on ]0,1], but

sup
x∈[0,1]

�

�

�

�

(−1)n

x2n2 + n

�

�

�

�

= sup
x∈[0,1]

1
x2n2 + n

=
1
n

,

which means that the series does not converge normally, even though it is absolutely and

uniformly convergent.

3.3. Continuity, integration and derivation of series of

functions

3.3.1. Continuity

Theorem 5 (Seidel Continuity).

Let the series of functions
∑

fn(x) be uniformly convergent on I and at a ∈ I .

If for all n ∈ N, the function fn is continuous at a (resp. on I), then the sum S(x) =
+∞
∑

n=0

fn(x)

of the series is continuous at a (resp. on I). That is,

lim
x→a

S(x) = lim
x→a

+∞
∑

n=0

fn(x) =
+∞
∑

n=0

lim
x→a

fn(x) =
+∞
∑

n=0

fn(a) = S(a).

(resp. ∀x0 ∈ I : lim
x→x0

S(x) = lim
x→x0

+∞
∑

n=0

fn(x) =
+∞
∑

n=0

lim
x→x0

fn(x) =
+∞
∑

n=0

fn(x0) = S(x0)).



Example 9. Let the series of functions be
∑

n>0

e−nx

1+ n2
.

For any integer n > 1, the functions fn(x) =
e−nx

1+ n2
are continuous on R+. Moreover we have

∀x ∈ R+, | fn(x)|=
e−nx

1+ n2
6

1
1+ n2

,

and since
∑

n>0

1
1+ n2

is a convergent series, then the series of functions
∑

n>0

e−nx

1+ n2
converges

normally and therefore uniformly on R+.

Thus according to the previous Theorem, the function S(x) =
+∞
∑

n=0

e−nx

1+ n2
is continuous on

R+, therefore,

lim
x→+∞

S(x) =
+∞
∑

n=0

lim
x→+∞

e−nx

1+ n2
= 0.

Proposition 4 ( The contrapositive of the previous theorem).

Let the series of functions
∑

fn(x) with sum S(x) be such that for all n ∈ N, the function fn is

continuous on I .

If the sum S of the series
∑

fn(x) is discontinuous at a point x0 ∈ I , then the series
∑

fn(x)

is not uniformly convergent on I .

3.3.2. Integration

Theorem 6 (Integration theorem).

Let the series of functions
∑

fn(x) be, which converges uniformly to S(x) on [a, b].

If for all n ∈ N, the function fn is integrable on [a, b]. Then, the sum S of the series is

integrable on [a, b], and we have
∫ b

a

S(x) =

∫ b

a

+∞
∑

n=0

fn(x) =
+∞
∑

n=0

∫ b

a

fn(x).

Example 10. Let be the series of functions
∑

n>0

xn avec |x |6 r < 1.

We have |x |n 6 rn, ∀x ∈ [−r, r], with r < 1, which means that the geometric series
∑

n>0

xn converges normally and therefore uniformly on [−r, r].



Furthermore, the functions fn(x) = xn are integrable on [−r, r] (because they are continu-

ous on [a, b]), so according to the previous the previous Theorem, the function S(x) =
+∞
∑

n=0

xn

is integrable on [−r, r], and we have

∀x ∈ [−r, r], 0< r < 1 :

∫ x

0

+∞
∑

n=0

tnd t =
+∞
∑

n=0

∫ x

0

tnd t

Donc
∫ x

0

d t
1− t

=
+∞
∑

n=0

xn+1

n+ 1
⇒− ln(1− x) =

+∞
∑

n=0

xn+1

n+ 1
=
+∞
∑

n=1

xn

n
,∀x ∈ [−r, r], 0< r < 1

3.3.3. Derivation

Theorem 7 (Derivation theorem).

Let be the series of functions
∑

fn(x) of sum S(x), such that for all n ∈ N, the function fn is

continuously derivable on [a, b]. If

i) ∃x0 ∈ [a, b]/
∑

fn (x0) converges.

ii)
∑

f ′n(x) uniformly converges on [a, b].

Then the series
∑

fn(x) uniformly converges on [a, b], moreover the function S is derivable

on [a, b] and we have

S′(x) =

�

+∞
∑

n=0

fn(x)

�′

=
+∞
∑

n=0

f ′n(x)
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