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4

4.1. Integers series

Integer series are series of functions of a particular form. They are well suited to the derivation

operation, and therefore to solving differential equations.

Definition 1. We call an integer series a series of functions
∑

n

fn such that for all n ∈ N, fn

is defined as follows,

fn(z) = anzn,

the variable z can be real or complex.

4.1.1. Radius of convergence

The convergence radius of an integer series approximately characterises the convergence modes of

the series of functions
∑

n

anzn and the analytical properties of the sum.

Lemma 4.1.1 ( Abel’s lemma). Let
∑

n

anzn be an integer series. Assume that the sequence (anzn
0)n

is bounded for some z0 ∈ C. Then for all z ∈ C, if |z| < |z0|, the series with general term anzn is

absolutely convergent.

Theorem 1. Let
∑

an xn be an integer series. The set of positive reals r such that the

sequence (anrn)n is bounded is an interval of R+ containing 0.



Proof. If (anrn)n is bounded and if 0 6 s < r, then the series with general term ansn is absolutely

convergent according to the previous lemma, so the sequence (ansn)n tends to 0 and is therefore

bounded.

Definition 2 ( Convergence radius). The radius of convergence of the integer series
∑

anzn

is the element

sup{r > 0 : (anrn)n is bounded} ∈ [0,+∞]

If R is the radius of convergence of the integer series
∑

anzn, the set of r > 0 such that the

sequence (anrn)n is bounded is [0, R].

Theorem 2.

1. If R= +∞, then for all z ∈ C, the series with general term anzn is absolutely conver-

gent.

2. If R = 0, for all z ∈ C \ {0}, the sequence (anzn)n is not bounded, in particular, the

series diverges.

3. If R 6= 0 and R 6= +∞ :

• For all z ∈ C such that |z| < R, the series with general term anzn is absolutely

convergent.

• If |z|> R, the sequence (anzn)n is not bounded, so the series diverges grossly.

• If |z| = R, we can say nothing in general. We thus have a partition of the complex

plane into three parts (in the last case).

Example 1. The series
∑

zn is absolutely convergent if |z|< 1 and diverges if |z|> 1, so

we conclude that the radius of convergence is R= 1.



4.1.2. Radius of convergence of a sum and a product

Theorem 3. Let Ra be the radius of convergence of an integer series
∑

anzn, Rb that of an

integer series
∑

bnzn. Then the Radius of Convergence of the sum and product series are

greater than min(Ra, Rb). And for sum: If Ra 6= Rb, the radius of convergence of
∑

(an+ bn)z
n

is equal to min(Ra, Rb).

Example 2.

1. ∀n ∈ N, an = −bn = 1.

Then Ra = Rb = 1 but the radius of convergence of the sum series equals +∞.

2. We take (an)n such that,

1− z
1+ z

=
+∞
∑

n=0

anzn, and bn = (−1)nan.

Thus,

+∞
∑

n=0

bnzn =
1+ z
1− z

and cn =
n
∑

k=0

ak bn−k =











1 if n= 0,

0 otherwise.

We then have Ra = Rb = 1, but the radius of convergence of the product series equals

+∞.

With
+∞
∑

n=0

anzn =
1− z

2

1+ z
, Ra = 1,

+∞
∑

n=0

bnzn =
1+ z

2

1− z
.

Rb = 2 and the radius of convergence of the product series equals +∞.

Definition 3. If R is the radius of convergence of an integer series
+∞
∑

n=0

anzn, the open disk

D◦(0, R) = {z ∈ C | |z|< R}

is called the disk of convergence of the integer series.



Remark 1. If R is finite, we don’t know a priori whether
+∞
∑

n=0

anzn will converge for |z|= R.

Theorem 4. Let
∑

anzn and
∑

bnzn be two integer series of radii of convergence Ra and

Rb respectively. Then we have

∃n0 ∈ N,∀n > n0 : |an|6 |bn| ⇒ Ra > Rb,

and more generally,

∃α ∈ R,∃k > 0,∃n0 ∈ N,∀n > n0 : (|an|6 k|bn|nα)⇒ (Ra > Rb),

•∃α ∈ R,
�

an

bnnα

�

⇒ (Ra = Rb),

in particular,

•
�

an

bn
∼ 1

�

⇒ (Ra = Rb).

4.1.3. Methods for calculating the convergence radius

Theorem 5 ( d’Alembert’s rule). Let (an)n be a sequence of complexes such that,

1. There exists n0 ∈ N such that ∀n > n0, an 6= 0.

2. The sequence

�

�

�

�

an+1

an

�

�

�

�

tends to l ∈ [0,+∞].

Then the radius of convergence of the integer series
+∞
∑

n=0

anzn is R=
1
l
∈ [0,+∞].

Example 3.

1. Let
+∞
∑

n=0

(−1)n+1

(n+ 1)n
zn, we calculate the radius of convergence. So, we have,

�

�

�

�

an+1

an

�

�

�

�

=

�

�

�

�

(n+ 1)n

(n+ 2)n+1

�

�

�

�

=
�

n+ 1
n+ 2

�n 1
n+ 2

e
+∞
× 0= 0.

So the radius of convergence R= +∞, so
+∞
∑

n=0

(−1)n+1

(n+ 1)n
zn converges in C.



2.
+∞
∑

n=0

n!
(n+ 1) · · · (2n+ 1)

zn, radius of convergence, study in ±R? Then, we have,

�

�

�

�

an+1

an

�

�

�

�

=
(n+ 1)n!

(n+ 2) · · · (2n+ 3)
×
(n+ 1) · · · (2n+ 1)

n!
=

(n+ 1)2

(2n+ 2)(2n+ 3)
→
+∞

.

So the radius of convergence R= 4.

• Study in ±4. For
+∞
∑

n=0

n!
(n+ 1) · · · (2n+ 1)

4n

�

�

�

�

fn+1(4)
fn(4)

�

�

�

�

=

�

�

�

�

4
an+1

an

�

�

�

�

= 4
(n+ 1)2

(2n+ 2)(2n+ 3)
= 2

(n+ 1)
(2n+ 3)

< 1,

so the sequence (4nan)n decreases. We are looking for an equivalent of 4nan in +∞.

We will look for α and k > 0 such that fn ∼+∞ knα. We are looking for α such that the

sequence of general term ln
�

fn

n◦

�

converges.

ln
�

fn

nα

�

− ln
�

fn−1

(n− 1)α

�

= ln
�

fn

fn−1

�

+α ln
�

n− 1
n

�

= ln
�

2n
2n+ 1

�

+α ln
�

n− 1
n

�

= − ln
�

1+
1

2n

�

+α ln
�

n− 1
n

�

= −
�

α+
1
2

�

1
n
+ 0

�

1
n2

�

.

Thus, if we take α = −
1
2

, the series converges absolutely, so the sequence with general term

ln
�

fn

an

�

converges to λ ∈ R and fn ∼ eλ. i.e., fn ∼ eλnα , we have therefore also found k such

that

fn ∼
k
p

n
.

Thus, at R = 4, there is divergence because 4nan ∼
k
p

n
. And at R = −4, there is convergence

by the Leibniz criterion.



4.2. Functional properties of an integer series

Theorem 6. Let
+∞
∑

n=0

anzn be an integer series of radius of convergence R. The series converges

normally on any compact included in the open disk of convergence (in the case of a complex

variable) or the open interval of convergence (in the case of a real variable). In the real case,

there is in particular normal convergence of the integer series on any segment of type [a, b]

or [−a, a] included in ]−R, R[ .

4.2.1. Continuity of the sum of an integer series

Theorem 7 ( Continuity of the sum of an integer series of real variables). Let
+∞
∑

n=0

an xn

be an integer series with a real variable, a convergence radius R and a sum S. The function

S is continuous on the open interval of convergence. ]−R, R[ .

Proof. The continuity of the functions. ∀n ∈ N, x 7→ an xn on any interval [a, b] ⊂]− R, R[ and the

normal convergence on [a, b] of the series of these functions (??), means that the sum of this series

(i.e. the sum of the integer series) is continuous on any interval [a, b] ⊂]− R, R[, and therefore on

]− R, R[ itself.

Theorem 8 ( Continuity of the sum of an integer series of complex variables).

Let
+∞
∑

n=0

anzn be an integer series of complex variable, radius of convergence R and sum S.

The function S is continuous on the open disc D(0, R).

4.2.2. Primitives of the sum of an integer series of real variables

Theorem 9.

Let
+∞
∑

n=0

an xn be an integer series of real variables, of convergence radius R and of sum

S(x) =
+∞
∑

n=0

an xn.



We can integrate S term by term on any segment contained in ]− R, R[. In particular, S has

primitives on ]− R, R[ which are equal to

c +
+∞
∑

n=0

an
xn+1

n+ 1
, where c ∈ C.

These primitives have the same convergence radius R as
+∞
∑

n=0

an xn.

Proof. Since S is continuous on ] − R, R[, it has primitives there. Moreover, for 0 6 a < R, the

integer series
+∞
∑

n=0

an xn converges normally sur[−a, a] so we can calculate the primitive term by

term.

Finally the primitives of S on [−a, a] (which are all equal up to an additive constant) are:
∫

S(x)d x = c +
+∞
∑

n=0

∫

an xnd x = c +
+∞
∑

n=0

an
xn+1

n+ 1

where c is a real or complex constant. These new integer series have a convergence radius Rp.

• For x non-zero, the convergence of
+∞
∑

n=0

an
xn+1

n+ 1
is equivalent to that of

+∞
∑

n=0

an
xn

n+ 1
, since

they are equal up to a multiplicative constant. But

∀n ∈ N,
�

�

�

an

n+ 1

�

�

�6 |an| ,

and we deduce that Rp > R.

• Then ∀z ∈ C : |z|< Rp,∃ρ ∈ R∗, |z|< ρ < Rp. We can then write

∀n ∈ N : |anzn|= |an|
ρn

n+ 1

�

(n+ 1)
|zn|
ρn

�

,

and as the sequence
�

(n+ 1)
|zn|
ρn

�

n
tends to 0, due to the theorem of comparative growths,

we deduce that

∃n0 ∈ N,∀n > n0 : (n+ 1)
|zn|
ρn

6 1and |anzn|6 |an|
ρn

n+ 1
,

or the series
+∞
∑

n=0

|an|
ρn

n+ 1
converges (since 0< ρ < Rp ), and therefore the series

+∞
∑

n=0

an xn

converges absolutely. We deduce that |z|6 R, therefore
�

0, Rp

�

⊂ [0, R] . and finally Rp = R,

and the primitive series have the same radius of convergence as the initial series.



Example 4. Determine the radius of convergence and the sum of the real integer series,
+∞
∑

n=1

nxn−1,
+∞
∑

n=0

xn+1

n+ 1
,

+∞
∑

n=1

n2 xn−1.

1.
+∞
∑

n=1

nxn−1 is the derivative series of the integer series
+∞
∑

n=0

xn with radius of convergence

R= 1 and sum

S(x) =
1

1− x
on ]−1,1[ ,

and

S′(x) =
+∞
∑

n=1

nxn−1 =
1

(1− x)2
,∀x ∈ ]−1,1[

2.
+∞
∑

n=0

xn+1

n+ 1
is the primitive of the integer series

+∞
∑

n=0

xn with radius of convergence R = 1

and
+∞
∑

n=0

xn+1

n+ 1
=

∫ +∞
∑

n=0

an xnd x =

∫

1
1− x

d x = − ln(1− x),∀x ∈ ]−1, [ .

3.
+∞
∑

n=1

n2 xn−1 =
+∞
∑

n=1

�

n2 − n+ n
�

xn−1 =
+∞
∑

n=1

n(n− 1)xn−1 +
+∞
∑

n=1

nxn−1

= x
+∞
∑

n=1

n(n− 1)xn−2 +
+∞
∑

n=1

nxn−1.

+∞
∑

n=1

n(n− 1)xn−2 est la série dérivée d’ordre 2 de la série entière
+∞
∑

n=0

xn, donc

+∞
∑

n=1

n2 xn−1 = xS′′(x) + S′(x) =
2x

(1− x)2
+

1
(1− x)2

=
1+ x
(1− x)3

,∀x ∈ ]−1, 1[ .

4.2.3. Derivability and C∞ nature of the sum of an integer series

Theorem 10.

Let
+∞
∑

n=0

an xn be an integer series of real variable, of radius of convergence R and of sum

S(x) =
+∞
∑

n=0

an xn.

On ]R; R[, the function S is of class C∞ and we obtain its successive derivatives by term-by-

term derivation of the function S.



All the integer series derived from S have the same radius of convergence R as
+∞
∑

n=0

an xn.

Moreover

• ∀x ∈ ]−R, R[ , S′(x) =
+∞
∑

n=1

nan xn−1 =
+∞
∑

n=0

(n+ 1)an+1 xn

• ∀p ∈ N,∀x ∈ ]−R, R[ , S(p)(x) =
+∞
∑

n=p

n!
(n− p)!

an xn−p =
+∞
∑

n=0

(n+ p)!
n!

an+p xn.

The coefficients of the integer series
+∞
∑

n=0

an xn then check

∀n ∈ N, an =
S(n)(0)

n!
.

Proof. First, let’s show that S ∈ C in f t y(]− R, R[). We have

∀x ∈ ]−R, R[ , S(x) =
+∞
∑

n=0

an xn.

+∞
∑

n=0

an xn converges normally and therefore uniformly on any interval [−r, r] such that 0< r < R.

On the other hand, the function fn : x 7→ fn(x) is of class C∞ on R and therefore in particular

on [−r, r].

Let us show by recurrence that,

f (p)n (x) =







0 if p > n
n!

(n− p)!
an xn−p if p 6 n.

This expression is true for p = 1, in fact

f ′n(x) = nan xn−1,∀n > 1,

and

f ′n(x) = 0forn= 0.



Assume that the hypothesis is true for (p) and prove it for (p+ 1). We have

f (p+1)
n (x) =

�

f (p)n (x)
�′
=



















0 if p > n,
n!

(n− p)!
(n− p)an xn−p−1 if p < n,

0 p = n,

=



































0 if p > n− 1,
n!

(n− p− 1)!
an xn−p−1 if p 6 n− 1,

0 if p+ 1> n,
n!

(n− (p+ 1))!
an xn−(p+1) if p+ 1 6 n,

so the relation is true for (p+ 1). It remains to show that
+∞
∑

n=0

n!
(n− p)!

an xn−p converges uniformly

on [−r, r], 0 6 r 6 R.

We have the series
+∞
∑

n=0

an xn and the derivative series having the same radius of convergence R,

from which
+∞
∑

n=0

f (p)n (x) converges uniformly on [−r, r] ⊂ ]−R, R[ . Therefore, given the derivation

theorem for series of functions (Theorem ??), we conclude that,

S ∈ C p([−r, r]) for all p > 1,

so S ∈ C∞([−R, R[). Let’s show that ∀n ∈ N : an =
S(n)(0)

n!
. We have,

f (p)k (x) =







0 if p > k,
k!

(k− p)!
ak x k−p if p 6 k,

S(n)(x) =

�

+∞
∑

n=0

fk(x)

�(n)

=
+∞
∑

n=0

f (n)k (x) =
+∞
∑

k>n

k!
(k− n)!

ak x k−n

=
n!
0!

an x0 +
+∞
∑

k>n+1

k!
(k− n)!

ak x k−n

= ann!+ x
+∞
∑

k>n+1

k!
(k− n)!

ak x k−n−1,

and consequently

S(n)(0) = ann!⇒ an =
S(n)(0)

n!
.



Theorem 11. If the series
+∞
∑

n=0

an xn converges for x = R (or x = −R), then the sum S(x) =

+∞
∑

n=0

an xn is continuous on ]−R, R[ (or [−R, R]).

4.3. Applications of integer series

4.3.1. Functions that can be developed into integer series

Definition 4.

Let I be an interval of R containing 0 and let f be a function of I in R. We say that f is

developable as an integer series at 0 if and only if there exists an integer series
+∞
∑

n=0

an xn of

non-zero radius of convergence R, and 0< r 6 R such that

∀x ∈ ]−r, r[∩ I , f (x) =
+∞
∑

n=0

an xn.

4.3.2. Necessary existence conditions for the development of inte-

ger series

Theorem 12.

Let r > 0, and let f be a function of ]−r, r[ in R, developable as an integer series in 0 such

that

∀x ∈ ]−r, r[ , f (x) =
+∞
∑

n=0

an xn.

Then f is of class C∞ on ]−r, r[ and ∀n ∈ N : an =
f (n)(0)

n!
.

Proof. f coincides with the sum of an integer series on ]−r, r[. The result follows from theorem

??.



4.3.3. Sufficient condition for integer series development

Theorem 13.

Let f :]− r, r[→ R be a function of class C∞ in a neighborhood of 0. We assume that there

exists M > 0 such that

for alln ∈ N, and for all x ∈]− r, r[, | f (n)(x)|6 M . (4.3.1)

Then the series
+∞
∑

n=0

f (n)(0)
n!

xn is simply convergent in ]− r, r[ and we have

f (x) =
+∞
∑

n=0

f (n)(0)
n!

xn,∀x ∈]− r, r[.

Proof. By hypothesis, there exists M > 0 such that for any n ∈ N, and for any x ∈]− r, r[, we have

| f (n)(x)|6 M .

The Taylor expansion of f in the neighbourhood of 0 to order n gives,

f (x) =
n
∑

k=0

f (k)(0)
k!

x k +
f (n+1)(θ x)
(n+ 1)!

xn+1,with0< θ < 1.

To prove the theorem, it suffices to prove that lim
n→+∞

f (n+1)(θ x)
(n+ 1)!

xn+1 = 0. Indeed, x ∈] − r, r[

⇒ |x |< r ⇒ |θ x |< r ⇒ | f (n+1)(θ x)|< r, and so,
�

�

�

�

f (n+1)(θ x)
(n+ 1)!

xn+1

�

�

�

�

6
M

(n+ 1)!
rn+1.

Now, the series with general term un =
M

(n+ 1)!
rn+1 is convergent because,

lim
n→+∞

un+1

un
= lim

n→+∞

r
(n+ 1)

= 0< 1,

and as a result

lim
n→+∞

f (n+1)(θ x)
(n+ 1)!

xn+1 = 0,

which yields

f (x) =
+∞
∑

n=0

f (n)(0)
n!

xn.



Theorem 14.

Let f :]− r, r[→ R be a function of class C∞ in a neighborhood of 0. We assume that there

exists M > 0 such that

∀n ∈ N, and ∀x ∈]− r, r[, | f (n)(x)|6 M . (4.3.2)

Then the series
+∞
∑

n=0

f (n)(0)
n!

xn is simply convergent in ]− r, r[ and we have,

f (x) =
+∞
∑

n=0

f (n)(0)
n!

xn,∀x ∈]− r, r[.

Proof. By hypothesis, there exists M > 0 such that for all n ∈ N, and for all x ∈]− r, r[, we have

| f (n)(x)|6 M .

The Taylor development of f near 0 to order n gives

f (x) =
n
∑

k=0

f (k)(0)
k!

x k +
f (n+1)(θ x)
(n+ 1)!

xn+1,with 0< θ < 1.

To prove the theorem, it suffices to prove that lim
n→+∞

f (n+1)(θ x)
(n+ 1)!

xn+1 = 0.

In fact, x ∈]− r, r[⇒ |x |< r ⇒ |θ x |< r ⇒ | f (n+1)(θ x)|< r, and so,
�

�

�

�

f (n+1)(θ x)
(n+ 1)!

xn+1

�

�

�

�

6
M

(n+ 1)!
rn+1.

Or the series with general term un =
M

(n+ 1)!
rn+1 is convergent because

lim
n→+∞

un+1

un
= lim

n→+∞

r
(n+ 1)

= 0< 1,

and consequently

lim
n→+∞

f (n+1)(θ x)
(n+ 1)!

xn+1 = 0,

which gives

f (x) =
+∞
∑

n=0

f (n)(0)
n!

xn.

The condition (??) is not necessary, as shown in the following example



Example 5. Let f (x) =
+∞
∑

n=0

2n

n!
xn. We put an =

2n

n!
. We calculate R.

�

�

�

�

an+1

an

�

�

�

�

=

�

�

�

�

2n+1

(n+ 1)!
n!
2n

�

�

�

�

→
n→+∞

0⇒ R= +∞.

Then f is of class C∞ on R, and we have

an =
f (n)(0)

n!

So, f (n)(0) = ann!=
2n

n!
n!= 2n →

n→+∞
+∞. f (n)(0) is not bounded, so we conclude that the

derivatives of f are not bounded.

4.3.4. Necessary and sufficient condition for integer series develop-

ment

Theorem 15.

Let f be a function of class C∞ on ]− r, r[. f is developable as an integer series if and only

if the Mac-Laurin remainder
f (n+1)(θ x)
(n+ 1)!

xn+1, with 0< θ < 1 holds,

∀x ∈]− r, r[: lim
n→+∞

f (n+1)(θ x)
(n+ 1)!

xn+1 = 0

Example 6.

1. The exponential function: x 7→ f (x) = ex .

This function is infinitely differentiable in R, and we have

∀n ∈ N : f (n)(x) = ex .

The Mac-Laurin remainder is
e(0x)

(n+ 1)!
xn+1. We check as before (proof of Theorem ??)

that this limit tends to 0 when n tends to +∞, and this whatever x in R. Finally,

∀x ∈ R : ex = 1+
x
1!
+

x2

2!
+ · · ·=

+∞
∑

n=0

xn

n!
.

2. The hyperbolic functions.

The cosine-hyperbolic and sine-hyperbolic functions have the same radius of conver-



gence as the exponential function, in other words, R= +∞.

cosh x =
ex + e−x

2
= 1+

x2

2!
+

x4

4!
+ · · ·=

+∞
∑

n=0

x2n

(2n)!
,

sinh x =
ex − e−x

2
= x +

x3

3!
+

x5

5!
+ · · ·=

+∞
∑

n=0

x2n+1

(2n+ 1)!
.

3. The circular functions.

(a) The sine function: x 7→ f (x) = sin x . f ∈ C∞(R), and we have,

f (x) = sin x , f ′(x) = cos x , f ′′(x) = − sin x , f ′′′(x) = − cos x ,

which allows us to deduce that for all p ∈ N :

f (4p)(x) = sin x ⇒ f (4p)(0) = 0,

f (4p+1)(x) = cos x ⇒ f (4p+1)(0) = 1,

f (4p+2)(x) = − sin x ⇒ f (4p+2)(0) = 0,

f (4p+3)(x) = − cos x ⇒ f (4p+3)(0) = −1.

Derivatives of any order are bounded above(upper bounded) by 1, and this

whatever x in R. We then have,

sin x =
+∞
∑

n=0

(−1)n
x2n+1

(2n+ 1)!
, and R= +∞.

(b) The cosine function: x 7→ f (x) = cos x .

f (x) = cos x = (sin x)′ =
+∞
∑

n=0

(−1)n
x2n

(2n)!
, and R= +∞.

4. The binomial series (Binomial family)

Considérons la fonction

x 7→ f (x) = y = (1+ x)α, α ∈ R.

Its domain of definition is ]−1,+∞[. We have a simple relation between the function

and its derivative

y = (1+ x)α⇒ y ′ = α(1+ x)α−1,

hence the differential equation,

y ′(1+ x) = αy. (4.3.3)



All the solutions to this equation are of the form y = c(1+ x)α, where c is an arbitrary

constant. Now let’s see if there is a solution f that can be developed into an integer

series in the neighbourhood of 0.

Suppose that f (x) =
∑

n>0

an xn is a solution of (??). For such a function to exist it is

necessary to have the relations,

(1+ x) f ′(x)−α f (x) = 0⇔ (1+ x)
∑

n>1

nan xn−1 −α
∑

n>0

an xn =
∑

n>0

[(n+ 1)an+1 − (α− n)an] xn

= 0,

then we deduce that, for all n ∈ N,

(n+ 1)an+1 − (α− n)an = 0,

and therefore, for all n ∈ N,

an+1 =
α− n
n+ 1

an,

because an integer series is a zero series if and only if all its coefficients are zero,










































a1 = αa0,

a2 =
α− 1

2
a1,

...

an−1 =
α− n+ 2

n− 1
an−2,

an =
α− n+ 1

n
an−1,

which finally gives

an =
α(α− 1)(α− 2) · · · (α− n+ 1)

n!
a0.

Let the series
∑

n>0

α(α− 1)(α− 2) · · · (α− n+ 1)
n!

a0 xn, the radius of convergence R is

given by the relation

1
R
= lim

n→+∞

�

�

�

�

α(α− 1)(α− 2) · · · (α− n)
(n+ 1)!

n!
α(α− 1)(α− 2) · · · (α− n+ 1)

�

�

�

�

= lim
n→+∞

�

�

�

α− n
n+ 1

�

�

�= 1,

by construction, the series f (x) =
∑

n>0

α(α− 1)(α− 2) · · · (α− n+ 1)
n!

a0 xn is a solution

of the differential equation (??), so it is of the form f (x) = c(1+ x)α.



Since c = a0 = f (0), we can deduce that for all x ∈ ]−1,1[ :

(1+ x)α = 1+
∑

n>1

α(α− 1)(α− 2) . . . (α− n+ 1)
n!

xn, R= 1.

This series is known as the binomial series. For example
p

1+ x = 1+
∑

n>1

(−1)n−1 1 · 1.3 · 5 . . . (2n− 3)
2nn!

xn = 1+
1
2

x −
1
8

x2 + · · ·

1
p

1+ x
= 1+

∑

n>1

(−1)n
1.3.5 . . . (2n− 1)

2nn!
xn = 1−

1
2

x +
3
8

x2 − · · ·

5. The function: x 7→
1

1− x
.

We note on the one hand that for all |x |< 1, lim
n→+∞

|x |n = 0 and on the other hand

1
1− x

= 1+ x + x2 + · · ·+ xn +
xn+1

1− x
for all |x |< 1.

hence,

1
1− x

=
∑

n>0

xn with R= 1 and
1

1+ x
=
∑

n>0

(−1)n xn, R= 1.

6. La fonction: x 7→ ln(1+ x).

Some integer series developments can be obtained using the theorems on the integra-

tion and derivation of integer series, so from the series development of the function
1

1+ x
we deduce by integration that

ln(1+ x) =
∑

n>0

(−1)n

n+ 1
xn+1, R= 1.

Similarly, we have

ln(1− x) = −
∑

n>0

1
n+ 1

xn+1, R= 1.

So,

∀x ∈ [−1, 1] : ln(1− x) = −
∑

n>1

xn

n
,

(arcsin x)′ =
1

p
1− x2

= 1+
∑

n>1

1 · 3 · 5 · · · (2n− 1)
2nn!

x2n = 1+
1
2

x2 +
3
8

x4 + · · ·

Knowing that arcsin0= 0, we obtain

arcsin x = x +
∑

n>1

1 · 3 · 5 · · · (2n− 1)
2 · 4 · · · · · (2n)(2n+ 1)

x2n+1 = x +
1
6

x3 +
3
40

x5 + · · ·

We use the same process to develop new functions x 7→ arccos x , x 7→ arg sinh x ,

x 7→ arctan x , x 7→ arg th x .



Example 7. Determine the integer series expansions in the neighbourhood of 0 of the

functions defined by,

f (x) =
ex

1− x
, g(x) =

5
x4 − 13x2 + 36

.

a) We have f (x) = f1(x)× f2(x) with f1 : x 7→ ex , f2 : x 7→
1

1− x
.

The function f1 is developable as an integer series on R, f2 is developable as an integer

series on ]− 1,1[. We deduce from this,

∀x ∈]− 1,1[: f (x) =

�

+∞
∑

n=0

xn

�

×

�

+∞
∑

n=0

xn

n!

�

=
+∞
∑

n=0

an xn with an =
n
∑

p=0

1
p!

.

hence,

f (x) = a0 + a1 x + a2 x2 + · · ·

= 1+ 2x +
�

1+
1
1!
+

1
2!

�

x2 +
�

1+
1
1!
+

1
2!
+

1
3!

�

x3 + · · ·+
n
∑

p=0

1
p!

xn + · · ·

b. We gave x4 − 13x2 + 36= (x2 − 9)(x2 − 4).

The function g is therefore not defined at the points −3,−2,2,3. It follows that the

largest interval with centre 0 on which g can be developed as an integer series is the

interval ]− 2, 2[. Let x be a point in this interval. We have

5
(x2 − 9)(x2 − 4)

=
�

1
(x2 − 9)

−
1

(x2 − 4)

�

= −
1

9 · 1− x2

9 +
1
4 −

x2

4

.

For all y such that |y|< 1, we have
1

1− y
=
+∞
∑

n=0

yn. We have

�

�

�

�

x2

9

�

�

�

�

< 1 and

�

�

�

�

x2

4

�

�

�

�

< 1.

As a result

∀x ∈]− 2,2[, g(x) =
+∞
∑

n=0

x
�

2n
1

4n+ 1
−

1
9n+ 1

�

.

4.3.5. Solving differential equations in the form of an integer series

Example 8. In each of the following cases, find the functions that are solutions of the

differential equations and that can be developed into an integer series

1. Consider the differential equation



x2(1− x)y ′′ − x(1+ x)y ′ + y = 0 (4.3.4)

If
∑

n>0

an xn is the integer series development of a function f which is a solution to the

differential equation, we have


















y ′(x) =
∑

n>1

nan xn−1,

y ′′(x) =
∑

n>2

n(n− 1)an xn−2.

Substituting y ′ and y ′′ into (??), we obtain,

(??)⇔ x2(1− x)
∑

n>2

n(n− 1)an xn−2 − x(1+ x)
∑

n>1

nan xn−1 +
∑

n>0

an xn = 0

⇔ 2a2 x2 +
∑

n>3

(n− 1) [nan − (n− 2)an−1] xn − a1 x −
∑

n>2

[nan + (n+ 1)an−1] xn +
∑

n>0

an xn

= 0

⇔ a0 + a2 x2 − a1 x2 +
∑

n>3

[(n(n− 1)− n+ 1)an − ((n− 1)(n− 2) + (n+ 1))an−1] xn = 0

⇔



















a0 = 0

a2 − a1 = 0

(n− 1)2an − (n− 1)2an−1 = 0,∀n > 3.

⇔



















a0 = 0,

a2 = a1,

an = an−1,∀n > 3.

On the other hand, by making x zero in the expression of f , we have f (0) = a0 = 0. So

the series
∑

n>1

an xn has radius of convergence R = 1. Consequently, any solution of (??)

that can be developed as an integer series is proportional to the particular solution,

f1(x) =
∑

n>1

xn =
x

1− x
.

2. Consider the equation

x2 y ′′ + x(1+ x)y ′ − y = 0 (4.3.5)



If
∑

n>0

an xn is the integer series expansion of a function f which is the solution to the

differential equation (??), we have

(??)⇔ x2
∑

n>2

n(n− 1)an xn−2 + x(1+ x)
∑

n>1

nan xn−1 −
∑

n>0

an xn = 0

⇔
∑

n>2

n(n− 1)an xn +
∑

n>1

nan xn +
∑

n>1

nan xn+1 −
∑

n>0

an xn = 0

⇔
∑

n>2

[n(n− 1)an + nan + (n− 1)an−1 − an] xn + a1 x − a0 − a1 x = 0

⇔ −a0 +
∑

n>2

(n− 1) [(n+ 1)an + an−1] xn = 0

⇔







a0 = 0

(n− 1) [(n+ 1)an + an−1] ,∀n > 2.

⇔







a0 = 0

an = −
1

(n+ 1)
an−1,∀n > 2

or else, a0 = 0 and for all n ∈ N∗

an+1 = −
1

(n+ 2)
an

=
−1
(n+ 2)

×
−1
(n+ 1)

an−1

=
−1
(n+ 2)

×
−1
(n+ 1)

×
−1
n

an−2

= 2
(−1)n

(n+ 2)!
a1.

In addition

lim
n→+∞

�

�

�

�

an+1

an

�

�

�

�

= 0,

hence,

R= +∞,

so the solutions of (??) that can be developed as an integer series are the functions

defined on R by

f (x) = a0 + a1 x + 2a1

∑

n>2

(−1)n

(n+ 2)!
xn = 2a1

∑

n>0

(−1)n

(n+ 2)!
xn+1,



and as a result we have

x f (x) = 2a1

∑

n>0

(−1)n+2

(n+ 2)!
xn+2 = 2a1

�

e−x + x − 1
�

,

then any function which can be developed into an integer series and is a solution of

(??) is therefore proportional to the particular solution f0 defined by,

f (0) = 0 and ∀x ∈ R∗ : f (x) =
e−x + x − 1

x
.

4.3.6. Definitions of functions of complex variable in integer series

The complex exponential

We have seen that the only function which is equal to its derivative (over an interval) is the

exponential function, and this is why it is used to solve differential equations of order 2. We have

seen that the radius of convergence of the real integer series
∑

n>0

xn

n!
is +∞ and that for all x ∈ R,

the radius of convergence of the real integer series
∑

n>0

xn

n!
is +∞

ex =
∑

n>0

xn

n!
.

We generalize this expression to all z ∈ C and we set ez =
∑

n>0

zn

n!
.

Propriété.

1. For all z1, z2 ∈ C : ez1 ez2 = ez1+z2 .

2. For all x ∈ R : cos x =
∑

n>0

(−1)n

(2n)!
x2n, sin x =

∑

n>0

(−1)n

(2n+ 1)!
x2n+1.

3. For all x ∈ R : ei x = cos x + i sin x .

4. For all z ∈ C, For all n ∈ N∗ : (ez)n = enz.

Proof.



1. For all z1, z2 ∈ C we have

ez1 ez2 =

�

∑

n>0

zn
1

n!

�

×

�

∑

n>0

zn
2

n!

�

∑

n>0

cn =
∑

n>0

cn where cn =
n
∑

k=0

zk
1zn−k

2

k!(n− k)!
.

(
∑

n>0

cn is the product series of
∑

n>0

zn
1

n!
×
∑

n>0

zn
2

n!
which are absolutely convergent). Therefore

ez1 ez2 =
∑

n>0

�

1
n!

n
∑

k=0

zk
1zn−k

2 n!

k!(n− k)!

�

=
∑

n>0

n
∑

k=0

zk
1zn−k

2 n!

n!k!(n− k)!

=
∑

n>0

1
n!
(z1 + z2)

n = ez1+z2 .

2. According to the Taylor-Lagrange formula for the neighbourhood of 0 of order 2n+ 1:

cos x =
n
∑

k=0

�

cos(2k)(0)
x2k

(2k)!
+ cos(2k+1)(0)

x2k+1

(2k+ 1)!

�

+ cos(2n+2)(ck)
x2k+2

(2n+ 2)!
.

or for all n ∈ N :

cos(2k)(0) = (−1)n cos x0= (−1)n et cos(2k+1)(0) = (−1)n+1 sin0= 0,

so,

lim
n→+∞

�

�

�

�

�

cos x −
n
∑

k=0

(−1)k
x2k

(2k)!

�

�

�

�

�

6 lim
n→+∞

|x |2n+2

(2n+ 2)!
= 0.

The same procedure for sin x .

3.

ei x =
∑

n>0

(i x)n

n!
=
∑

p>0

(i x)2p

(2p)!
+
∑

p>0

(i x)2p+1

(2p+ 1)!
=
∑

p>0

(−1)p x2p

(2p)!
+ i
∑

p>0

(−1)p x2p+1

(2p+ 1)!

= cos x + i sin x ,

because (i)2p = (−1)n, (i)2p+1 = i(−1)n.

Remark 2. The function z 7→ ez is periodic with period 2πi i.e.,

ez+2πi = eze2πi = ez (cos2πi + i sin 2πi) = ez.

Hyperbolic functions with complex values

For all z ∈ C:



cosh z =
ez + e−z

2
=
∑

n>0

z2n

(2n)!
, sinh z =

∑

n>0

z2n+1

(2n+ 1)!
, th z =

ez − e−z

ez + e−z
.

All these integer series therefore have an infinite radius of convergence.

The functions z 7→ cos z, z 7→ sin z, z ∈ C

eiz = cos z + i sin z 7→ cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
, tan z = i

1− e2iz

1+ e2iz
,

sin iz = i sinh z, cos iz = cosh z, tan iz = i th z.

Definition of the function z 7→ ln z

Theorem 16. Let Z be a non-zero complex number, for any complex numberz :

ez = Z ⇔∃k ∈ Z/z = ln(|Z |) + i(arg(Z) + 2πk).

In particular, the function exp : C→ C∗, z 7→ ez is surjective.

Proof. Let Z ∈ C, z ∈ C, put z = x + i y where x and y are two real numbers

ez = Z ⇔ ex ei y = Z = |Z |ei arg(Z)

⇔







ex = |Z |,

∃k ∈ Z : y = arg(Z) + 2πk,

⇔∃k ∈ Z : z = ln(|Z |) + i(arg(Z) + 2πk).

Example 9. Find ln(−3) and solve the equation cos z = 2. in C.

− 3= 3eiπ = 3(cosπ+ i sinπ)⇒ ln(−3) = ln 3+ i(π+ 2πk)

cos z = 2

⇔
eiz + e−iz

2
= 2⇔ e2iz + 1− 4eiz = 0

⇔ eiz1 = 2−
p

3∨ eiz2 = 2+
p

3

⇔ iz1 = ln(2−
p

3) + i2πk ∨ iz2 = ln(2+
p

3) + i2πk

⇔ z1 = −i ln(2−
p

3) + 2πk ∨ z2 = −i ln(2+
p

3) + 2πk, k ∈ Z.


