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5.1. Trigonometric series

Definition 1. A series of functions of variable x with general term un : R→ C is called a

trigonometric series if of the form

u0(x) = f raca02, un(x) = an cos nωx + bn sin nωx , for all n > 1,

where (an)n , (bn)n are two sequences of complex numbers, ω> 0.

Remark 1. Let us suppose that the series
a0

2
+
∑

n>1

[an cos nωx + bn sin nωx] converges for

a certain x ∈ R and assume that

f (x) =
a0

2
+
∑

n>1

[an cos nωx + bn sin nωx] (5.1.1)

We have for all n ∈ N and k ∈ Z :

cos
�

nω
�

x +
2πk
ω

��

= cos(nωx + 2πkn) = cos nωx ,

sin
�

nω
�

x +
2πk
ω

��

= sin(nωx + 2πkn) = sin nωx .

Then the series converges at any point of the form x +
2πk
ω

, k ∈ Z.

• If the series (5.1.1) converges inR, we will have f (x) = f
�

x +
2πk
ω

�

and consequently

the function f is periodic with period T =
2π
ω

. In conclusion, the following properties

are equivalent:

1. The trigonometric series (5.1.1) converges in R.



2. The trigonometric series (5.1.1) converges in
�

0,
2π
ω

�

.

3. The trigonometric series (5.1.1) converges in
�

α,α+
2π
ω

�

, ∀α ∈ R.

The results obtained for series of functions obviously apply to trigonometric series, and in particular

we have

Proposition 1. If the series
∑

n>0

|an|,
∑

n>0

|bn| are convergent, then the trigonometric series

(5.1.1) is normally convergent on R, so it is absolutely convergent on R.

Proposition 2. If the numerical series (an)n, (bn)n are decreasing and tend to 0, then the

trigonometric series (5.1.1) is convergent for x 6=
2πk
ω

where k ∈ Z.

5.1.1. Complex representation of a trigonometric series

Proposition 3. Une série de fonctions de A series of functions of variable x is a trigonometric

series if and only if its general term un : R→ C is of the form,

u0(x) = c0, un(x) = cneinωx + c−ne−inωx , pour tout n > 1,

where (cn)n , (c−n)n are two sequences of complex numbers.

Lemma 5.1.1. Let f : R→ R, a periodic function of period T > 0 and integrable in the interval

[0, T]. Then,

∀α ∈ R :

∫ α+T

α

f (t)d t =

∫ T

0

f (t)d t.

5.1.2. Calculation of trigonometric series coefficients

Real case

Let us put in the conditions of uniform convergence of the triginometric series (5.1.1), the following

f (x) =
a0

2
+
∑

k>1

[ak cos kωx + bk sin kωx] .



Then,

f (x) cos nωx =
a0

2
cos nωx +

∑

k>1

[ak cos kωx cos nωx + bk sin kωx cos nωx] ,

f (x) sin nωx =
a0

2
sin nωx +

∑

k>1

[ak cos kωx sin nωx + bk sin kωx sin nωx] ,

so,

•

∫
2π
ω

0

f (x) cos nωxd x =
a0

2

∫
2π
ω

0

cos nωxd x+

∫
2π
ω

0

∑

k>1

(ak cos kωx cos nωx) d x+

∫
2π
ω

0

∑

k>1

(bk sin kωx cos nωx) d x .

The trigonometric series (5.1.1) is uniformly convergent, so we get

•

∫
2π
ω

0

f (x) cos nωxd x =
a0

2

∫
2π
ω

0

cos nωxd x+
∑

k>1

ak

∫
2π
ω

0

cos kωx cos nωxd x+
∑

k>1

bk

∫
2π
ω

0

sin kωx cos nωxd x .

cos kωx cos nωxd x =
1
2
[cos(k+ n)ωx + cos(k− n)ωx]

cos nωx sin kωx =
1
2
[sin(k+ n)ωx + sin(k− n)ωx]

sin kωx sin nωxd x =
1
2
[cos(k+ n)ωx − cos(k− n)ωx]

and
∫

2π
ω

0

f (x) sin nωx d x =
a0

2

∫
2π
ω

0

sin nωx d x+
∑

k>1

ak

∫
2π
ω

0

cos kωx sin nωx d x+
∑

k>1

bk

∫
2π
ω

0

sin kωx sin nωx d x ,

or we have,

∫
2π
ω

0

cos kωx cos nωx d x =

∫
2π
ω

0

sin kωx sin nωx d x =











0 si n 6= k,

π

ω
si n= k,

∫
2π
ω

0

cos kωx sin nωx d x = 0.

Then we deduce the coefficients of the series by the following relations


















an =
ω

π

∫
2π
ω

0

f (x) cos nωx d x ,

bn =
ω

π

∫
2π
ω

0

f (x) sin nωx d x .

By lemma 5.1.1, the coefficients can be written


















an =
ω

π

∫
2π
ω

0

f (x) cos nωx d x =
ω

π

∫ α+ 2π
ω

α

f (x) cos nωx d x , ∀α ∈ R,

bn =
ω

π

∫
2π
ω

0

f (x) sin nωx d x =
ω

α

∫ α+ 2π
ω

α

f (x) sin nωx d x , ∀α ∈ R.



In particular, in the case of 2π-periodic functions (if ω= 1 :)














an =
1
π

∫ 2π

0

f (x) cos nx d x =
1
π

∫ π

−π
f (x) cos nx d x ,

bn =
1
π

∫ 2π

0

f (x) sin nx d x =
1
π

∫ π

−π
f (x) sin nx d x ,

these expressions are valid even for n= 0.

Complex case

In this case we have f (x) =
+∞
∑

k=−∞

Ckeikωx .

∫
2π
ω

0

f (x)e−inωx d x =
+∞
∑

k=−∞

Ck

∫
2π
ω

0

ei(k−n)ωx d x ,

or
∫

2π
ω

0

eiω(k−n)x d x =











0 si n 6= k,

2π
ω

si n= k.

Then the coefficients are given by,

cn =
ω

2π

∫
2π
ω

0

f (x)e−inωx d x =
ω

2π

∫ α+ 2π
ω

α

f (x)e−inωx d x , for all α ∈ R and n ∈ Z.

5.1.3. Development in trigonometric series

So far we have started with a trigonometric series and studied the function defined by the sum of

this series. In this part we start with a function f : R→ C and we have two questions

1. Is there a trigonometric series that converges everywhere on R and whose sum is equal to f ?

2. If the answer to the question is yes, is this series unique?

Definition 2 ( Fourier series of a periodic function).

Let f : R→ C be a 2π-periodic and absolutely integrable function on [0,2π]. We call the

Fourier series of f the trigonometric series
a0

2
+
∑

n>1

[an cos nx + bn sin nx] whose coefficients

are given by the formulas

an( f ) =
1
π

∫ 2π

0

f (x) cos nx d x , bn( f ) =
1
π

∫ 2π

0

f (x) sin nx d x , a0 =
1

2π

∫ 2π

0

f (x) d x ,



or else
+∞
∑

n=−∞

cneinx where,

cn( f ) =
1

2π

∫ 2π

0

f (x)e−inx d x , for all n ∈ Z.

The cn( f ) are called the Fourier coefficients of f . We will denote S∞( f ) the Fourier series of

f .

Remark 2. Let f : R→ C be a 2π-periodic and absolutely integrable function on [0, 2π].

The sequence (cn( f ))n∈Z is bounded. Indeed, for all n ∈ Z, we have

|cn( f )|6
1

2π

∫ 2π

0

�

�

�

�

�

∫ 2π

0

f (x)e−inx d x

�

�

�

�

�

6
1

2π

∫ 2π

0

| f (x)|d x .

The same result is valid for the sequences (an) and (bn).

Remark 3. Let f : R → C be a 2π-periodic and absolutely integrable function on any

bounded interval [a, b] of R. If f is developable in Fourier series, then

1. If f is even,

an( f ) =
1
π

∫ 2π

0

f (x) cos(nx)d x =
2
π

∫ π

0

f (x) cos(nx)d x ,

because the function x 7→ f (x) cos(nx) is even, for all n ∈ N.

bn( f ) = 0,

because the function x 7→ f (x) sin(nx) is odd, for all n ∈ N.

2. If f is odd

an( f ) = 0,

because the function x 7→ f (x) cos(nx) is odd, for all n ∈ N.

bn( f ) =
1
π

∫ 2π

0

f (x) sin(nx)d x =
2
π

∫ π

0

f (x) sin(nx)d x ,

because the function x 7→ f (x) sin(nx) is even, for all n ∈ N.



Theorem 1 (Dirichlet). (Necessary condition)

Let f : R→ C be a periodic 2π-function satisfying the following Dirichlet conditions

1. The discontinuities of f (if they exist) are of the first kind and are of finite number in

any finite interval,

2. f has a right derivative and a left derivative at every point.

Then the Fourier series associated with f is convergent and we have,

a0

2
+
∑

n>1

[an cos nx + bn sin nx] =











f (x) if f is continuous at x ,

f (x + 0) + f (x − 0)
2

if f is discontinuous at x .

In addition, convergence is uniform on any interval where the function f is continuous.

The notations f (x + 0), f (x − 0) represent respectively the right and left limits of f at the point

x .

Theorem 2 (Jordan).

Let f : R→ C be a 2π-periodic function satisfying the following conditions

1. There exists M > 0 such that | f (x)|6 M .

2. We can divide the interval [α,α+2π] into subintervals [α1,α2], [α2,α3], . . . [αn−1,αn],

with α = α1 and αn = α + 2π such that the restriction f |α j ,α j+1
is monotone and

continuous.

Then the Fourier series associated with f is convergent and we have,

a0

2
+
∑

n>1

[an cos nx + bn sin nx] =











f (x) if f is continuous at x ,

f (x + 0) + f (x − 0)
2

if f is discontinuous at x .

Moreover, convergence is uniform on any interval where f is continuous.

Example 1.



1. Let f : R→ R be the 2π-periodic function defined by

f (x) = |x |, for all x ∈ [−π,π].

Xe have,

(a) | f (x)|6 π, ∀x ∈ [−π,π].

(b) f |[−π,0] is decreasing, continuous and f |[0,π] is increasing, continuous.

f satisfies Jordan’s conditions, and can therefore be developed into a Fourier series.

Since f is even

• bn( f ) = 0,

• a0( f ) =
1
π

∫ π

−π
x cos 0d x =

2
π

∫ π

0

d x = π,

•

an( f ) =
2
π

∫ π

0

x cos nxd x =
2
π

h x
n

sin nx
iπ

0
−

2
π
×

1
n

∫ π

0

sin nxd x

= 0−
2

nπ

h

−
cos nx

n

iπ

0
=

2
n2π
(1− (−1)n)

=











0 if n is even,

−
4

n2π
if n is odd.

The Fourier series of f is therefore

S∞( f ) =
π

2
−

4
π

∑

n>1

1
(2n+ 1)2

cos(2n+ 1)x .

We have uniform convergence since f is continuous.

Finally, note that f (0) = 0 translates as

π

2
−

4
π

∑

n>1

1
(2n+ 1)2

= 0⇔
∑

n>1

1
(2n+ 1)2

=
π2

8
.

On the other hand, since
∑

n>1

1
(2n)2

=
1
4

∑

n>1

1
n2

, we have,

∑

n>0

1
(2n+ 1)2

=
∑

n>1

1
n2
−
∑

n>1

1
(2n)2

=
3
4

∑

n>1

1
n2

,

it follows that
∑

n>1

1
n2
=

4
3

∑

n>0

1
(2n+ 1)2

=
π2

6
.



2. Let f : R→ R be the 2π-periodic function defined by f (kπ) = 0, for all k ∈ Z and

f (x) = sgn(x) =











1 if x ∈]0,π],

−1 if x ∈]−π, 0[.

Since f is odd, we will have

• an( f ) = 0, and for n > 1,

• bn( f ) =
2
π

∫ π

0

sin nxd x =











0 if n is even,

4
nπ

if n is odd.

this function verifies the hypotheses of Dirichlet’s theorem for all x ∈ R). The Fourier

series of f is therefore,

S∞( f ) =
4
π

∑

n>0

1
(2n+ 1)

sin ((2n+ 1)x) .

In particular, for x =
π

2
, we obtain,

S∞( f ) =
4
π

∑

n>0

(−1)n

(2n+ 1)
= 1⇔

∑

n>0

(−1)n

(2n+ 1)
= 1−

1
3
+

1
5
−

1
7
+ · · ·=

π

4
.

For x = ±π, we have,

S∞( f ) = 0=
1
2
( f (x + 0)− f (x − 0)) .
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