Fourier series

Chapter

5

5.1. Trigonometric series

Definition 1. A series of functions of variable *x* with general term $u_n : \mathbb{R} \to \mathbb{C}$ is called a trigonometric series if of the form

$$
u_0(x) = frac{a_0}{2}, u_n(x) = a_n \cos n\omega x + b_n \sin n\omega x, \text{ for all } n \geq 1,
$$

where $(a_n)_n$, $(b_n)_n$ are two sequences of complex numbers, $\omega > 0$.

Remark 1. Let us suppose that the series $\frac{a_0}{a_0}$ $\frac{a_0}{2} + \sum_{n \geq 1}$ *n*>1 $[a_n \cos n\omega x + b_n \sin n\omega x]$ converges for a certain $x \in \mathbb{R}$ and assume that

$$
f(x) = \frac{a_0}{2} + \sum_{n \ge 1} [a_n \cos n\omega x + b_n \sin n\omega x]
$$
 (5.1.1)

We have for all $n \in \mathbb{N}$ and $k \in \mathbb{Z}$:

$$
\cos\left(n\omega\left(x+\frac{2\pi k}{\omega}\right)\right) = \cos(n\omega x + 2\pi k n) = \cos n\omega x,
$$

$$
\sin\left(n\omega\left(x+\frac{2\pi k}{\omega}\right)\right) = \sin(n\omega x + 2\pi k n) = \sin n\omega x.
$$

Then the series converges at any point of the form *x* + 2*πk ω* , *k* ∈ Z.

- If the series [\(5.1.1\)](#page-0-0) converges in \mathbb{R} , we will have $f(x) = f(x)$ *x* + 2*πk ω* λ and consequently the function f is periodic with period $T =$ 2*π ω* . In conclusion, the following properties are equivalent:
- 1. The trigonometric series [\(5.1.1\)](#page-0-0) converges in R.
- 2. The trigonometric series [\(5.1.1\)](#page-0-0) converges in \lceil 0, 2*π ω* 1
- 3. The trigonometric series [\(5.1.1\)](#page-0-0) converges in $\int \alpha, \alpha +$ 2*π ω* $\Big]$, $\forall \alpha \in \mathbb{R}$.

The results obtained for series of functions obviously apply to trigonometric series, and in particular we have

.

Proposition 1. If the series \sum $\overline{n\geqslant 0}$ $|a_n|, \sum$ $\overline{n\geqslant 0}$ $|b_n|$ are convergent, then the trigonometric series $(5.1.1)$ is normally convergent on \mathbb{R} , so it is absolutely convergent on \mathbb{R} .

Proposition 2. If the numerical series $(a_n)_n$, $(b_n)_n$ are decreasing and tend to 0, then the trigonometric series [\(5.1.1\)](#page-0-0) is convergent for $x \neq \frac{2\pi k}{\sqrt{n}}$ *ω* where $k \in \mathbb{Z}$.

5.1.1. Complex representation of a trigonometric series

Proposition 3. Une série de fonctions de A series of functions of variable *x* is a trigonometric series if and only if its general term $u_n: \mathbb{R} \to \mathbb{C}$ is of the form,

$$
u_0(x) = c_0, u_n(x) = c_n e^{in\omega x} + c_{-n} e^{-in\omega x},
$$
 pour tout $n \ge 1$,

where (*cⁿ*)*n* ,(*c*[−]*ⁿ*)*n* are two sequences of complex numbers.

Lemma 5.1.1. Let $f : \mathbb{R} \to \mathbb{R}$, a periodic function of period $T > 0$ and integrable in the interval [0, *T*]. Then,

$$
\forall \alpha \in \mathbb{R} : \int_{\alpha}^{\alpha+T} f(t)dt = \int_{0}^{T} f(t)dt.
$$

5.1.2. Calculation of trigonometric series coefficients

Real case

Let us put in the conditions of uniform convergence of the triginometric series [\(5.1.1\)](#page-0-0), the following

$$
f(x) = \frac{a_0}{2} + \sum_{k \ge 1} [a_k \cos k\omega x + b_k \sin k\omega x].
$$

Then,

$$
f(x)\cos n\omega x = \frac{a_0}{2}\cos n\omega x + \sum_{k\geq 1} [a_k \cos k\omega x \cos n\omega x + b_k \sin k\omega x \cos n\omega x],
$$

$$
f(x)\sin n\omega x = \frac{a_0}{2}\sin n\omega x + \sum_{k\geq 1} [a_k \cos k\omega x \sin n\omega x + b_k \sin k\omega x \sin n\omega x],
$$

so,

•
$$
\int_0^{\frac{2\pi}{\omega}} f(x) \cos n\omega x dx = \frac{a_0}{2} \int_0^{\frac{2\pi}{\omega}} \cos n\omega x dx + \int_0^{\frac{2\pi}{\omega}} \sum_{k \ge 1} (a_k \cos k\omega x \cos n\omega x) dx + \int_0^{\frac{2\pi}{\omega}} \sum_{k \ge 1} (b_k \sin k\omega x \cos n\omega x) dx
$$
The trigonometric series (5.1.1) is uniformly convergent, so we get

$$
\int_{0}^{\frac{2\pi}{\omega}} f(x) \cos n\omega x dx = \frac{a_0}{2} \int_{0}^{\frac{2\pi}{\omega}} \cos n\omega x dx + \sum_{k \ge 1} a_k \int_{0}^{\frac{2\pi}{\omega}} \cos k\omega x \cos n\omega x dx + \sum_{k \ge 1} b_k \int_{0}^{\frac{2\pi}{\omega}} \sin k\omega x \cos n\omega x dx
$$

$$
\cos k\omega x \cos n\omega x dx = \frac{1}{2} [\cos((k+n)\omega x + \cos((k-n)\omega x)]
$$

$$
\cos n\omega x \sin k\omega x = \frac{1}{2} [\sin((k+n)\omega x + \sin((k-n)\omega x)]
$$

$$
\sin k\omega x \sin n\omega x dx = \frac{1}{2} [\cos((k+n)\omega x - \cos((k-n)\omega x)]
$$

and

$$
\int_0^{\frac{2\pi}{\omega}} f(x) \sin n\omega x \, dx = \frac{a_0}{2} \int_0^{\frac{2\pi}{\omega}} \sin n\omega x \, dx + \sum_{k \ge 1} a_k \int_0^{\frac{2\pi}{\omega}} \cos k\omega x \sin n\omega x \, dx + \sum_{k \ge 1} b_k \int_0^{\frac{2\pi}{\omega}} \sin k\omega x \sin n\omega x \, dx,
$$

or we have,

$$
\int_0^{\frac{2\pi}{\omega}} \cos k\omega x \cos n\omega x \, dx = \int_0^{\frac{2\pi}{\omega}} \sin k\omega x \sin n\omega x \, dx = \begin{cases} 0 & \text{si } n \neq k, \\ \frac{\pi}{\omega} & \text{si } n = k, \end{cases}
$$

$$
\int_0^{\frac{2\pi}{\omega}} \cos k\omega x \sin n\omega x \, dx = 0.
$$

Then we deduce the coefficients of the series by the following relations

$$
\begin{cases}\n a_n = \frac{\omega}{\pi} \int_{0}^{\frac{2\pi}{\omega}} f(x) \cos n\omega x \, dx, \\
 b_n = \frac{\omega}{\pi} \int_{0}^{\frac{2\pi}{\omega}} f(x) \sin n\omega x \, dx.\n\end{cases}
$$

By lemma [5.1.1,](#page-1-0) the coefficients can be written

$$
\begin{cases}\na_n = \frac{\omega}{\pi} \int_0^{\frac{2\pi}{\omega}} f(x) \cos n\omega x \, dx = \frac{\omega}{\pi} \int_\alpha^{\alpha + \frac{2\pi}{\omega}} f(x) \cos n\omega x \, dx, \, \forall \alpha \in \mathbb{R}, \\
b_n = \frac{\omega}{\pi} \int_0^{\frac{2\pi}{\omega}} f(x) \sin n\omega x \, dx = \frac{\omega}{\alpha} \int_\alpha^{\alpha + \frac{2\pi}{\omega}} f(x) \sin n\omega x \, dx, \, \forall \alpha \in \mathbb{R}.\n\end{cases}
$$

In particular, in the case of $2π$ -periodic functions (if $ω = 1$:)

$$
\begin{cases}\na_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, \\
b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx,\n\end{cases}
$$

these expressions are valid even for $n = 0$.

Complex case

In this case we have
$$
f(x) = \sum_{k=-\infty}^{+\infty} C_k e^{ik\omega x}
$$
.
\n
$$
\int_0^{\frac{2\pi}{\omega}} f(x) e^{-in\omega x} dx = \sum_{k=-\infty}^{+\infty} C_k \int_0^{\frac{2\pi}{\omega}} e^{i(k-n)\omega x} dx,
$$
\nor

$$
\int_0^{\frac{2\pi}{\omega}} e^{i\omega(k-n)x} dx = \begin{cases} 0 & \text{si } n \neq k, \\ \frac{2\pi}{\omega} & \text{si } n = k. \end{cases}
$$

Then the coefficients are given by,

$$
c_n = \frac{\omega}{2\pi} \int_0^{\frac{2\pi}{\omega}} f(x) e^{-in\omega x} dx = \frac{\omega}{2\pi} \int_\alpha^{\alpha + \frac{2\pi}{\omega}} f(x) e^{-in\omega x} dx, \text{ for all } \alpha \in \mathbb{R} \text{ and } n \in \mathbb{Z}.
$$

5.1.3. Development in trigonometric series

So far we have started with a trigonometric series and studied the function defined by the sum of this series. In this part we start with a function $f : \mathbb{R} \to \mathbb{C}$ and we have two questions

- 1. Is there a trigonometric series that converges everywhere on $\mathbb R$ and whose sum is equal to f ?
- 2. If the answer to the question is yes, is this series unique?

Definition 2 (Fourier series of a periodic function)**.**

Let $f : \mathbb{R} \to \mathbb{C}$ be a 2π -periodic and absolutely integrable function on [0, 2π]. We call the Fourier series of f the trigonometric series $\frac{a_0}{2}$ $\frac{1}{2} + \sum_{n \ge 1}$ *n*>1 $[a_n \cos nx + b_n \sin nx]$ whose coefficients are given by the formulas

$$
a_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx, \quad b_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx, \quad a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) \, dx,
$$

or else \sum $+\infty$ *n*=−∞ $c_n e^{inx}$ where, $c_n(f) = \frac{1}{2\pi}$ $\int^{2\pi}$ 0 $f(x)e^{-inx}dx$, for all $n \in \mathbb{Z}$. The $c_n(f)$ are called the Fourier coefficients of f . We will denote $S_\infty(f)$ the Fourier series of *f* .

Remark 2. Let $f : \mathbb{R} \to \mathbb{C}$ be a 2π -periodic and absolutely integrable function on $[0, 2\pi]$. The sequence $(c_n(f))_{n\in\mathbb{Z}}$ is bounded. Indeed, for all $n\in\mathbb{Z}$, we have

$$
|c_n(f)| \leqslant \frac{1}{2\pi}\int_0^{2\pi}\left|\int_0^{2\pi}f(x)e^{-inx}dx\right| \leqslant \frac{1}{2\pi}\int_0^{2\pi}|f(x)|dx.
$$

The same result is valid for the sequences (a_n) and (b_n) .

Remark 3. Let $f : \mathbb{R} \to \mathbb{C}$ be a 2π -periodic and absolutely integrable function on any bounded interval $[a, b]$ of \mathbb{R} . If f is developable in Fourier series, then

1. If *f* is even,

$$
a_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) dx,
$$

because the function $x \mapsto f(x) \cos(nx)$ is even, for all $n \in \mathbb{N}$.

 $b_n(f) = 0,$

because the function $x \mapsto f(x) \sin(nx)$ is odd, for all $n \in \mathbb{N}$.

2. If *f* is odd

$$
a_n(f)=0,
$$

because the function $x \mapsto f(x) \cos(nx)$ is odd, for all $n \in \mathbb{N}$.

$$
b_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx,
$$

because the function $x \mapsto f(x) \sin(nx)$ is even, for all $n \in \mathbb{N}$.

Theorem 1 (Dirichlet)**.** (Necessary condition)

Let $f : \mathbb{R} \to \mathbb{C}$ be a periodic 2π -function satisfying the following Dirichlet conditions

- 1. The discontinuities of *f* (if they exist) are of the first kind and are of finite number in any finite interval,
- 2. *f* has a right derivative and a left derivative at every point.

Then the Fourier series associated with *f* is convergent and we have,

 $a₀$ $\frac{1}{2} + \sum_{n \geq 1}$ $\frac{n}{\geqslant 1}$ $[a_n \cos nx + b_n \sin nx] =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $f(x)$ if *f* is continuous at *x*, *f* (*x* + 0) + *f* (*x* − 0) 2 if *f* is discontinuous at *x*. In addition, convergence is uniform on any interval where the function f is continuous.

The notations $f(x+0)$, $f(x-0)$ represent respectively the right and left limits of f at the point *x*.

Theorem 2 (Jordan)**.**

Let $f : \mathbb{R} \to \mathbb{C}$ be a 2π -periodic function satisfying the following conditions

- 1. There exists $M > 0$ such that $|f(x)| \le M$.
- 2. We can divide the interval $[\alpha, \alpha + 2\pi]$ into subintervals $[\alpha_1, \alpha_2]$, $[\alpha_2, \alpha_3]$, . . . $[\alpha_{n-1}, \alpha_n]$, with $\alpha = \alpha_1$ and $\alpha_n = \alpha + 2\pi$ such that the restriction $f|_{\alpha_j, \alpha_{j+1}}$ is monotone and continuous.

Then the Fourier series associated with *f* is convergent and we have,

$$
\frac{a_0}{2} + \sum_{n \ge 1} [a_n \cos nx + b_n \sin nx] = \begin{cases} f(x) & \text{if } f \text{ is continuous at } x, \\ \frac{f(x+0) + f(x-0)}{2} & \text{if } f \text{ is discontinuous at } x. \end{cases}
$$

Moreover, convergence is uniform on any interval where *f* is continuous.

Example 1.

1. Let $f : \mathbb{R} \to \mathbb{R}$ be the 2π -periodic function defined by

$$
f(x) = |x|, \quad \text{for all } x \in [-\pi, \pi].
$$

Xe have,

- (a) $|f(x)| \leq \pi$, $\forall x \in [-\pi, \pi]$.
- (b) $f|_{[-\pi,0]}$ is decreasing, continuous and $f|_{[0,\pi]}$ is increasing, continuous.

f satisfies Jordan's conditions, and can therefore be developed into a Fourier series. Since *f* is even

•
$$
b_n(f) = 0
$$
,
\n• $a_0(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos 0 dx = \frac{2}{\pi} \int_{0}^{\pi} dx = \pi$,
\n• $a_n(f) = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx = \frac{2}{\pi} \left[\frac{x}{n} \sin nx \right]_{0}^{\pi} - \frac{2}{\pi} \times \frac{1}{n} \int_{0}^{\pi} \sin nx dx$
\n $= 0 - \frac{2}{n\pi} \left[-\frac{\cos nx}{n} \right]_{0}^{\pi} = \frac{2}{n^2 \pi} (1 - (-1)^n)$
\n $= \begin{cases} 0 & \text{if } n \text{ is even,} \\ -\frac{4}{n^2 \pi} & \text{if } n \text{ is odd.} \end{cases}$

The Fourier series of *f* is therefore

$$
S_{\infty}(f) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n \geq 1} \frac{1}{(2n+1)^2} \cos((2n+1)x).
$$

We have uniform convergence since *f* is continuous.

Finally, note that $f(0) = 0$ translates as

$$
\frac{\pi}{2} - \frac{4}{\pi} \sum_{n \geq 1} \frac{1}{(2n+1)^2} = 0 \Leftrightarrow \sum_{n \geq 1} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.
$$

On the other hand, since \sum $n\geqslant 1$ 1 $\frac{1}{(2n)^2} =$ 1 4 ∇ $n\geqslant 1$ 1 *n*2 , we have, ∇ $\frac{1}{\sqrt{2}}$ $=\sum \frac{1}{n^2}-\sum \frac{1}{(2n)}$ $\frac{3}{2}$ \sum $\frac{1}{4}$

$$
\sum_{n\geqslant 0} \frac{1}{(2n+1)^2} = \sum_{n\geqslant 1} \frac{1}{n^2} - \sum_{n\geqslant 1} \frac{1}{(2n)^2} = \frac{1}{4} \sum_{n\geqslant 1} \frac{1}{n^2},
$$

it follows that

$$
\sum_{n\geqslant 1}\frac{1}{n^2}=\frac{4}{3}\sum_{n\geqslant 0}\frac{1}{(2n+1)^2}=\frac{\pi^2}{6}.
$$

2. Let $f : \mathbb{R} \to \mathbb{R}$ be the 2π -periodic function defined by $f(k\pi) = 0$, for all $k \in \mathbb{Z}$ and

$$
f(x) = sgn(x) = \begin{cases} 1 & \text{if } x \in]0, \pi], \\ -1 & \text{if } x \in]-\pi, 0[. \end{cases}
$$

Since *f* is odd, we will have

•
$$
a_n(f) = 0
$$
, and for $n \ge 1$,

•
$$
b_n(f) = \frac{2}{\pi} \int_0^{\pi} \sin nx dx = \begin{cases} 0 & \text{if } n \text{ is even,} \\ \frac{4}{n\pi} & \text{if } n \text{ is odd.} \end{cases}
$$

this function verifies the hypotheses of Dirichlet's theorem for all $x \in \mathbb{R}$). The Fourier series of *f* is therefore,

$$
S_{\infty}(f) = \frac{4}{\pi} \sum_{n \geq 0} \frac{1}{(2n+1)} \sin((2n+1)x).
$$

In particular, for *x* = *π* 2 , we obtain,

$$
S_{\infty}(f) = \frac{4}{\pi} \sum_{n \geqslant 0} \frac{(-1)^n}{(2n+1)} = 1 \Longleftrightarrow \sum_{n \geqslant 0} \frac{(-1)^n}{(2n+1)} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}.
$$

For $x = \pm \pi$, we have,

$$
S_{\infty}(f) = 0 = \frac{1}{2} (f(x+0) - f(x-0)).
$$