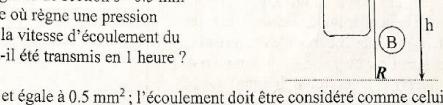
A

Exercice n°1:

On considère le dispositif représenté sur la figure. Le flacon est rempli d'un liquide (sérum) de masse volumique $\rho = 2.10^3 \, \text{Kg/m}^3$.

Deux tubes A et B distincts, de section constante, ont chacun une extrémité au sein du liquide, l'autre

est ouverte à la pression atmosphérique $P_0 = 10^5$ pascals.


Le tube A sert à faire régner en permanence au point P une pression égale approximativement à la pression atmosphérique

 P_0 = Cste. La tube B est utilisé pour transmettre le liquide.

On donne: $PQ = h_0 = 10 \text{ cm}$, QR = h = 1 m.

1) Calculer la pression au point Q et la vitesse d'écoulement au point R. Montrer que le débit reste constant.

2) A l'extrémité R, on place une aiguille de section s= 0.5 mm² qui pénètre dans la veine du malade où règne une pression moyenne de 770 mm Hg. Calculer la vitesse d'écoulement du liquide. Quel volume de liquide a-t-il été transmis en 1 heure ? Conclusion.

3) La section du tube R étant faible et égale à $0.5~\text{mm}^2$; l'écoulement doit être considéré comme celui d'un liquide visqueux ($\eta = 4.10^{-3}~\text{P}$). Quel est le volume de liquide perfusé en 1 heure ?

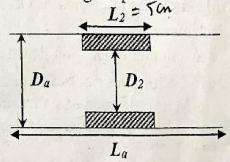
Exercice n°2:

1) On s'intéresse à la circulation du sang dans un capillaire horizontal de rayon 7 μm. La perte de charge est de 8 cm d'eau sur une longueur de 1 mm. Sachant que la vitesse moyenne d'écoulement est de 4 mm/s, calculer la viscosité du sang. On prendra la masse volumique de l'eau égale à 1 g/cm³ et l'accélération de la pesanteur égale à 10 m/s².

2) Sachant que la masse volumique du sang est égal à 1,05 g/cm³, calculer la valeur du nombre de Reynolds dans le capillaire. En déduire la nature du régime d'écoulement du sang dans ce capillaire.

Exercice n°3:

On assimile le sang à un fluide réel newtonien de viscosité $\eta = 5$. 10^{-3} poiseuille et on suppose que son écoulement laminaire et permanent, obéit à la loi de Poiseuille.


1) Donner l'expression de la résistance hydraulique R_a d'une artère saine de longueur L_a et de diamètre constant D_a . Calculer sa valeur numérique pour $L_a = 10$ cm et $D_a = 4$ mm.

2) Calculer le débit Q dans l'artère si la vitesse d'écoulement est égale à 16 cm.s^{-1} . En déduire la perte de charge ΔP entre ses deux extrémités. L'exprimer en Pa et en mm Hg.

3) Une sténose provoque un rétrécissement de l'artère sur une longueur $L_2 = 5$ cm. On constate que la perte de charge entre les deux extrémités de l'artère s'élève à $\Delta P' = 40$ mm Hg et que le débit s'abaisse à Q' = 0.6Q. Calculer :

a)- la nouvelle résistance hydraulique R'_a de l'artère ;

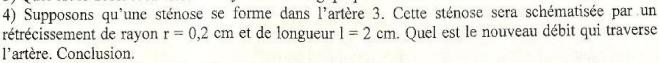
b)- la résistance hydraulique R_1 de la portion large de l'artère, représentant la somme des résistances avant et après l'obstruction.

ho

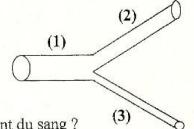
c)- la perte de charge ΔP_2 dans le rétrécissement. L'exprimer en Pa et mm Hg;

d)- le diamètre D_2 de la partie rétrécie. Donnée : 760 mmHg = 10^5 Pa.

Exercice n°4:


On considère une bifurcation constituée par une artère de rayon R_1 et de longueur L_1 et deux autres artères de rayons R_2 et R_3 et de longueurs L_2 et L_3 .

Le débit constant de 10 cm³/s passe dans l'artère de rayons R₁. On suppose que les pressions à la sortie des deux artères 2 et 3 sont les mêmes.


1) Quelle est la résistance hydraulique de chaque artère, si on suppose que le sang est newtonien de viscosité 10⁻³ Pl.

2) Quelle est la résistance opposée par les artères 2 et 3 à l'écoulement du sang?

3) Quel est le débit et la vitesse moyenne du sang qui passe dans ces artères.

A.N: $L_1 = L_2 = L_3 = 5$ cm; $R_1 = 2$ cm; $R_2 = 1,5$ cm; $R_3 = 1$ cm

