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Introduction to First Edition

The opening session of the physics degree course at Imperial College includes an

introduction to vibrations and waves where the stress is laid on the underlying unity of

concepts which are studied separately and in more detail at later stages. The origin of this

short textbook lies in that lecture course which the author has given for a number of years.

Sections on Fourier transforms and non-linear oscillations have been added to extend the

range of interest and application.

At the beginning no more than school-leaving mathematics is assumed and more

advanced techniques are outlined as they arise. This involves explaining the use of

exponential series, the notation of complex numbers and partial differentiation and putting

trial solutions into differential equations. Only plane waves are considered and, with two

exceptions, Cartesian coordinates are used throughout. Vector methods are avoided except

for the scalar product and, on one occasion, the vector product.

Opinion canvassed amongst many undergraduates has argued for a ‘working’ as much as

for a ‘reading’ book; the result is a concise text amplified by many problems over a wide

range of content and sophistication. Hints for solution are freely given on the principle that

an undergraduates gains more from being guided to a result of physical significance than

from carrying out a limited arithmetical exercise.

The main theme of the book is that a medium through which energy is transmitted via

wave propagation behaves essentially as a continuum of coupled oscillators. A simple

oscillator is characterized by three parameters, two of which are capable of storing and

exchanging energy, whilst the third is energy dissipating. This is equally true of any medium.

The product of the energy storing parameters determines the velocity of wave

propagation through the medium and, in the absence of the third parameter, their ratio

governs the impedance which the medium presents to the waves. The energy dissipating

parameter introduces a loss term into the impedance; energy is absorbed from the wave

system and it attenuates.

This viewpoint allows a discussion of simple harmonic, damped, forced and coupled

oscillators which leads naturally to the behaviour of transverse waves on a string,

longitudinal waves in a gas and a solid, voltage and current waves on a transmission line

and electromagnetic waves in a dielectric and a conductor. All are amenable to this

common treatment, and it is the wide validity of relatively few physical principles which

this book seeks to demonstrate.

H. J. PAIN

May 1968
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Introduction to Second Edition

The main theme of the book remains unchanged but an extra chapter on Wave Mechanics

illustrates the application of classical principles to modern physics.

Any revision has been towards a simpler approach especially in the early chapters and

additional problems. Reference to a problem in the course of a chapter indicates its

relevance to the preceding text. Each chapter ends with a summary of its important results.

Constructive criticism of the first edition has come from many quarters, not least from

successive generations of physics and engineering students who have used the book; a

second edition which incorporates so much of this advice is the best acknowledgement of

its value.

H. J. PAIN

June 1976
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Introduction to Third Edition

Since this book was first published the physics of optical systems has been a major area of

growth and this development is reflected in the present edition. Chapter 10 has been

rewritten to form the basis of an introductory course in optics and there are further

applications in Chapters 7 and 8.

The level of this book remains unchanged.

H. J. PAIN

January 1983
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Introduction to Fourth Edition

Interest in non-linear dynamics has grown in recent years through the application of chaos

theory to problems in engineering, economics, physiology, ecology, meteorology and

astronomy as well as in physics, biology and fluid dynamics. The chapter on non-linear

oscillations has been revised to include topics from several of these disciplines at a level

appropriate to this book. This has required an introduction to the concept of phase space

which combines with that of normal modes from earlier chapters to explain how energy is

distributed in statistical physics. The book ends with an appendix on this subject.

H. J. PAIN

September 1992
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Introduction to Fifth Edition

In this edition, three of the longer chapters of earlier versions have been split in two:

Simple Harmonic Motion is now the first chapter and Damped Simple Harmonic Motion

the second. Chapter 10 on waves in optical systems now becomes Chapters 11 and 12,

Waves in Optical Systems, and Interference and Diffraction respectively through a

reordering of topics. A final chapter on non-linear waves, shocks and solitons now follows

that on non-linear oscillations and chaos.

New material includes matrix applications to coupled oscillations, optical systems and

multilayer dielectric films. There are now sections on e.m. waves in the ionosphere and

other plasmas, on the laser cavity and on optical wave guides. An extended treatment of

solitons includes their role in optical transmission lines, in collisionless shocks in space, in

non-periodic lattices and their connection with Schrödinger’s equation.

H. J. PAIN

March 1998
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Introduction to Sixth Edition

This edition includes new material on electron waves in solids using the Kronig – Penney

model to show how their allowed energies are limited to Brillouin zones. The role of

phonons is also discussed. Convolutions are introduced and applied to optical problems via

the Array Theorem in Young’s experiment and the Optical Transfer Function. In the last

two chapters the sections on Chaos and Solutions have been reduced but their essential

contents remain.

I am grateful to my colleague Professor Robin Smith of Imperial College for his advice

on the Optical Transfer Function. I would like to thank my wife for typing the manuscript

of every edition except the first.

H. J. PAIN

January 2005, Oxford
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1

Simple Harmonic Motion

At first sight the eight physical systems in Figure 1.1 appear to have little in common.

1.1(a) is a simple pendulum, a mass m swinging at the end of a light rigid rod of length l.

1.1(b) is a flat disc supported by a rigid wire through its centre and oscillating through

small angles in the plane of its circumference.

1.1(c) is a mass fixed to a wall via a spring of stiffness s sliding to and fro in the x

direction on a frictionless plane.

1.1(d) is a mass m at the centre of a light string of length 2l fixed at both ends under a

constant tension T. The mass vibrates in the plane of the paper.

1.1(e) is a frictionless U-tube of constant cross-sectional area containing a length l of

liquid, density �, oscillating about its equilibrium position of equal levels in each

limb.

1.1(f ) is an open flask of volume V and a neck of length l and constant cross-sectional

area A in which the air of density � vibrates as sound passes across the neck.

1.1(g) is a hydrometer, a body of mass m floating in a liquid of density � with a neck of

constant cross-sectional area cutting the liquid surface. When depressed slightly

from its equilibrium position it performs small vertical oscillations.

1.1(h) is an electrical circuit, an inductance L connected across a capacitance C carrying

a charge q.

All of these systems are simple harmonic oscillators which, when slightly disturbed from

their equilibrium or rest postion, will oscillate with simple harmonic motion. This is the

most fundamental vibration of a single particle or one-dimensional system. A small

displacement x from its equilibrium position sets up a restoring force which is proportional

to x acting in a direction towards the equilibrium position.

Thus, this restoring force F may be written

F ¼ �sx

where s, the constant of proportionality, is called the stiffness and the negative sign shows

that the force is acting against the direction of increasing displacement and back towards

1
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the equilibrium position. A constant value of the stiffness restricts the displacement x to

small values (this is Hooke’s Law of Elasticity). The stiffness s is obviously the restoring

force per unit distance (or displacement) and has the dimensions

force

distance
� MLT �2

L

The equation of motion of such a disturbed system is given by the dynamic balance

between the forces acting on the system, which by Newton’s Law is

mass times acceleration ¼ restoring force

or

m€xx ¼ �sx

where the acceleration

€xx ¼ d2x

dt 2

This gives

m€xx þ sx ¼ 0

c

q

L

x

A

m

p

(h)(g)

mx + Apgx = 0
..

ω2 = A pg/m

Lq + 
q
c = 0

..

ω2 = 
1
Lc

Figure 1.1 Simple harmonic oscillators with their equations of motion and angular frequencies ! of
oscillation. (a) A simple pendulum. (b) A torsional pendulum. (c) A mass on a frictionless plane
connected by a spring to a wall. (d) A mass at the centre of a string under constant tension T. (e) A
fixed length of non-viscous liquid in a U-tube of constant cross-section. (f ) An acoustic Helmholtz
resonator. (g) A hydrometer mass m in a liquid of density �. (h) An electrical L C resonant circuit
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or

€xx þ s

m
x ¼ 0

where the dimensions of

s

m
are

MLT �2

ML
¼ T �2 ¼ � 2

Here T is a time, or period of oscillation, the reciprocal of � which is the frequency with

which the system oscillates.

However, when we solve the equation of motion we shall find that the behaviour of x

with time has a sinusoidal or cosinusoidal dependence, and it will prove more appropriate

to consider, not �, but the angular frequency ! ¼ 2�� so that the period

T ¼ 1

�
¼ 2�

ffiffiffiffi
m

s

r

where s=m is now written as !2. Thus the equation of simple harmonic motion

€xx þ s

m
x ¼ 0

becomes

€xx þ !2x ¼ 0 ð1:1Þ

(Problem 1.1)

Displacement in Simple Harmonic Motion

The behaviour of a simple harmonic oscillator is expressed in terms of its displacement x

from equilibrium, its velocity _xx, and its acceleration €xx at any given time. If we try the solution

x ¼ A cos!t

where A is a constant with the same dimensions as x, we shall find that it satisfies the

equation of motion

€xx þ !2x ¼ 0

for

_xx ¼ �A! sin!t

and

€xx ¼ �A!2 cos!t ¼ �!2x

4 Simple Harmonic Motion



Another solution

x ¼ B sin!t

is equally valid, where B has the same dimensions as A, for then

_xx ¼ B! cos!t

and

€xx ¼ �B!2 sin!t ¼ �!2x

The complete or general solution of equation (1.1) is given by the addition or

superposition of both values for x so we have

x ¼ A cos!t þ B sin!t ð1:2Þ

with

€xx ¼ �!2ðA cos!t þ B sin!tÞ ¼ �!2x

where A and B are determined by the values of x and _xx at a specified time. If we rewrite the

constants as

A ¼ a sin� and B ¼ a cos�

where � is a constant angle, then

A2 þ B2 ¼ a2ðsin2�þ cos2�Þ ¼ a2

so that

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
and

x ¼ a sin� cos!t þ a cos� sin!t

¼ a sin ð!t þ �Þ

The maximum value of sin (!t þ �) is unity so the constant a is the maximum value of x,

known as the amplitude of displacement. The limiting values of sin ð!t þ �Þ are �1 so the

system will oscillate between the values of x ¼ �a and we shall see that the magnitude of a

is determined by the total energy of the oscillator.

The angle � is called the ‘phase constant’ for the following reason. Simple harmonic

motion is often introduced by reference to ‘circular motion’ because each possible value of

the displacement x can be represented by the projection of a radius vector of constant

length a on the diameter of the circle traced by the tip of the vector as it rotates in a positive

Displacement in Simple Harmonic Motion 5



anticlockwise direction with a constant angular velocity !. Each rotation, as the radius

vector sweeps through a phase angle of 2� rad, therefore corresponds to a complete

vibration of the oscillator. In the solution

x ¼ a sin ð!t þ �Þ

the phase constant �, measured in radians, defines the position in the cycle of oscillation at

the time t ¼ 0, so that the position in the cycle from which the oscillator started to move is

x ¼ a sin�

The solution

x ¼ a sin!t

defines the displacement only of that system which starts from the origin x ¼ 0 at time

t ¼ 0 but the inclusion of � in the solution

x ¼ a sin ð!t þ �Þ

where � may take all values between zero and 2� allows the motion to be defined from any

starting point in the cycle. This is illustrated in Figure 1.2 for various values of �.

(Problems 1.2, 1.3, 1.4, 1.5)

Velocity and Acceleration in Simple Harmonic Motion

The values of the velocity and acceleration in simple harmonic motion for

x ¼ a sin ð!t þ �Þ

are given by

dx

dt
¼ _xx ¼ a! cos ð!t þ �Þ

φ4

φ3 φ2

φ1

φ1

φ2

φ3

φ4
φ5

φ6

φ0

φ6

φ5 = 270°

= 90°

= 0

a

a

ωt

φx = a Sin(ωt +   )

Figure 1.2 Sinusoidal displacement of simple harmonic oscillator with time, showing variation of
starting point in cycle in terms of phase angle �
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and

d2x

dt 2
¼ €xx ¼ �a!2 sin ð!t þ �Þ

The maximum value of the velocity a! is called the velocity amplitude and the

acceleration amplitude is given by a!2.

From Figure 1.2 we see that a positive phase angle of �=2 rad converts a sine into a

cosine curve. Thus the velocity

_xx ¼ a! cos ð!t þ �Þ

leads the displacement

x ¼ a sinð!t þ �Þ

by a phase angle of �=2 rad and its maxima and minima are always a quarter of a cycle

ahead of those of the displacement; the velocity is a maximum when the displacement is

zero and is zero at maximum displacement. The acceleration is ‘anti-phase’ (� rad) with

respect to the displacement, being maximum positive when the displacement is maximum

negative and vice versa. These features are shown in Figure 1.3.

Often, the relative displacement or motion between two oscillators having the same

frequency and amplitude may be considered in terms of their phase difference �1 � �2

which can have any value because one system may have started several cycles before the

other and each complete cycle of vibration represents a change in the phase angle of

� ¼ 2�. When the motions of the two systems are diametrically opposed; that is, one has

x = a sin(ωt +  )

x = aω cos(ωt +  )

ωt

ωt

ωt

x = −aω2 sin(ωt +  )
aω2

aω

a

A
cc

el
er

at
io

n 
x

V
el

oc
ity

 x
D

is
pl

ac
em

en
t x φ

φ

φ

Figure 1.3 Variation with time of displacement, velocity and acceleration in simple harmonic
motion. Displacement lags velocity by �=2 rad and is � rad out of phase with the acceleration. The
initial phase constant � is taken as zero
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x ¼ þa whilst the other is at x ¼ �a, the systems are ‘anti-phase’ and the total phase

difference

�1 � �2 ¼ n� rad

where n is an odd integer. Identical systems ‘in phase’ have

�1 � �2 ¼ 2n� rad

where n is any integer. They have exactly equal values of displacement, velocity and

acceleration at any instant.

(Problems 1.6, 1.7, 1.8, 1.9)

Non-linearity

If the stiffness s is constant, then the restoring force F ¼ �sx, when plotted versus x, will

produce a straight line and the system is said to be linear. The displacement of a linear

simple harmonic motion system follows a sine or cosine behaviour. Non-linearity results

when the stiffness s is not constant but varies with displacement x (see the beginning of

Chapter 14).

Energy of a Simple Harmonic Oscillator

The fact that the velocity is zero at maximum displacement in simple harmonic motion and

is a maximum at zero displacement illustrates the important concept of an exchange

between kinetic and potential energy. In an ideal case the total energy remains constant but

this is never realized in practice. If no energy is dissipated then all the potential energy

becomes kinetic energy and vice versa, so that the values of (a) the total energy at any time,

(b) the maximum potential energy and (c) the maximum kinetic energy will all be equal;

that is

E total ¼ KE þ PE ¼ KEmax ¼ PEmax

The solution x ¼ a sin (!t þ �) implies that the total energy remains constant because the

amplitude of displacement x ¼ �a is regained every half cycle at the position of maximum

potential energy; when energy is lost the amplitude gradually decays as we shall see later in

Chapter 2. The potential energy is found by summing all the small elements of work sx. dx

(force sx times distance dx) done by the system against the restoring force over the range

zero to x where x ¼ 0 gives zero potential energy.

Thus the potential energy¼ ð x

0

sx � dx ¼ 1
2

sx2

The kinetic energy is given by 1
2

m _xx2 so that the total energy

E ¼ 1
2

m _xx2 þ 1
2

sx2

8 Simple Harmonic Motion



Since E is constant we have

dE

dt
¼ ðm€xx þ sxÞ _xx ¼ 0

giving again the equation of motion

m€xx þ sx ¼ 0

The maximum potential energy occurs at x ¼ �a and is therefore

PEmax ¼ 1
2

sa2

The maximum kinetic energy is

KEmax ¼ ð1
2

m _xx2Þmax ¼ 1
2

ma2!2½cos2ð!t þ �Þ
max

¼ 1
2

ma2!2

when the cosine factor is unity.

But m!2 ¼ s so the maximum values of the potential and kinetic energies are equal,

showing that the energy exchange is complete.

The total energy at any instant of time or value of x is

E ¼ 1
2

m _xx2 þ 1
2

sx2

¼ 1
2

ma2!2½cos2ð!t þ �Þ þ sin2ð!t þ �Þ

¼ 1

2
ma2!2

¼ 1
2

sa2

as we should expect.

Figure 1.4 shows the distribution of energy versus displacement for simple harmonic

motion. Note that the potential energy curve

PE ¼ 1
2

sx2 ¼ 1
2

ma2!2 sin2ð!t þ �Þ

is parabolic with respect to x and is symmetric about x ¼ 0, so that energy is stored in the

oscillator both when x is positive and when it is negative, e.g. a spring stores energy

whether compressed or extended, as does a gas in compression or rarefaction. The kinetic

energy curve

KE ¼ 1
2

m _xx2 ¼ 1
2

ma2!2 cos2ð!t þ �Þ

is parabolic with respect to both x and _xx. The inversion of one curve with respect to the

other displays the �=2 phase difference between the displacement (related to the potential

energy) and the velocity (related to the kinetic energy).

For any value of the displacement x the sum of the ordinates of both curves equals the

total constant energy E.

Energy of a Simple Harmonic Oscillator 9



(Problems 1.10, 1.11, 1.12)

Simple Harmonic Oscillations in an Electrical System

So far we have discussed the simple harmonic motion of the mechanical and fluid systems

of Figure 1.1, chiefly in terms of the inertial mass stretching the weightless spring of

stiffness s. The stiffness s of a spring defines the difficulty of stretching; the reciprocal of

the stiffness, the compliance C (where s ¼ 1=C) defines the ease with which the spring is

stretched and potential energy stored. This notation of compliance C is useful when

discussing the simple harmonic oscillations of the electrical circuit of Figure 1.1(h) and

Figure 1.5, where an inductance L is connected across the plates of a capacitance C. The

force equation of the mechanical and fluid examples now becomes the voltage equation

E
ne

rg
y

Total energy E = KE + PE
E

E
2

E
2

1
2

KE =    mx 

2

1
2

= E −    sx 

2

1
2

PE =    sx 

2

−a a
2

− a
2

+a
x

Displacement

Figure 1.4 Parabolic representation of potential energy and kinetic energy of simple harmonic
motion versus displacement. Inversion of one curve with respect to the other shows a 90� phase
difference. At any displacement value the sum of the ordinates of the curves equals the total
constant energy E

I +

+

−

− q
c

Lq + 
q
c = 0

L
dI
dt

Figure 1.5 Electrical system which oscillates simple harmonically. The sum of the voltages around
the circuit is given by Kirchhoff’s law as L dI=dt þ q=C ¼ 0
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(balance of voltages) of the electrical circuit, but the form and solution of the equations and

the oscillatory behaviour of the systems are identical.

In the absence of resistance the energy of the electrical system remains constant and is

exchanged between the magnetic field energy stored in the inductance and the electric field

energy stored between the plates of the capacitance. At any instant, the voltage across the

inductance is

V ¼ �L
dI

dt
¼ �L

d2q

dt 2

where I is the current flowing and q is the charge on the capacitor, the negative sign

showing that the voltage opposes the increase of current. This equals the voltage q=C

across the capacitance so that

L€qq þ q=C ¼ 0 ðKirchhoff’s LawÞ

or

€qq þ !2q ¼ 0

where

!2 ¼ 1

LC

The energy stored in the magnetic field or inductive part of the circuit throughout the

cycle, as the current increases from 0 to I, is formed by integrating the power at any instant

with respect to time; that is

EL ¼
ð

VI � dt

(where V is the magnitude of the voltage across the inductance).

So

EL ¼
ð

VI dt ¼
ð

L
dI

dt
I dt ¼

ð I

0

LI dI

¼ 1
2

LI 2 ¼ 1
2

L _qq2

The potential energy stored mechanically by the spring is now stored electrostatically by

the capacitance and equals

1
2

CV 2 ¼ q2

2C

Simple Harmonic Oscillations in an Electrical System 11



Comparison between the equations for the mechanical and electrical oscillators

mechanical (force) ! m€xx þ sx ¼ 0

electrical (voltage) ! L€qq þ q

C
¼ 0

mechanical (energy) ! 1
2

m _xx2 þ 1
2

sx2 ¼ E

electrical (energy) ! 1

2
L _qq2 þ 1

2

q2

C
¼ E

shows that magnetic field inertia (defined by the inductance L) controls the rate of change

of current for a given voltage in a circuit in exactly the same way as the inertial mass

controls the change of velocity for a given force. Magnetic inertial or inductive behaviour

arises from the tendency of the magnetic flux threading a circuit to remain constant and

reaction to any change in its value generates a voltage and hence a current which flows to

oppose the change of flux. This is the physical basis of Fleming’s right-hand rule.

Superposition of Two Simple Harmonic Vibrations in One
Dimension

(1) Vibrations Having Equal Frequencies

In the following chapters we shall meet physical situations which involve the superposition

of two or more simple harmonic vibrations on the same system.

We have already seen how the displacement in simple harmonic motion may be

represented in magnitude and phase by a constant length vector rotating in the positive

(anticlockwise) sense with a constant angular velocity !. To find the resulting motion of a

system which moves in the x direction under the simultaneous effect of two simple

harmonic oscillations of equal angular frequencies but of different amplitudes and phases,

we can represent each simple harmonic motion by its appropriate vector and carry out a

vector addition.

If the displacement of the first motion is given by

x1 ¼ a1 cos ð!t þ �1Þ

and that of the second by

x2 ¼ a2 cos ð!t þ �2Þ

then Figure 1.6 shows that the resulting displacement amplitude R is given by

R2 ¼ ða1 þ a2 cos �Þ2 þ ða2 sin �Þ2

¼ a2
1 þ a2

2 þ 2a1a2 cos �

where � ¼ �2 � �1 is constant.
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The phase constant 	 of R is given by

tan 	 ¼ a1 sin�1 þ a2 sin�2

a1 cos�1 þ a2 cos�2

so the resulting simple harmonic motion has a displacement

x ¼ R cos ð!t þ 	Þ

an oscillation of the same frequency ! but having an amplitude R and a phase constant 	.

(Problem 1.13)

(2) Vibrations Having Different Frequencies

Suppose we now consider what happens when two vibrations of equal amplitudes but

different frequencies are superposed. If we express them as

x1 ¼ a sin!1t

and

x2 ¼ a sin!2t

where

!2 > !1

y

x

a2

a1

R a2

  2

a2 sin δ

a2 cos δ
  2 −   1 = δ

φ θ

φ φ

f1

Figure 1.6 Addition of vectors, each representing simple harmonic motion along the x axis at
angular frequency ! to give a resulting simple harmonic motion displacement x ¼ R cos ð!t þ 	Þ ---
here shown for t ¼ 0
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then the resulting displacement is given by

x ¼ x1 þ x2 ¼ aðsin!1t þ sin!2tÞ

¼ 2a sin
ð!1 þ !2Þt

2
cos

ð!2 � !1Þt
2

This expression is illustrated in Figure 1.7. It represents a sinusoidal oscillation at the

average frequency ð!1 þ !2Þ=2 having a displacement amplitude of 2a which modulates;

that is, varies between 2a and zero under the influence of the cosine term of a much slower

frequency equal to half the difference ð!2 � !1Þ=2 between the original frequencies.

When !1 and !2 are almost equal the sine term has a frequency very close to both !1

and !2 whilst the cosine envelope modulates the amplitude 2a at a frequency (!2 � !1)=2

which is very slow.

Acoustically this growth and decay of the amplitude is registered as ‘beats’ of strong

reinforcement when two sounds of almost equal frequency are heard. The frequency of the

‘beats’ is ð!2 � !1Þ, the difference between the separate frequencies (not half the

difference) because the maximum amplitude of 2a occurs twice in every period associated

with the frequency (!2 � !1Þ=2. We shall meet this situation again when we consider

the coupling of two oscillators in Chapter 4 and the wave group of two components in

Chapter 5.

2a

2a
x

ω2 − ω1

2
t

ωt

cos

ω2 + ω1

2
tsin

Figure 1.7 Superposition of two simple harmonic displacements x1 ¼ a sin! 1t and x 2 ¼ a sin!2t
when !2 > !1. The slow cos ½ð!2 � !1Þ=2
t envelope modulates the sin ½ð!2 þ !1Þ=2
t curve
between the values x ¼ �2a
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Superposition of Two Perpendicular Simple Harmonic
Vibrations

(1) Vibrations Having Equal Frequencies

Suppose that a particle moves under the simultaneous influence of two simple harmonic

vibrations of equal frequency, one along the x axis, the other along the perpendicular y axis.

What is its subsequent motion?

This displacements may be written

x ¼ a1 sin ð!t þ �1Þ
y ¼ a2 sin ð!t þ �2Þ

and the path followed by the particle is formed by eliminating the time t from these

equations to leave an expression involving only x and y and the constants �1 and �2.

Expanding the arguments of the sines we have

x

a1

¼ sin!t cos�1 þ cos!t sin�1

and

y

a2

¼ sin!t cos�2 þ cos!t sin�2

If we carry out the process

x

a1

sin�2 �
y

a2

sin�1

� �2

þ y

a2

cos�1 �
x

a1

cos�2

� �2

this will yield

x2

a2
1

þ y2

a2
2

� 2xy

a1a2

cos ð�2 � �1Þ ¼ sin2ð�2 � �1Þ ð1:3Þ

which is the general equation for an ellipse.

In the most general case the axes of the ellipse are inclined to the x and y axes, but these

become the principal axes when the phase difference

�2 � �1 ¼ �

2

Equation (1.3) then takes the familiar form

x2

a2
1

þ y2

a2
2

¼ 1

that is, an ellipse with semi-axes a1 and a2.
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If a1 ¼ a2 ¼ a this becomes the circle

x2 þ y2 ¼ a2

When

�2 � �1 ¼ 0; 2�; 4�; etc:

the equation simplifies to

y ¼ a2

a1

x

which is a straight line through the origin of slope a2=a1.

Again for �2 � �1 ¼ �, 3�, 5�, etc., we obtain

y ¼ � a2

a1

x

a straight line through the origin of equal but opposite slope.

The paths traced out by the particle for various values of � ¼ �2 � �1 are shown in

Figure 1.8 and are most easily demonstrated on a cathode ray oscilloscope.

When

�2 � �1 ¼ 0; �; 2�; etc:

and the ellipse degenerates into a straight line, the resulting vibration lies wholly in one

plane and the oscillations are said to be plane polarized.

δ  =  0 δ  = π
4

δ  =
π
2

δ  = δ  =π3
4

π

δ  = π5
4

δ  = π3
2

δ  = π7
4 δ  =  2π δ  = π

4
9

   2 −   1 = δx = a sin (ωt +  1)

y 
=

 a
 s

in
 (

ω
t +

   
2)

φ φ φ

φ

Figure 1.8 Paths traced by a system vibrating simultaneously in two perpendicular directions with
simple harmonic motions of equal frequency. The phase angle � is the angle by which the y motion
leads the x motion
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Convention defines the plane of polarization as that plane perpendicular to the plane

containing the vibrations. Similarly the other values of

�2 � �1

yield circular or elliptic polarization where the tip of the vector resultant traces out the

appropriate conic section.

(Problems 1.14, 1.15, 1.16)


Polarization

Polarization is a fundamental topic in optics and arises from the superposition of two

perpendicular simple harmonic optical vibrations. We shall see in Chapter 8 that when a

light wave is plane polarized its electrical field oscillation lies within a single plane and

traces a sinusoidal curve along the direction of wave motion. Substances such as quartz and

calcite are capable of splitting light into two waves whose planes of polarization are

perpendicular to each other. Except in a specified direction, known as the optic axis, these

waves have different velocities. One wave, the ordinary or O wave, travels at the same

velocity in all directions and its electric field vibrations are always perpendicular to the

optic axis. The extraordinary or E wave has a velocity which is direction-dependent. Both

ordinary and extraordinary light have their own refractive indices, and thus quartz and

calcite are known as doubly refracting materials. When the ordinary light is faster, as in

quartz, a crystal of the substance is defined as positive, but in calcite the extraordinary light

is faster and its crystal is negative. The surfaces, spheres and ellipsoids, which are the loci

of the values of the wave velocities in any direction are shown in Figure 1.9(a), and for a

Optic axis

O vibration

E vibration

x
y

x
E ellipsoid

O sphere

z

y

O sphere

E ellipsoid

Optic axis

z

Quartz (+ve)Calcite (−ve)

Figure 1.9a Ordinary (spherical) and extraordinary (elliposoidal) wave surfaces in doubly refracting
calcite and quartz. In calcite the E wave is faster than the O wave, except along the optic axis. In
quartz the O wave is faster. The O vibrations are always perpendicular to the optic axis, and the O and
E vibrations are always tangential to their wave surfaces


This section may be omitted at a first reading.
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given direction the electric field vibrations of the separate waves are tangential to the

surface of the sphere or ellipsoid as shown. Figure 1.9(b) shows plane polarized light

normally incident on a calcite crystal cut parallel to its optic axis. Within the crystal the

faster E wave has vibrations parallel to the optic axis, while the O wave vibrations are

perpendicular to the plane of the paper. The velocity difference results in a phase gain of

the E vibration over the O vibration which increases with the thickness of the crystal.

Figure 1.9(c) shows plane polarized light normally incident on the crystal of Figure 1.9(b)

with its vibration at an angle of 45� of the optic axis. The crystal splits the vibration into

Plane polarized
light normally
incident

O vibration
    to plane of paper

E vibration Optic
axis

Calcite
crystal

Figure 1.9b Plane polarized light normally incident on a calcite crystal face cut parallel to its optic
axis. The advance of the E wave over the O wave is equivalent to a gain in phase

E
O

45°

E vibration 90°
ahead in phase
of O vibration

O

E (Optic axis)

Calcite
crystal

Optic axis

Phase difference
causes rotation of
resulting electric
field vector

Sinusoidal
vibration of
electric field

Figure 1.9c The crystal of Fig. 1.9c is thick enough to produce a phase gain of �=2 rad in the
E wave over the O wave. Wave recombination on leaving the crystal produces circularly polarized
light
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equal E and O components, and for a given thickness the E wave emerges with a phase gain

of 90� over the O component. Recombination of the two vibrations produces circularly

polarized light, of which the electric field vector now traces a helix in the anticlockwise

direction as shown.

(2) Vibrations Having Different Frequencies (Lissajous Figures)

When the frequencies of the two perpendicular simple harmonic vibrations are not equal

the resulting motion becomes more complicated. The patterns which are traced are called

Lissajous figures and examples of these are shown in Figure 1.10 where the axial

frequencies bear the simple ratios shown and

� ¼ �2 � �1 ¼ 0 (on the left)

¼ �

2
(on the right)

If the amplitudes of the vibrations are respectively a and b the resulting Lissajous figure

will always be contained within the rectangle of sides 2a and 2b. The sides of the rectangle

will be tangential to the curve at a number of points and the ratio of the numbers of these

tangential points along the x axis to those along the y axis is the inverse of the ratio of the

corresponding frequencies (as indicated in Figure 1.10).

2a

2b

2b

2a

2b

2a

2a

2b

ωx

ωy
= 3ωx

ωy
= 2

ωy

ωx
= 3ωy

ωx
= 2

δ = 0

π
2

δ =

Figure 1.10 Simple Lissajous figures produced by perpendicular simple harmonic motions of
different angular frequencies
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SuperpositionofaLargeNumbernofSimpleHarmonicVibrations
of Equal Amplitude a and Equal Successive Phase Difference d

Figure 1.11 shows the addition of n vectors of equal length a, each representing a simple

harmonic vibration with a constant phase difference � from its neighbour. Two general

physical situations are characterized by such a superposition. The first is met in Chapter 5

as a wave group problem where the phase difference � arises from a small frequency

difference, �!, between consecutive components. The second appears in Chapter 12 where

the intensity of optical interference and diffraction patterns are considered. There, the

superposed harmonic vibrations will have the same frequency but each component will have

a constant phase difference from its neighbour because of the extra distance it has travelled.

The figure displays the mathematical expression

R cos ð!t þ �Þ ¼ a cos!t þ a cos ð!t þ �Þ þ a cos ð!t þ 2�Þ
þ � � � þ a cos ð!t þ ½n � 1
�Þ

A
Ba

a

a

a

a

a

a

C
r

O

rr

α δ

δ

δ
δ

δ

δ

δ

δ

90° −
290° − 2

n δ

n δ

2n δ

R = 2r
 si

n

2
 δa = 2r sin

Figure 1.11 Vector superposition of a large number n of simple harmonic vibrations of equal
amplitude a and equal successive phase difference �. The amplitude of the resultant

R ¼ 2r sin
n�

2
¼ a

sin n�=2

sin �=2

and its phase with respect to the first contribution is given by

� ¼ ðn � 1Þ�=2

20 Simple Harmonic Motion



where R is the magnitude of the resultant and � is its phase difference with respect to the

first component a cos!t.

Geometrically we see that each length

a ¼ 2r sin
�

2

where r is the radius of the circle enclosing the (incomplete) polygon.

From the isosceles triangle OAC the magnitude of the resultant

R ¼ 2r sin
n�

2
¼ a

sin n�=2

sin �=2

and its phase angle is seen to be

� ¼ OÂAB � OÂAC

In the isosceles triangle OAC

ÔOAC ¼ 90� � n�

2

and in the isosceles triangle OAB

OÂAB ¼ 90� � �

2

so

� ¼ 90� � �

2

� �
� 90� � n�

2

� �
¼ ðn � 1Þ �

2

that is, half the phase difference between the first and the last contributions. Hence the

resultant

R cos ð!t þ �Þ ¼ a
sin n�=2

sin �=2
cos !t þ ðn � 1Þ �

2

� �

We shall obtain the same result later in this chapter as an example on the use of exponential

notation.

For the moment let us examine the behaviour of the magnitude of the resultant

R ¼ a
sin n�=2

sin �=2

which is not constant but depends on the value of �. When n is very large � is very small

and the polygon becomes an arc of the circle centre O, of length na ¼ A, with R as the

chord. Then

� ¼ ðn � 1Þ �
2
� n�

2
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and

sin
�

2
! �

2
� �

n

Hence, in this limit,

R ¼ a
sin n�=2

sin �=2
¼ a

sin�

�=n
¼ na

sin�

�
¼ A sin�

�

The behaviour of A sin�=� versus � is shown in Figure 1.12. The pattern is symmetric

about the value � ¼ 0 and is zero whenever sin � ¼ 0 except at �! 0 that is, when sin

�=�! 1. When � ¼ 0, � ¼ 0 and the resultant of the n vectors is the straight line of length

A, Figure 1.12(b). As � increases A becomes the arc of a circle until at � ¼ �=2 the first and

last contributions are out of phase ð2� ¼ �Þ and the arc A has become a semicircle of

which the diameter is the resultant R Figure 1.12(c). A further increase in � increases � and

curls the constant length A into the circumference of a circle (� ¼ �) with a zero resultant,

Figure 1.12(d). At � ¼ 3�=2, Figure 1.12(e) the length A is now 3/2 times the

circumference of a circle whose diameter is the amplitude of the first minimum.


Superposition of n Equal SHM Vectors of Length a with
Random Phase

When the phase difference between the successive vectors of the last section may take

random values � between zero and 2� (measured from the x axis) the vector superposition

and resultant R may be represented by Figure 1.13.

(b)
(c)

(e)
(d)

0

R A

2A

A

A=na

A =

R =

α

α

2ππ π

π

2

2

π
23

3 circumference

A sinα

Figure 1.12 (a) Graph of A sin �=� versus �, showing the magnitude of the resultants for (b)
� ¼ 0; (c) � ¼ �/2; (d) � ¼ � and (e) � ¼ 3�/2


This section may be omitted at a first reading.
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The components of R on the x and y axes are given by

Rx ¼ a cos�1 þ a cos�2 þ a cos�3 . . . a cos�n

¼ a
Xn

i¼1

cos� i

and

Ry ¼ a
Xn

i¼1

sin� i

where

R2 ¼ R2
x þ R2

y

Now

R2
x ¼ a2

Xn

i¼1

cos� i

 !2

¼ a2
Xn

i¼1

cos2 � i þ
Xn

i¼1
i 6¼j

cos� i

Xn

j¼1

cos� j

2
4

3
5

In the typical term 2 cos � i cos � j of the double summation, cos � i and cos � j have random

values between � 1 and the averaged sum of sets of these products is effectively zero.

The summation

Xn

i¼1

cos2 � i ¼ n cos2 �

R

x

y

Figure 1.13 The resultant R ¼
ffiffiffi
n

p
a of n vectors, each of length a, having random phase. This result

is important in optical incoherence and in energy loss from waves from random dissipation processes
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that is, the number of terms n times the average value cos2 � which is the integrated value

of cos2 � over the interval zero to 2� divided by the total interval 2�, or

cos2 � ¼ 1

2�

ð 2�

0

cos2 � d� ¼ 1

2
¼ sin2 �

So

R2
x ¼ a2

Xn

i¼1

cos2 � i ¼ na2cos2 � i ¼
na2

2

and

R2
y ¼ a2

Xn

i¼1

sin2 � i ¼ na2sin2 � i ¼
na2

2

giving

R2 ¼ R2
x þ R2

y ¼ na2

or

R ¼
ffiffiffi
n

p
a

Thus, the amplitude R of a system subjected to n equal simple harmonic motions of

amplitude a with random phases in only
ffiffiffi
n

p
a whereas, if the motions were all in phase R

would equal na.

Such a result illustrates a very important principle of random behaviour.

(Problem 1.17)

Applications

Incoherent Sources in Optics The result above is directly applicable to the problem of

coherence in optics. Light sources which are in phase are said to be coherent and this

condition is essential for producing optical interference effects experimentally. If the

amplitude of a light source is given by the quantity a its intensity is proportional to a2, n

coherent sources have a resulting amplitude na and a total intensity n2a2. Incoherent

sources have random phases, n such sources each of amplitude a have a resulting amplitudeffiffiffi
n

p
a and a total intensity of na2.

Random Processes and Energy Absorption From our present point of view the

importance of random behaviour is the contribution it makes to energy loss or absorption

from waves moving through a medium. We shall meet this in all the waves we discuss.
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Random processes, for example collisions between particles, in Brownian motion, are of

great significance in physics. Diffusion, viscosity or frictional resistance and thermal

conductivity are all the result of random collision processes. These energy dissipating

phenomena represent the transport of mass, momentum and energy, and change only in the

direction of increasing disorder. They are known as ‘thermodynamically irreversible’

processes and are associated with the increase of entropy. Heat, for example, can flow only

from a body at a higher temperature to one at a lower temperature. Using the earlier

analysis where the length a is no longer a simple harmonic amplitude but is now the

average distance a particle travels between random collisions (its mean free path), we see

that after n such collisions (with, on average, equal time intervals between collisions) the

particle will, on average, have travelled only a distance
ffiffiffi
n

p
a from its position at time t ¼ 0,

so that the distance travelled varies only with the square root of the time elapsed instead of

being directly proportional to it. This is a feature of all random processes.

Not all the particles of the system will have travelled a distance
ffiffiffi
n

p
a but this distance is

the most probable and represents a statistical average.

Random behaviour is described by the diffusion equation (see the last section of

Chapter 7) and a constant coefficient called the diffusivity of the process will always

arise. The dimensions of a diffusivity are always length2/time and must be interpreted in

terms of a characteristic distance of the process which varies only with the square root of

time.

Some Useful Mathematics

The Exponential Series

By a ‘natural process’ of growth or decay we mean a process in which a quantity changes

by a constant fraction of itself in a given interval of space or time. A 5% per annum

compound interest represents a natural growth law; attenuation processes in physics usually

describe natural decay.

The law is expressed differentially as

dN

N
¼ �� dx or

dN

N
¼ �� dt

where N is the changing quantity, � is a constant and the positive and negative signs

represent growth and decay respectively. The derivatives dN/dx or dN/dt are therefore

proportional to the value of N at which the derivative is measured.

Integration yields N ¼ N0e��x or N ¼ N0e��t where N0 is the value at x or t ¼ 0 and e

is the exponential or the base of natural logarithms. The exponential series is defined as

e x ¼ 1 þ x þ x2

2!
þ x3

3!
þ � � � þ xn

n!
þ � � �

and is shown graphically for positive and negative x in Figure 1.14. It is important to note

that whatever the form of the index of the logarithmic base e, it is the power to which the
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base is raised, and is therefore always non-dimensional. Thus e�x is non-dimensional and �
must have the dimensions of x�1. Writing

e�x ¼ 1 þ �x þ ð�xÞ2

2!
þ ð�xÞ3

3!
þ � � �

it follows immediately that

d

dx
ðe�xÞ ¼ �þ 2�2

2!
x þ 3�3

3!
x2 þ � � �

¼ � 1 þ �x þ ð�xÞ2

2!
þ ð�xÞ3

3!

!
þ � � �

" #

¼ �e�x

Similarly

d2

dx2
ðe� xÞ ¼ �2 e� x

In Chapter 2 we shall use d(e�t)=dt ¼ � e�t and d2 (e�t)=dt 2 ¼ �2 e�t on a number of

occasions.

By taking logarithms it is easily shown that e x e y ¼ e xþy since loge ðe x e yÞ ¼
loge e x þ loge e y ¼ x þ y.

The Notation i ¼
ffiffiffiffiffiffiffi
�1

p

The combination of the exponential series with the complex number notation i ¼
ffiffiffiffiffiffiffi
�1

p
is

particularly convenient in physics. Here we shall show the mathematical convenience in

expressing sine or cosine (oscillatory) behaviour in the form eix ¼ cos x þ i sin x.

0
x

y

1

y = exy = e−x

Figure 1.14 The behaviour of the exponential series y ¼ e x and y ¼ e�x
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In Chapter 3 we shall see the additional merit of i in its role of vector operator.

The series representation of sin x is written

sin x ¼ x � x3

3!
þ x5

5!
� x7

7!
� � �

and that of cos x is

cos x ¼ 1 � x2

2!
þ x4

4!
� x6

6!
� � �

Since

i ¼
ffiffiffiffiffiffiffi
�1

p
; i2 ¼ �1; i3 ¼ �i

etc. we have

eix ¼ 1 þ ix þ ðixÞ2

2!
þ ðixÞ3

3!
þ ðixÞ4

4!
þ � � �

¼ 1 þ ix � x2

2!
� ix3

3!
þ x4

4!
þ � � �

¼ 1 � x2

2!
þ x4

4!
þ i x � x3

3!
þ x5

5!
þ � � �

� �
¼ cos x þ i sin x

We also see that

d

dx
ðeixÞ ¼ i e ix ¼ i cos x � sin x

Often we shall represent a sine or cosine oscillation by the form eix and recover the original

form by taking that part of the solution preceded by i in the case of the sine, and the real

part of the solution in the case of the cosine.

Examples

(1) In simple harmonic motion (€xx þ !2x ¼ 0) let us try the solution x ¼ a ei!t e i�, where a

is a constant length, and � (and therefore e i�) is a constant.

dx

dt
¼ _xx ¼ i!a ei!t ei� ¼ i!x

d2x

dt 2
¼ €xx ¼ i2!2a ei!t ei� ¼ �!2x

Therefore

x ¼ a ei!t ei� ¼ a eið!tþ�Þ

¼ a cos ð!t þ �Þ þ i a sin ð!t þ �Þ

is a complete solution of €xx þ !2x ¼ 0.
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On p. 6 we used the sine form of the solution; the cosine form is equally valid and merely

involves an advance of �=2 in the phase �.

(2)

e ix þ e�ix ¼ 2 1 � x2

2!
þ x4

4!
� � � �

� �
¼ 2 cos x

eix � e�ix ¼ 2i x � x3

3!
þ x5

5!
� � � �

� �
¼ 2i sin x

(3) On p. 21 we used a geometrical method to show that the resultant of the superposed

harmonic vibrations

a cos!t þ a cos ð!t þ �Þ þ a cos ð!t þ 2�Þ þ � � � þ a cos ð!t þ ½n � 1
�Þ

¼ a
sin n�=2

sin �=2
cos !t þ n � 1

2

� �
�

� �

We can derive the same result using the complex exponential notation and taking the real

part of the series expressed as the geometrical progression

a ei!t þ a eið!tþ�Þ þ a eið!tþ2�Þ þ � � � þ a ei½!tþðn�1Þ�


¼ a ei!tð1 þ z þ z2 þ � � � þ z ðn�1ÞÞ

where z ¼ e i�.

Writing

SðzÞ ¼ 1 þ z þ z2 þ � � � þ zn�1

and

z½SðzÞ
 ¼ z þ z2 þ � � � þ zn

we have

SðzÞ ¼ 1 � zn

1 � z
¼ 1 � ein�

1 � ei�

So

a ei!tSðzÞ ¼ a ei!t 1 � ein�

1 � ei�

¼ a ei!t ein�=2ðe�in�=2 � e in�=2Þ
ei�=2ðe�i�=2 � ei�=2Þ

¼ a ei½!tþ n�1
2ð Þ�
 sin n�=2

sin �=2
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with the real part

¼ a cos !t þ n � 1

2

� �
�

� �
sin n�=2

sin �=2

which recovers the original cosine term from the complex exponential notation.

(Problem 1.18)

(4) Suppose we represent a harmonic oscillation by the complex exponential form

z ¼ a ei!t

where a is the amplitude. Replacing i by � i defines the complex conjugate

z
 ¼ a e�i!t

The use of this conjugate is discussed more fully in Chapter 3 but here we can note that the

product of a complex quantity and its conjugate is always equal to the square of the

amplitude for

zz
 ¼ a2 e i!t e�i!t ¼ a2 e ði�iÞ!t ¼ a2 e0

¼ a2

(Problem 1.19)

Problem 1.1
The equation of motion

m€xx ¼ �sx with !2 ¼ s

m

applies directly to the system in Figure 1.1(c).

If the pendulum bob of Figure 1.1(a) is displaced a small distance x show that the stiffness (restoring

force per unit distance) is mg=l and that !2 ¼ g=l where g is the acceleration due to gravity. Now use

the small angular displacement 	 instead of x and show that ! is the same.

In Figure 1.1(b) the angular oscillations are rotational so the mass is replaced by the moment of

inertia I of the disc and the stiffness by the restoring couple of the wire which is C rad�1 of angular

displacement. Show that !2 ¼ C=I.

In Figure 1.1(d) show that the stiffness is 2T=l and that !2 ¼ 2T=lm.

In Figure 1.1(e) show that the stiffness of the system in 2�Ag, where A is the area of cross section

and that !2 ¼ 2g=l where g is the acceleration due to gravity.
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In Figure 1.1(f) only the gas in the flask neck oscillates, behaving as a piston of mass �Al. If the

pressure changes are calculated from the equation of state use the adiabatic relation pV 
 ¼ constant

and take logarithms to show that the pressure change in the flask is

dp ¼ �
p
dV

V
¼ �
p

Ax

V
;

where x is the gas displacement in the neck. Hence show that !2 ¼ 
pA=l�V . Note that 
p is the

stiffness of a gas (see Chapter 6).

In Figure 1.1(g), if the cross-sectional area of the neck is A and the hydrometer is a distance x above

its normal floating level, the restoring force depends on the volume of liquid displaced (Archimedes’

principle). Show that !2 ¼ g�A=m.

Check the dimensions of !2 for each case.

Problem 1.2
Show by the choice of appropriate values for A and B in equation (1.2) that equally valid solutions

for x are

x ¼ a cos ð!t þ �Þ
x ¼ a sin ð!t � �Þ
x ¼ a cos ð!t � �Þ

and check that these solutions satisfy the equation

€xx þ ! 2x ¼ 0

Problem 1.3
The pendulum in Figure 1.1(a) swings with a displacement amplitude a. If its starting point from rest

is

ðaÞ x ¼ a

ðbÞ x ¼ �a

find the different values of the phase constant � for the solutions

x ¼ a sin ð!t þ �Þ
x ¼ a cos ð!t þ �Þ
x ¼ a sin ð!t � �Þ
x ¼ a cos ð!t � �Þ

For each of the different values of �, find the values of !t at which the pendulum swings through the

positions

x ¼ þa=
ffiffiffi
2

p

x ¼ a=2
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and

x ¼ 0

for the first time after release from

x ¼ �a

Problem 1.4
When the electron in a hydrogen atom bound to the nucleus moves a small distance from its

equilibrium position, a restoring force per unit distance is given by

s ¼ e 2=4��0r 2

where r ¼ 0:05 nm may be taken as the radius of the atom. Show that the electron can oscillate with

a simple harmonic motion with

!0 � 4:5 � 10�16 rad s�1

If the electron is forced to vibrate at this frequency, in which region of the electromagnetic spectrum

would its radiation be found?

e ¼ 1:6 � 10�19 C; electron mass m e ¼ 9:1 � 10�31 kg

� 0 ¼ 8:85 � 10�12 N�1 m�2 C 2

Problem 1.5
Show that the values of !2 for the three simple harmonic oscillations (a), (b), (c) in the diagram are

in the ratio 1 : 2 : 4.

m

m m

ssss

s

(a) (b) (c)

Problem 1.6
The displacement of a simple harmonic oscillator is given by

x ¼ a sin ð!t þ �Þ

If the oscillation started at time t ¼ 0 from a position x0 with a velocity _xx ¼ v0 show that

tan� ¼ !x0=v 0

and

a ¼ ðx2
0 þ v 2

0=!
2Þ 1=2
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Problem 1.7
A particle oscillates with simple harmonic motion along the x axis with a displacement amplitude a

and spends a time dt in moving from x to x þ dx. Show that the probability of finding it between x

and x þ dx is given by

dx

�ða2 � x2Þ 1=2

(in wave mechanics such a probability is not zero for x > a).

Problem. 1.8
Many identical simple harmonic oscillators are equally spaced along the x axis of a medium and a

photograph shows that the locus of their displacements in the y direction is a sine curve. If the

distance � separates oscillators which differ in phase by 2� radians, what is the phase difference

between two oscillators a distance x apart?

Problem 1.9
A mass stands on a platform which vibrates simple harmonically in a vertical direction at a

frequency of 5 Hz. Show that the mass loses contact with the platform when the displacement

exceeds 10�2m.

Problem 1.10
A mass M is suspended at the end of a spring of length l and stiffness s. If the mass of the spring is m

and the velocity of an element dy of its length is proportional to its distance y from the fixed end of

the spring, show that the kinetic energy of this element is

1

2

m

l
dy

� � y

l
v

� � 2

where v is the velocity of the suspended mass M. Hence, by integrating over the length of the spring,

show that its total kinetic energy is 1
6

mv2 and, from the total energy of the oscillating system, show

that the frequency of oscillation is given by

!2 ¼ s

M þ m=3

Problem 1.11
The general form for the energy of a simple harmonic oscillator is

E ¼ 1
2

mass (velocity) 2 þ 1
2

stiffness (displacement)2

Set up the energy equations for the oscillators in Figure 1.1(a), (b), (c), (d), (e), (f) and (g), and use

the expression

dE

dt
¼ 0

to derive the equation of motion in each case.
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Problem 1.12
The displacement of a simple harmonic oscillator is given by x ¼ a sin !t. If the values of the

displacement x and the velocity _xx are plotted on perpendicular axes, eliminate t to show that the locus

of the points (x; _xx) is an ellipse. Show that this ellipse represents a path of constant energy.

Problem 1.13
In Chapter 12 the intensity of the pattern when light from two slits interferes (Young’s experiment)

will be seen to depend on the superposition of two simple harmonic oscillations of equal amplitude a

and phase difference �. Show that the intensity

I ¼ R2 / 4a 2 cos2 �=2

Between what values does the intensity vary?

Problem 1.14
Carry out the process indicated in the text to derive equation (1.3) on p. 15.

Problem 1.15
The co-ordinates of the displacement of a particle of mass m are given by

x ¼ a sin!t

y ¼ b cos!t

Eliminate t to show that the particle follows an elliptical path and show by adding its kinetic and

potential energy at any position x, y that the ellipse is a path of constant energy equal to the sum of

the separate energies of the simple harmonic vibrations.

Prove that the quantity mðx _yy � y _xxÞ is also constant. What does this quantity represent?

Problem 1.16
Two simple harmonic motions of the same frequency vibrate in directions perpendicular to each

other along the x and y axes. A phase difference

� ¼ �2 � � 1

exists between them such that the principal axes of the resulting elliptical trace are inclined at an

angle to the x and y axes. Show that the measurement of two separate values of x (or y) is sufficient to

determine the phase difference.

(Hint: use equation (1.3) and measure y(max), and y for (x ¼ 0.)

Problem 1.17
Take a random group of n > 7 values of � in the range 0���� and form the product

Xn

i¼1
i6¼j

cos� i

Xn

j¼1

cos� j

Show that the average value obtained for several such groups is negligible with respect to n=2.
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Problem 1.18
Use the method of example (3) (p. 28) to show that

a sin!t þ a sin ð!t þ �Þ þ a sin ð!t þ 2�Þ þ � � � þ a sin ½!t þ ðn � 1Þ�


¼ a sin !t þ ðn � 1Þ
2

�

� �
sin n�=2

sin �=2

Problem 1.19
If we represent the sum of the series

a cos!t þ a cos ð!t þ �Þ þ a cos ð!t þ 2�Þ þ � � � þ a cos ½!t þ ðn � 1Þ�


by the complex exponential form

z ¼ a e i!tð1 þ e i� þ e i2� þ � � � þ e iðn�1Þ�Þ

show that

zz
 ¼ a2 sin 2 n�=2

sin2 �=2

Summary of Important Results

Simple Harmonic Oscillator (mass m, stiffness s, amplitude a)

Equation of motion €xx þ !2x ¼ 0 where !2 ¼ s=m

Displacement x ¼ a sin ð!t þ �Þ
Energy ¼ 1

2
m _xx2 þ 1

2
sx2 ¼ 1

2
m!2 a2 ¼ 1

2
sa2 ¼ constant

Superposition (Amplitude and Phase) of two SHMs
One-dimensional

Equal !, different amplitudes, phase difference �, resultant R where R2 ¼ a2
1 þ a2

2þ
2a1a2 cos �
Different !, equal amplitude,

x ¼ x1 þ x2 ¼ aðsin!1t þ sin!2tÞ

¼ 2a sin
ð!1 þ !2Þt

2
cos

ð!2 � !1Þt
2

Two-dimensional: perpendicular axes
Equal !, different amplitude—giving general conic section

x2

a2
1

þ y2

a2
2

� 2xy

a1a2

cos ð�2 � �1Þ ¼ sin2ð�2 � �1Þ

(basis of optical polarization)
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Superposition of n SHM Vectors (equal amplitude a , constant successive phase difference �)

The resultant is R cos ð!t þ �Þ, where

R ¼ a
sin n�=2

sin �=2

and

� ¼ ðn � 1Þ�=2

Important in optical diffraction and wave groups of many components.

Some Useful Mathematics 35



2

Damped Simple Harmonic Motion

Initially we discussed the case of ideal simple harmonic motion where the total energy

remained constant and the displacement followed a sine curve, apparently for an infinite

time. In practice some energy is always dissipated by a resistive or viscous process; for

example, the amplitude of a freely swinging pendulum will always decay with time as

energy is lost. The presence of resistance to motion means that another force is active,

which is taken as being proportional to the velocity. The frictional force acts in the

direction opposite to that of the velocity (see Figure 2.1) and so Newton’s Second law

becomes

m€xx ¼ � sx � r _xx

where r is the constant of proportionality and has the dimensions of force per unit of

velocity. The presence of such a term will always result in energy loss.

The problem now is to find the behaviour of the displacement x from the equation

m€xx þ r _xx þ sx ¼ 0 ð2:1Þ

where the coefficients m, r and s are constant.

When these coefficients are constant a solution of the form x ¼ C e�t can always be

found. Obviously, since an exponential term is always nondimensional, C has the

dimensions of x (a length, say) and � has the dimensions of inverse time, T �1. We shall

see that there are three possible forms of this solution, each describing a different

behaviour of the displacement x with time. In two of these solutions C appears explicitly as

a constant length, but in the third case it takes the form

C ¼ A þ Bt�

� The number of constants allowed in the general solution of a differential equation is always equal
to the order (that is, the highest differential coefficient) of the equation. The two values A and B are
allowed because equation (2.1) is second order. The values of the constants are adjusted to satisfy the
initial conditions.
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where A is a length, B is a velocity and t is time, giving C the overall dimensions of a

length, as we expect. From our point of view this case is not the most important.

Taking C as a constant length gives _xx ¼ �C e�t and €xx ¼ �2C e�t, so that equation (2.1)

may be rewritten

C e�tðm�2 þ r�þ sÞ ¼ 0

so that either

x ¼ C e�t ¼ 0 (which is trivial)

or

m�2 þ r�þ s ¼ 0

Solving the quadratic equation in � gives

� ¼ �r

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2

4m2
� s

m

r

Note that r=2m and ðs=mÞ1=2
, and therefore, �, all have the dimensions of inverse time,

T �1, which we expect from the form of e�t.

The displacement can now be expressed as

x1 ¼ C1 e�rt=2mþðr 2=4m 2�s=mÞ 1=2
t; x2 ¼ C2 e�rt=2m�ðr 2=4m 2�s=mÞ 1=2

t

or the sum of both these terms

x ¼ x1 þ x2 ¼ C1 e�rt=2mþðr 2=4m 2�s=mÞ 1=2
t þ C2 e�rt=2m�ðr 2=4m 2�s=mÞ 1=2

t

The bracket ðr 2=4m2 � s=mÞ can be positive, zero or negative depending on the relative

magnitude of the two terms inside it. Each of these conditions gives one of the three

possible solutions referred to earlier and each solution describes a particular kind of

m

Frictional
force F = −rx

s

x

Figure 2.1 Simple harmonic motion system with a damping or frictional force r _xx acting against the
direction of motion. The equation of motion is m€xx þ r _xx þ sx ¼ 0
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behaviour. We shall discuss these solutions in order of increasing significance from our

point of view; the third solution is the one we shall concentrate upon throughout the rest of

this book.

The conditions are:

(1) Bracket positive ðr 2=4m2 > s=mÞ. Here the damping resistance term r 2=4m2

dominates the stiffness term s=m, and heavy damping results in a dead beat system.

(2) Bracket zero ðr 2=4m2 ¼ s=mÞ. The balance between the two terms results in a

critically damped system.

Neither (1) nor (2) gives oscillatory behaviour.

(3) Bracket negative ðr 2=4m2 < s=mÞ. The system is lightly damped and gives oscillatory

damped simple harmonic motion.

Case 1. Heavy Damping

Writing r=2m ¼ p and ðr 2=4m2 � s=mÞ1=2 ¼ q, we can replace

x ¼ C1 e�rt=2mþðr 2=4m 2�s=mÞ 1=2
t þ C2 e�rt=2m�ðr 2=4m 2�s=mÞ 1=2

t

by

x ¼ e�ptðC1 eqt þ C2 e�qt Þ;

where the C1 and C2 are arbitrary in value but have the same dimensions as C (note that

two separate values of C are allowed because the differential equation (2.1) is second

order).

If now F ¼ C1 þ C2 and G ¼ C1 � C2, the displacement is given by

x ¼ e�pt F

2
ðeqt þ e�qtÞ þ G

2
ðeqt � e�qtÞ

� �

or

x ¼ e�ptðF cosh qt þ G sinh qtÞ

This represents non-oscillatory behaviour, but the actual displacement will depend upon

the initial (or boundary) conditions; that is, the value of x at time t ¼ 0. If x ¼ 0 at t ¼ 0

then F ¼ 0, and

x ¼ G e�rt=2m sinh
r 2

4m2
� s

m

� �1=2

t

Figure 2.2 illustrates such behaviour when a heavily damped system is disturbed from

equilibrium by a sudden impulse (that is, given a velocity at t ¼ 0). It will return to zero
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displacement quite slowly without oscillating about its equilibrium position. More

advanced mathematics shows that the value of the velocity dx=dt vanishes only once so that

there is only one value of maximum displacement.

(Problem 2.1)

Case 2. Critical Damping ðr 2=4m2 ¼ s=mÞ
Using the notation of Case 1, we see that q ¼ 0 and that x ¼ e�ptðC1 þ C2Þ. This is, in

fact, the limiting case of the behaviour of Case I as q changes from positive to negative. In

this case the quadratic equation in � has equal roots, which, in a differential equation

solution, demands that C must be written C ¼ A þ Bt, where A is a constant length and B a

given velocity which depends on the boundary conditions. It is easily verified that the value

x ¼ ðA þ BtÞe�rt=2m ¼ ðA þ BtÞe�pt

satisfies m€xx þ r _xx þ sx ¼ 0 when r 2=4m2 ¼ s=m.

(Problem 2.2)

Application to a Damped Mechanical Oscillator

Critical damping is of practical importance in mechanical oscillators which experience

sudden impulses and are required to return to zero displacement in the minimum time.

Suppose such a system has zero displacement at t ¼ 0 and receives an impulse which gives

it an initial velocity V.

Time

r  increasing

D
is

pl
ac

em
en

t

Heavy damping r 2

4m 2

s
m 

>

Figure 2.2 Non-oscillatory behaviour of damped simple harmonic system with heavy damping
(where r 2=4m2 > s=m) after the system has been given an impulse from a rest position x ¼ 0
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Then x ¼ 0 (so that A ¼ 0) and _xx ¼ V at t ¼ 0. However,

_xx ¼ B½ð�ptÞe�pt þ e�pt	 ¼ B at t ¼ 0

so that B ¼ V and the complete solution is

x ¼ Vt e�pt

The maximum displacement x occurs when the system comes to rest before returning to

zero displacement. At maximum displacement

_xx ¼ V e�ptð1 � ptÞ ¼ 0

thus giving ð1 � ptÞ ¼ 0, i.e. t ¼ 1=p.

At this time the displacement is therefore

x ¼ Vt e�pt ¼ V

p
e�1

¼ 0:368
V

p
¼ 0:368

2mV

r

The curve of displacement versus time is shown in Figure 2.3; the return to zero in a

critically damped system is reached in minimum time.

Case 3. Damped Simple Harmonic Motion

When r 2=4m2 < s=m the damping is light, and this gives from the present point of view the

most important kind of behaviour, oscillatory damped simple harmonic motion.

r 2

4m 2

s
m 

2m
r

t =

m
r

=

Displacement

Time0

Critical
damping2 Ve−1x =

Figure 2.3 Limiting case of non-oscillatory behaviour of damped simple harmonic system where
r 2=4m2 ¼ s=m (critical damping)
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The expression ðr 2=4m2 � s=mÞ1=2
is an imaginary quantity, the square root of a

negative number, which can be rewritten

� r 2

4m2
� s

m

� �1=2

¼ �
ffiffiffiffiffiffiffi
�1

p s

m
� r 2

4m2

� �1=2

¼ �i
s

m
� r 2

4m2

� �1=2

ðwhere i ¼
ffiffiffiffiffiffiffi
�1

p
Þ

so the displacement

x ¼ C1 e�rt=2m eþiðs=m�r 2=4m 2Þ 1=2
t þ C2 e�rt=2m e�iðs=m�r 2=4m 2Þ 1=2

t

The bracket has the dimensions of inverse time; that is, of frequency, and can be written

ðs=m � r 2=4m2Þ1=2 ¼ ! 0, so that the second exponential becomes ei! 0t ¼ cos! 0tþ
i sin! 0t: This shows that the behaviour of the displacement x is oscillatory with a new

frequency ! 0 < ! ¼ ðs=mÞ1=2
, the frequency of ideal simple harmonic motion. To compare

the behaviour of the damped oscillator with the ideal case we should like to express the

solution in a form similar to x ¼ A sinð! 0t þ �Þ as in the ideal case, where ! has been

replaced by ! 0.
We can do this by writing

x ¼ e�rt=2mðC1 e i! 0t þ C2 e�i! 0tÞ

If we now choose

C1 ¼ A

2i
e i�

and

C2 ¼ � A

2i
e�i�

where A and � (and thus ei�) are constants which depend on the motion at t ¼ 0, we find

after substitution

x ¼ A e�rt=2m ½eið! 0tþ�Þ � e�ið! 0tþ�Þ	
2i

¼ A e�rt=2msinð! 0t þ �Þ

This procedure is equivalent to imposing the boundary condition x ¼ A sin� at t ¼ 0

upon the solution for x. The displacement therefore varies sinusoidally with time as in the

case of simple harmonic motion, but now has a new frequency

! 0 ¼ s

m
� r 2

4m2

� �1=2
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and its amplitude A is modified by the exponential term e�rt=2m, a term which decays with

time.

If x ¼ 0 at t ¼ 0 then � ¼ 0; Figure 2.4 shows the behaviour of x with time, its

oscillations gradually decaying with the envelope of maximum amplitudes following the

dotted curve e�rt=2m. The constant A is obviously the value to which the amplitude would

have risen at the first maximum if no damping were present.

The presence of the force term r _xx in the equation of motion therefore introduces a loss of

energy which causes the amplitude of oscillation to decay with time as e�rt=2m.

(Problem 2.3)

Methods of Describing the Damping of an Oscillator

Earlier in this chapter we saw that the energy of an oscillator is given by

E ¼ 1
2

ma2!2 ¼ 1
2

sa2

that is, proportional to the square of its amplitude.

We have just seen that in the presence of a damping force r _xx the amplitude decays with

time as

e�rt=2m

so that the energy decay will be proportional to

ðe�rt=2mÞ2

that is, e�rt=m. The larger the value of the damping force r the more rapid the decay of the

amplitude and energy. Thus we can use the exponential factor to express the rates at which

the amplitude and energy are reduced.

τ′ τ′2
t

r t
2m

r  
2

4m 
2

s
m 

e

<

D
is

pl
ac

em
en

t

−

Figure 2.4 Damped oscillatory motion where s=m > r 2=4m 2. The amplitude decays with e�rt=2m,
and the reduced angular frequency is given by ! 02 ¼ s=m � r 2=4m2
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Logarithmic Decrement

This measures the rate at which the amplitude dies away. Suppose in the expression

x ¼ A e�rt=2m sinð! 0t þ �Þ

we choose

� ¼ 	=2

and we write

x ¼ A0 e�rt=2m cos! 0t

with x ¼ A0 at t ¼ 0. Its behaviour will follow the curve in Figure 2.5.

If the period of oscillation is 
 0 where ! 0 ¼ 2	=
 0, then one period later the amplitude is

given by

A1 ¼ A0 e ð�r=2mÞ
 0

so that

A0

A1

¼ e r
 0=2m ¼ e �

A0

At

A2

t0

τ ′ τ ′

τ ′

τ ′

e
r

2m t

e
r

2m

(2    )
e

r
2m

−

−

−

Figure 2.5 The logarithmic ratio of any two amplitudes one period apart is the logarithmic
decrement, defined as � ¼ logeðAn=Anþ1Þ ¼ r
 0=2m
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where

� ¼ r

2m

 0 ¼ loge

A0

A1

is called the logarithmic decrement. (Note that this use of � differs from that in Figure 1.11).

The logarithmic decrement � is the logarithm of the ratio of two amplitudes of oscillation

which are separated by one period, the larger amplitude being the numerator since e � > 1.

Similarly

A0

A2

¼ e rð2
 0Þ=2m ¼ e2�

and

A0

An

¼ en�

Experimentally, the value of � is best found by comparing amplitudes of oscillations

which are separated by n periods. The graph of

loge

A0

An

versus n for different values of n has a slope �.

Relaxation Time or Modulus of Decay

Another way of expressing the damping effect is by means of the time taken for the

amplitude to decay to

e�1 ¼ 0:368

of its original value A0. This time is called the relaxation time or modulus of decay and the

amplitude

At ¼ A0 e�rt=2m ¼ A0 e�1

at a time t ¼ 2m=r.

Measuring the natural decay in terms of the fraction e�1 of the original value is a very

common procedure in physics. The time for a natural decay process to reach zero is, of

course, theoretically infinite.

(Problem 2.4)

The Quality Factor or Q-value of a Damped Simple Harmonic Oscillator

This measures the rate at which the energy decays. Since the decay of the amplitude is

represented by

A ¼ A0 e�rt=2m
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the decay of energy is proportional to

A2 ¼ A2
0 e ð�rt=2mÞ 2

and may be written

E ¼ E0 e ð�r=mÞt

where E0 is the energy value at t ¼ 0.

The time for the energy E to decay to E0 e�1 is given by t ¼ m=r s during which time the

oscillator will have vibrated through ! 0m=r rad.

We define the quality factor

Q ¼ ! 0m

r

as the number of radians through which the damped system oscillates as its energy

decays to

E ¼ E0 e�1

If r is small, then Q is very large and

s

m
� r 2

4m2

so that

! 0 
 !0 ¼ s

m

� �1=2

Thus, we write, to a very close approximation,

Q ¼ !0m

r

which is a constant of the damped system.

Since r=m now equals !0=Q we can write

E ¼ E0 e ð�r=mÞt ¼ E0 e�! 0t=Q

The fact that Q is a constant ð¼ !0m=rÞ implies that the ratio

energy stored in system

energy lost per cycle
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is also a constant, for

Q

2	
¼ !0m

2	r
¼ �0m

r

is the number of cycles (or complete oscillations) through which the system moves in

decaying to

E ¼ E0 e�1

and if

E ¼ E0 e ð�r=mÞt

the energy lost per cycle is

��E ¼ dE

dt
�t ¼ �r

m
E

1

� 0

where �t ¼ 1=� 0 ¼ 
 0, the period of oscillation.

Thus, the ratio

energy stored in system

energy lost per cycle
¼ E

��E
¼ � 0m

r

 �0m

r

¼ Q

2	

In the next chapter we shall meet the same quality factor Q in two other roles, the first as

a measure of the power absorption bandwidth of a damped oscillator driven near its

resonant frequency and again as the factor by which the displacement of the oscillator

is amplified at resonance.

Example on the Q-value of a Damped Simple Harmonic Oscillator

An electron in an atom which is freely radiating power behaves as a damped simple

harmonic oscillator.

If the radiated power is given by P ¼ q2!4x2
0=12	"0c3 W at a wavelength of 0.6mm

(6000 Å), show that the Q-value of the atom is about 108 and that its free radiation lifetime

is about 10�8s (the time for its energy to decay to e�1 of its original value).

q ¼ 1:6 � 10�19C

1=4	"0 ¼ 9 � 109 m F�1

me ¼ 9 � 10�31 kg

c ¼ 3 � 108 m s�1

x0 ¼ maximum amplitude of oscillation

The radiated power P is ���E, where ��E is the energy loss per cycle, and the energy of

the oscillator is given by E ¼ 1
2

me!
2x2

0.
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Thus, Q ¼ 2	E=��E ¼ �	me!
2x2

0=P, and inserting the values above with ! ¼ 2	� ¼
2	c=�, where the wavelength � is given, yields a Q value of � 5 � 107.

The relation Q ¼ !t gives t, the radiation lifetime, a value of � 10�8 s.

Energy Dissipation

We have seen that the presence of the resistive force reduces the amplitude of oscillation

with time as energy is dissipated.

The total energy remains the sum of the kinetic and potential energies

E ¼ 1
2

m _xx2 þ 1
2

sx2

Now, however, dE=dt is not zero but negative because energy is lost, so that

dE

dt
¼ d

dt
ð1

2
m _xx2 þ 1

2
sx2Þ ¼ _xxðm€xx þ sxÞ

¼ _xxð�r _xxÞ for m _xx þ r _xx þ sx ¼ 0

i.e. dE=dt ¼ �r _xx2, which is the rate of doing work against the frictional force (dimensions

of force � velocity ¼ force � distance/time).

(Problems 2.5, 2.6)

Damped SHM in an Electrical Circuit

The force equation in the mechanical oscillator is replaced by the voltage equation in the

electrical circuit of inductance, resistance and capacitance (Figure 2.6).

IR

IR

+
+

+

+ +

−
−

dI
dt

L

dI
dt

L

q
C

q
C

= 0

−

Figure 2.6 Electrical circuit of inductance, capacitance and resistance capable of damped simple
harmonic oscillations. The sum of the voltages around the circuit is given from Kirchhoff ’s law

as L
dI

dt
þ RI þ q

C
¼ 0
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We have, therefore,

L
dI

dt
þ RI þ q

C
¼ 0

or

L€qq þ R _qq þ q

C
¼ 0

and by comparison with the solutions for x in the mechanical case we know immediately

that the charge

q ¼ q0 e�Rt=2L�ðR 2=4L 2�1=LCÞ 1=2
t

which, for 1=LC > R2=4L2, gives oscillatory behaviour at a frequency

!2 ¼ 1

LC
� R2

4L2

From the exponential decay term we see that R=L has the dimensions of inverse time T �1

or !, so that !L has the dimensions of R; that is, !L is measured in ohms.

Similarly, since !2 ¼ 1=LC; !L ¼ 1=!C, so that 1=!C is also measured in ohms. We

shall use these results in the next chapter.

(Problems 2.7, 2.8, 2.9)

Problem 2.1
The heavily damped simple harmonic system of Figure 2.2 is displaced a distance F from its

equilibrium position and released from rest. Show that in the expression for the displacement

x ¼ e�ptðF cosh qt þ G sinh qtÞ

where

p ¼ r

2m
and q ¼ r 2

4m 2
� s

m

� �1=2

that the ratio

G

F
¼ r

ðr 2 � 4msÞ 1=2

Problem 2.2
Verify that the solution

x ¼ ðA þ BtÞe�rt=2m
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satisfies the equation

m€xx þ r _xx þ sx ¼ 0

when

r 2=4m2 ¼ s=m

Problem 2.3
The solution for damped simple harmonic motion is given by

x ¼ e�rt=2mðC 1 e i! 0t þ C 2 e�i! 0tÞ

If x ¼ A cos� at t ¼ 0, find the values of C 1 and C 2 to show that _xx 
 �! 0A sin� at t ¼ 0 only if r=m

is very small or � 
 	=2.

Problem 2.4
A capacitance C with a charge q 0 at t ¼ 0 discharges through a resistance R. Use the voltage

equation q=C þ IR ¼ 0 to show that the relaxation time of this process is RC s; that is,

q ¼ q0 e�t=RC

(Note that t=RC is non-dimensional.)

Problem 2.5
The frequency of a damped simple harmonic oscillator is given by

! 02 ¼ s

m
� r 2

4m2
¼ !2

0 �
r 2

4m 2

(a) If !2
0 � ! 02 ¼ 10�6!2

0 show that Q ¼ 500 and that the logarithmic decrement � ¼ 	=500.

(b) If !0 ¼ 106 and m ¼ 10�10 Kg show that the stiffness of the system is 100 N m�1, and that the

resistive constant r is 2 � 10�7 N � sm�1.

(c) If the maximum displacement at t ¼ 0 is 10�2 m, show that the energy of the system is 5 � 10�3

J and the decay to e�1 of this value takes 0.5 ms.

(d) Show that the energy loss in the first cycle is 2	� 10�5 J.

Problem 2.6
Show that the fractional change in the resonant frequency !0ð!2

0 ¼ s=mÞ of a damped simple

harmonic mechanical oscillator is 
 ð8Q 2Þ�1
where Q is the quality factor.

Problem 2.7
Show that the quality factor of an electrical LCR series circuit is Q ¼ !0L=R where !2

0 ¼ 1=LC

Problem 2.8
A plasma consists of an ionized gas of ions and electrons of equal number densities ðn i ¼ ne ¼ nÞ
having charges of opposite sign �e, and masses m i and m e, respectively, where m i > me. Relative
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displacement between the two species sets up a restoring

+
+
+
+
+
+
+
+
+

−
−
−
−
−
−
−
−
−

E

x

l

electric field which returns the electrons to equilibrium, the ions being considered stationary. In the

diagram, a plasma slab of thickness l has all its electrons displaced a distance x to give a restoring

electric field E ¼ nex=" 0, where " 0 is constant. Show that the restoring force per unit area on the

electrons is xn 2e2l=" 0 and that they oscillate simple harmonically with angular frequency !2
e ¼

ne 2=m e" 0. This frequency is called the electron plasma frequency, and only those radio waves of

frequency ! > ! e will propagate in such an ionized medium. Hence the reflection of such waves

from the ionosphere.

Problem 2.9
A simple pendulum consists of a mass m at the end of a string of length l and performs small

oscillations. The length is very slowly shortened whilst the pendulum oscillates many times at a

constant amplitude l� where � is very small. Show that if the length is changed by ��l the work

done is �mg�l (owing to the elevation of the position of equilibrium) together with an increase in

the pendulum energy

�E ¼ mg
� 2

2
� ml _��2

 !
�l

where � 2 is the average value of � 2 during the shortening. If � ¼ �0 cos!t, show that the energy of

the pendulum at any instant may be written

E ¼ ml 2!2� 2
0

2
¼ mgl� 2

0

2

and hence show that

�E

E
¼ � 1

2

�l

l
¼ ��

�

that is, E=�, the ratio of the energy of the pendulum to its frequency of oscillation remains constant

during the slowly changing process. (This constant ratio under slowly varying conditions is

important in quantum theory where the constant is written as a multiple of Planck’s constant, h.)
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Summary of Important Results

Damped Simple Harmonic Motion

Equation of motion m€xx þ r _xx þ sx ¼ 0

Oscillations when

s

m
>

r 2

4m2

Displacement x ¼ A e�rt=2m cosð! 0t þ �Þ where

! 02 ¼ s

m
� r 2

4m2

Amplitude Decay

Logarithmic decrement �—the logarithm of the ratio of two successive amplitudes one

period 
 0 apart

� ¼ loge

An

Anþ1

¼ r
 0

2m

Relaxation Time

Time for amplitude to decay to A ¼ A0 e�rt=2m ¼ A0 e�1; that is, t ¼ 2m=r

Energy Decay

Quality factor Q is the number of radians during which energy decreases to E ¼ E0 e�1

Q ¼ !0m

r
¼ 2	

energy stored in system

energy lost per cycle

E ¼ E0 e�rt=m ¼ E0 e�1 when Q ¼ !0t

In damped SHM

dE

dt
¼ ðm€xx þ sxÞ _xx ¼ �r _xx2 (work rate of resistive force)

For equivalent expressions in electrical oscillators replace m by L, r by R and s by 1=C.

Force equations become voltage equations.
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3

The Forced Oscillator

The Operation of i upon a Vector

We have already seen that a harmonic oscillation can be conveniently represented by the

form ei!t. In addition to its mathematical convenience i can also be used as a vector

operator of physical significance. We say that when i precedes or operates on a vector the

direction of that vector is turned through a positive angle (anticlockwise) of �=2, i.e. i

acting as an operator advances the phase of a vector by 90�. The operator � i rotates the

vector clockwise by �=2 and retards its phase by 90�. The mathematics of i as an operator

differs in no way from its use as
ffiffiffiffiffiffiffi
�1

p
and from now on it will play both roles.

The vector r ¼ a þ ib is shown in Figure 3.1, where the direction of b is perpendicular to

that of a because it is preceded by i. The magnitude or modulus or r is written

r ¼ jrj ¼ ða2 þ b2Þ1=2

and

r 2 ¼ ða2 þ b2Þ ¼ ða þ ibÞða � ibÞ ¼ rr	;

where ða � ibÞ ¼ r	 is defined as the complex conjugate of ða þ ibÞ; that is, the sign of i is

changed.

The vector r	 ¼ a � ib is also shown in Figure 3.1.

The vector r can be written as a product of its magnitude r (scalar quantity) and its phase

or direction in the form (Figure 3.1)

r ¼ r ei� ¼ rðcos�þ i sin�Þ
¼ a þ ib

showing that a ¼ r cos� and b ¼ r sin�.
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It follows that

cos� ¼ a

r
¼ a

ða2 þ b2Þ1=2

and

sin� ¼ b

r
¼ b

ða2 þ b2Þ1=2

giving tan� ¼ b=a.

Similarly

r	 ¼ r e�i� ¼ rðcos�� i sin�Þ

cos� ¼ a

r
; sin� ¼ �b

r
and tan� ¼ �b

a
ðFigure 3:1Þ

The reader should confirm that the operator i rotates a vector by �=2 in the positive

direction (as stated in the first paragraph of p. 53) by taking � ¼ �=2 in the expression

r ¼ r ei� ¼ rðcos �=2 þ i sin�=2Þ

Note that � ¼ ��=2 in r ¼ r e�i�=2 rotates the vector in the negative direction.

Vector form of Ohm’s Law

Ohm’s Law is first met as the scalar relation V ¼ IR, where V is the voltage across the

resistance R and I is the current through it. Its scalar form states that the voltage and current

are always in phase. Both will follow a sin ð!t þ �Þ or a cos ð!t þ �Þ curve, and the value

of � will be the same for both voltage and current.

However, the presence of either or both of the other two electrical components,

inductance L and capacitance C, will introduce a phase difference between voltage and

r

r*

a
a

ib

−ib

φ

φ

φ

φ
r = r e

i

φ
r* = r e

−i

r  cos

φir  cos

φ−ir  cos

Figure 3.1 Vector representation using i operator and exponential index. Star superscript indicates
complex conjugate where � i replaces i
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current, and Ohm’s Law takes the vector form

V ¼ IZe;

where Ze, called the impedance, replaces the resistance, and is the vector sum of the

effective resistances of R, L, and C in the circuit.

When an alternating voltage Va of frequency ! is applied across a resistance, inductance

and condenser in series as in Figure 3.2a, the balance of voltages is given by

Va ¼ IR þ L
dI

dt
þ q=C

and the current through the circuit is given by I ¼ I0 e i!t. The voltage across the inductance

VL ¼ L
dI

dt
¼ L

d

dt
I0 e i!t ¼ i!LI0 e i!t ¼ i!LI

But !L, as we saw at the end of the last chapter, has the dimensions of ohms, being the

value of the effective resistance presented by an inductance L to a current of frequency !.

The product !LI with dimensions of ohms times current, i.e. volts, is preceded by i; this

tells us that the phase of the voltage across the inductance is 90� ahead of that of the current

through the circuit.

Similarly, the voltage across the condenser is

q

C
¼ 1

C

ð
I dt ¼ 1

C
I0

ð
ei!t dt ¼ 1

i!C
I0 e i!t ¼ � iI

!C

(since 1=i ¼ �i).

Again 1=!C, measured in ohms, is the value of the effective resistance presented by the

condenser to the current of frequency !. Now, however, the voltage I=!C across the

condenser is preceded by �i and therefore lags the current by 90�. The voltage and current

across the resistance are in phase and Figure 3.2b shows that the vector form of Ohm’s

Law may be written V ¼ IZ e ¼ I½R þ ið!L � 1=!CÞ�, where the impedance Ze ¼
R þ ið!L � 1=!CÞ. The quantities !L and 1=!C are called reactances because they

+++ −−− IR

I = I0eiωt

q
C

dI
dtL

Va

Figure 3.2a An electrical forced oscillator. The voltage Va is applied to the series LCR circuit giving
Va ¼ Ld I=dt þ IR þ q=C
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introduce a phase relationship as well as an effective resistance, and the bracket

ð!L � 1=!CÞ is often written Xe, the reactive component of Z e.

The magnitude, in ohms, i.e. the value of the impedance, is

Ze ¼ R2 þ !L � 1

!C

� �2
" #1=2

and the vector Ze may be represented by its magnitude and phase as

Ze ¼ Ze ei� ¼ Zeðcos�þ i sin�Þ

so that

cos� ¼ R

Ze

; sin� ¼ Xe

Ze

and

tan� ¼ Xe=R;

where � is the phase difference between the total voltage across the circuit and the current

through it.

The value of � can be positive or negative depending on the relative value of !L and

1=!C: when !L > 1=!C; � is positive, but the frequency dependence of the components

show that � can change both sign and size.

The magnitude of Z e is also frequency dependent and has its minimum value Ze ¼ R

when !L ¼ 1=!C.

In the vector form of Ohm’s Law, V ¼ IZe. If V ¼ V0 e i!t and Ze ¼ Ze ei�, then we have

I ¼ V0 e i!t

Ze ei�
¼ V0

Ze

eið!t��Þ

giving a current of amplitude V0=Ze which lags the voltage by a phase angle �.

The Impedance of a Mechanical Circuit

Exactly similar arguments hold when we consider not an electrical oscillator but a

mechanical circuit having mass, stiffness and resistance.

R

iωL iXe =i   ωL −        

ωC−i
1

ωC
1 i  ωL −        ωC

1
φ
R

Ze

Figure 3.2b Vector addition of resistance and reactances to give the electrical impedance Ze ¼
R þ ið!L � 1=!CÞ
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The mechanical impedance is defined as the force required to produce unit velocity in

the oscillator, i.e. Zm ¼ F=v or F ¼ vZm.

Immediately, we can write the mechanical impedance as

Zm ¼ r þ i !m � s

!

� �
¼ r þ iXm

where

Zm ¼ Zm ei�

and

tan� ¼ Xm=r

� being the phase difference between the force and the velocity. The magnitude of Zm ¼
½r 2 þ ð!m � s=!Þ2�1=2

.

Mass, like inductance, produces a positive reactance, and the stiffness behaves in exactly

the same way as the capacitance.

Behaviour of a Forced Oscillator

We are now in a position to discuss the physical behaviour of a mechanical oscillator of

mass m, stiffness s and resistance r being driven by an alternating force F0 cos!t, where F0

is the amplitude of the force (Figure 3.3). The equivalent electrical oscillator would be an

alternating voltage V0 cos!t applied to the circuit of inductance L, capacitance C and

resistance R in Figure 3.2a.

The mechanical equation of motion, i.e. the dynamic balance of forces, is given by

m€xx þ r _xx þ sx ¼ F0 cos!t

and the voltage equation in the electrical case is

L€qq þ R _qq þ q=C ¼ V0 cos!t

We shall analyse the behaviour of the mechanical system but the analysis fits the electrical

oscillator equally well.

mr

s

F0 cos ωt

Figure 3.3 Mechanical forced oscillator with force F0 cos!t applied to damped mechanical circuit
of Figure 2.1
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The complete solution for x in the equation of motion consists of two terms:

(1) a ‘transient’ term which dies away with time and is, in fact, the solution to the equation

m€xx þ r _xx þ sx ¼ 0 discussed in Chapter 2. This contributes the term

x ¼ C e�rt=2m eiðs=m�r 2=4m 2Þ 1=2
t

which decays with e�rt=2m. The second term

(2) is called the ‘steady state’ term, and describes the behaviour of the oscillator after the

transient term has died away.

Both terms contribute to the solution initially, but for the moment we shall concentrate

on the ‘steady state’ term which describes the ultimate behaviour of the oscillator.

To do this we shall rewrite the force equation in vector form and represent cos!t by ei!t

as follows:

m€xx þ r _xx þ sx ¼ F0 e i!t ð3:1Þ

Solving for the vector x will give both its magnitude and phase with respect to the driving

force F0 e i!t. Initially, let us try the solution x ¼ A ei!t, where A may be complex, so that it

may have components in and out of phase with the driving force.

The velocity

_xx ¼ i!A ei!t ¼ i!x

so that

€xx ¼ i 2!2x ¼ �!2x

and equation (3.1) becomes

ð�A!2m þ i!Ar þ AsÞ ei!t ¼ F0 e i!t

which is true for all t when

A ¼ F0

i!r þ ðs � !2mÞ

or, after multiplying numerator and denominator by �i

A ¼ �iF0

!½r þ ið!m � s=!Þ� ¼
�iF0

!Zm

Hence

x ¼ A e i!t ¼ �iF0 e i!t

!Zm

¼ �iF0 e i!t

!Zm ei�

¼ �iF0 e ið!t��Þ

!Zm
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where

Zm ¼ ½r 2 þ ð!m � s=!Þ2�1=2

This vector form of the steady state behaviour of x gives three pieces of information and

completely defines the magnitude of the displacement x and its phase with respect to the

driving force after the transient term dies away. It tells us

1. That the phase difference � exists between x and the force because of the reactive part

ð!m � s=!Þ of the mechanical impedance.

2. That an extra difference is introduced by the factor �i and even if � were zero the

displacement x would lag the force F0 cos!t by 90�.

3. That the maximum amplitude of the displacement x is F0=!Zm. We see that this is

dimensionally correct because the velocity x=t has dimensions F0=Zm.

Having used F0 e i!t to represent its real part F0 cos!t, we now take the real part of the

solution

x ¼ �iF0 e ið!t��Þ

!Zm

to obtain the actual value of x. (If the force had been F0 sin!t, we would now take that part

of x preceded by i.)

Now

x ¼ � iF0

!Zm

eið!t��Þ

¼ � iF0

!Zm

½cos ð!t � �Þ þ i sin ð!t � �Þ�

¼ � iF0

!Zm

cos ð!t � �Þ þ F0

!Zm

sin ð!t � �Þ

The value of x resulting from F0 cos!t is therefore

x ¼ F0

!Zm

sin ð!t � �Þ

[the value of x resulting from F0 sin!t would be �F0 cos ð!t � �Þ=!Zm�.
Note that both of these solutions satisfy the requirement that the total phase difference

between displacement and force is � plus the ��=2 term introduced by the �i factor. When

� ¼ 0 the displacement x ¼ F0 sin!t=!Zm lags the force F0 cos!t by exactly 90�.
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To find the velocity of the forced oscillation in the steady state we write

v ¼ _xx ¼ ði!Þ ð�iF0Þ
!Zm

eið!t��Þ

¼ F0

Zm

eið!t��Þ

We see immediately that

1. There is no preceding i factor so that the velocity v and the force differ in phase only

by �, and when � ¼ 0 the velocity and force are in phase.

2. The amplitude of the velocity is F0=Zm, which we expect from the definition of

mechanical impedance Zm ¼ F=v.

Again we take the real part of the vector expression for the velocity, which will

correspond to the real part of the force F0 e i!t. This is

v ¼ F0

Zm

cos ð!t � �Þ

Thus, the velocity is always exactly 90� ahead of the displacement in phase and differs

from the force only by a phase angle �, where

tan� ¼ !m � s=!

r
¼ Xm

r

so that a force F0 cos!t gives a displacement

x ¼ F0

!Zm

sin ð!t � �Þ

and a velocity

v ¼ F0

Zm

cos ð!t � �Þ

(Problems 3.1, 3.2, 3.3, 3.4)

Behaviour of Velocity vv in Magnitude and Phase versus Driving
Force Frequency x

The velocity amplitude is

F0

Zm

¼ F0

½r 2 þ ð!m � s=!Þ2�1=2

so that the magnitude of the velocity will vary with the frequency ! because Zm is

frequency dependent.

60 The Forced Oscillator



At low frequencies, the term �s=! is the largest term in Zm and the impedance is said to

be stiffness controlled. At high frequencies !m is the dominant term and the impedance is

mass controlled. At a frequency !0 where !0m ¼ s=!0, the impedance has its minimum

value Zm ¼ r and is a real quantity with zero reactance.

The velocity F0=Zm then has its maximum value v ¼ F0=r, and !0 is said to be the

frequency of velocity resonance. Note that tan� ¼ 0 at !0, the velocity and force being in

phase.

The variation of the magnitude of the velocity with driving frequency, !, is shown in

Figure 3.4, the height and sharpness of the peak at resonance depending on r, which is the

only effective term of Zm at !0.

The expression

v ¼ F0

Zm

cos ð!t � �Þ

where

tan� ¼ !m � s=!

r

shows that for positive �; that is, !m > s=!, the velocity v will lag the force because ��
appears in the argument of the cosine. When the driving force frequency ! is very high and

!! 1, then �! 90� and the velocity lags the force by that amount.

When !m < s=!; � is negative, the velocity is ahead of the force in phase, and at low

driving frequencies as !! 0 the term s=!! 1 and �! �90�.
Thus, at low frequencies the velocity leads the force (� negative) and at high frequencies

the velocity lags the force (� positive).

At the frequency !0, however, !0m ¼ s=!0 and � ¼ 0, so that velocity and force are in

phase. Figure 3.5 shows the variation of � with ! for the velocity, the actual shape of the

curves depending upon the value of r.

V
el

oc
ity

F0
r

ω0 = (s/m)

ω
1
2

Figure 3.4 Velocity of forced oscillator versus driving frequency !. Maximum velocity vmax ¼ F0=r
at !2

0 ¼ s=m
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(Problem 3.5)

Behaviour of Displacement versus Driving Force Frequency x

The phase of the displacement

x ¼ F0

!Zm

sin ð!t � �Þ

is at all times exactly 90� behind that of the velocity. Whilst the graph of � versus !
remains the same, the total phase difference between the displacement and the force

involves the extra 90� retardation introduced by the �i operator. Thus, at very low

frequencies, where � ¼ ��=2 rad and the velocity leads the force, the displacement and

the force are in phase as we should expect. At high frequencies the displacement lags the

force by � rad and is exactly out of phase, so that the curve showing the phase angle

between the displacement and the force is equivalent to the � versus ! curve, displaced by

an amount equal to �=2 rad. This is shown in Figure 3.6.

The amplitude of the displacement x ¼ F0=!Zm, and at low frequencies Zm ¼
½r 2 þ ð!m � s=!Þ2�1=2 ! s=!, so that x � F0=ð!s=!Þ ¼ F0=s:

Total phase
angle (radians)
between
x and F

x and F in phase

x lags F by      rad

x lags F 

π
2

π
2

π
2

−

π
2

−0

ω0

r increasing
Phase angle
   (red)φ0ω

− π

Figure 3.6 Variation of total phase angle between displacement and driving force versus driving
frequency !. The total phase angle is ��� �=2 rad

Phase angle
   (radians)
between
V and F

0

π
2

π
2

v leads F

v lags F

r increasing

v and F
in phase

+

ω
φ

−

Figure 3.5 Variation of phase angle � versus driving frequency, where � is the phase angle between
the velocity of the forced oscillator and the driving force. � ¼ 0 at velocity resonance. Each curve
represents a fixed resistance value
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At high frequencies Zm ! !m, so that x � F0=ð!2mÞ, which tends to zero as ! becomes

very large. At very high frequencies, therefore, the displacement amplitude is almost zero

because of the mass-controlled or inertial effect.

The velocity resonance occurs at !2
0 ¼ s=m, where the denominator Zm of the velocity

amplitude is a minimum, but the displacement resonance will occur, since x ¼ ðF0=!ZmÞ
sin ð!t � �Þ, when the denominator !Zm is a minimum. This takes place when

d

d!
ð!ZmÞ ¼

d

d!
!½r 2 þ ð!m � s=!Þ2�1=2 ¼ 0

i.e. when

2!r 2 þ 4!mð!2m � sÞ ¼ 0

or

2!½r 2 þ 2mð!2m � sÞ� ¼ 0

so that either

! ¼ 0

or

!2 ¼ s

m
� r 2

2m2
¼ !2

0 �
r 2

2m2

Thus the displacement resonance occurs at a frequency slightly less than !0, the

frequency of velocity resonance. For a small damping constant r or a large mass m these

two resonances, for all practical purposes, occur at the frequency !0.

Denoting the displacement resonance frequency by

! r ¼
s

m
� r 2

2m2

� �1=2

we can write the maximum displacement as

xmax ¼ F0

! rZm

The value of ! rZm at ! r is easily shown to be equal to ! 0r where

! 02 ¼ s

m
� r 2

4m2
¼ !2

0 �
r 2

4m2

The value of x at displacement resonance is therefore given by

xmax ¼ F0

! 0r

where

! 0 ¼ !2
0 �

r 2

4m2

� �1=2
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Since xmax ¼ F0=!
0r at resonance, the amplitude at resonance is kept low by increasing

r and the variation of x with ! for different values of r is shown in Figure 3.7. A negligible

value of r produces a large amplification at resonance: this is the basis of high selectivity in

a tuned radio circuit (see the section in this chapter on Q as an amplification factor).

Keeping the resonance amplitude low is the principle of vibration insulation.

(Problems 3.6, 3.7)

Problem on Vibration Insulation

A typical vibration insulator is shown in Figure 3.8. A heavy base is supported on a

vibrating floor by a spring system of stiffness s and viscous damper r. The insulator will

generally operate at the mass controlled end of the frequency spectrum and the resonant

frequency is designed to be lower than the range of frequencies likely to be met. Suppose

the vertical vibration of the floor is given by x ¼ A cos!t about its equilibrium position and

y is the corresponding vertical displacement of the base about its rest position. The function

of the insulator is to keep the ratio y=A to a minimum.

The equation of motion is given by

m€yy ¼ �rð _yy � _xxÞ � sðy � xÞ

ωω0

F0

S

D
is

pl
ac

em
en

t x

r increasing

Figure 3.7 Variation of the displacement of a forced oscillator versus driving force frequency ! for
various values of r
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which, if y � x ¼ X, becomes

m€XX þ r _XX þ sX ¼ �m€xx ¼ mA!2 cos!t

¼ F0 cos!t;

where

F0 ¼ mA!2

Use the steady state solution of X to show that

y ¼ F0

!Zm

sin ð!t � �Þ þ A cos!t

and (noting that y is the superposition of two harmonic components with a constant phase

difference) show that

ymax

A
¼ ðr 2 þ s2=!2Þ1=2

Zm

where

Z 2
m ¼ r 2 þ ð!m � s=!Þ2

Note that

ymax

A
> 1 if !2 <

2s

m

r

y

Vibrating floor

x = A cos ωt

Fixed reference level

Heavy base

Equilibrium
rest position
of base

Figure 3.8 Vibration insulator. A heavy base supported by a spring and viscous damper system on a
vibrating floor
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so that s=m should be as low as possible to give protection against a given frequency !.

(a) Show that

ymax

A
¼ 1 for !2 ¼ 2s

m

(b) Show that

ymax

A
< 1 for !2 >

2s

m

(c) Show that if !2 ¼ s=m, then ymax=A > 1 but that the damping term r is helpful in

keeping the motion of the base to a reasonably low level.

(d) Show that if !2 > 2s=m, then ymax=A < 1 but damping is detrimental.

Significance of the Two Components of the Displacement Curve

Any single curve of Figure 3.7 is the superposition of the two component curves (a) and (b)

in Figure 3.9, for the displacement x may be rewritten

x ¼ F0

!Zm

sin ð!t � �Þ ¼ F0

!Zm

ðsin!t cos�� cos!t sin�Þ

(b)
F0
ω

ω

r

r

r 
2 + Xm 

2

2m

(a)
F0
ω

ω0 ω0 ω0

r 
2 +

+

Xm 
2

Xm 

F0 
l ω′r

F0 
l ω0r

F0 
l 2ω0r

F0 

S

r
2m

−

−

Figure 3.9 A typical curve of Figure 3.7 resolved into its ‘anti-phase’ component (curve (a)) and its
‘90� out of phase’ component (curve (b)). Curve (b) represents the resistive fraction of the
impedance and curve (a) the reactive fraction. Curve (b) corresponds to absorption and curve (a) to
anomalous dispersion of an electromagnetic wave in a medium having an atomic or molecular resonant
frequency equal to the frequency of the wave
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or, since

cos� ¼ r

Zm

and sin� ¼ Xm

Zm

as

x ¼ F0

!Zm

r

Zm

sin!t � F0

!Zm

Xm

Zm

cos!t

The cos!t component (with a negative sign) is exactly anti-phase with respect to the

driving force F0 cos!t. Its amplitude, plotted as curve (a) may be expressed as

�F0

!

Xm

Z 2
m

¼ F0 mð!2
0 � !2Þ

m2ð!2
0 � !2Þ2 þ !2r 2

ð3:2Þ

where !2
0 ¼ s=m and !0 is the frequency of velocity resonance.

The sin!t component lags the driving force F0 cos!t by 90�. Its amplitude plotted as

curve (b) becomes

F0

!

r

r 2 þ X 2
m

¼ F0!r

m2ð!2
0 � !2Þ2 þ !2r 2

We see immediately that at !0 curve (a) is zero and curve (b) is near its maximum but they

combine to give a maximum at ! where

!2 ¼ !2
0 �

r 2

2m2

the resonant frequency for amplitude displacement.

These curves are particularly familiar in the study of optical dispersion where the forced

oscillator is an electron in an atom and the driving force is the oscillating field vector of an

electromagnetic wave of frequency !. When ! is the resonant frequency of the electron in

the atom, the atom absorbs a large amount of energy from the electromagnetic wave and

curve (b) is the shape of the characteristic absorption curve. Note that curve (b) represents

the dissipating or absorbing fraction of the impedance

r

ðr 2 þ X 2
mÞ

1=2

and that part of the displacement which lags the driving force by 90�. The velocity

associated with this component will therefore be in phase with the driving force and it is

this part of the velocity which appears in the energy loss term r _xx2 due to the resistance of

the oscillator and which gives rise to absorption.
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On the other hand, curve (a) represents the reactive or energy storing fraction of the

impedance

Xm

ðr 2 þ X 2
mÞ

1=2

and the reactive components in a medium determine the velocity of the waves in

the medium which in turn governs the refractive index n. In fact, curve (a) is a graph of the

value of n2 in a region of anomalous dispersion where the ! axis represents the value

n ¼ 1. These regions occur at every resonant frequency of the constituent atoms of

the medium. We shall return to this topic later in the book.

(Problems 3.8, 3.9, 3.10)

Power Supplied to Oscillator by the Driving Force

In order to maintain the steady state oscillations of the system the driving force must

replace the energy lost in each cycle because of the presence of the resistance. We shall

now derive the most important result that:

‘in the steady state the amplitude and phase of a driven oscillator adjust themselves so

that the average power supplied by the driving force just equals that being dissipated by the

frictional force’.

The instantaneous power P supplied is equal to the product of the instantaneous driving

force and the instantaneous velocity; that is,

P ¼ F0 cos!t
F0

Zm

cos ð!t � �Þ

¼ F 2
0

Zm

cos!t cos ð!t � �Þ

The average power

Pav ¼ total work per oscillation

oscillation period

;Pav ¼
ð T

0

P dt

T
where T ¼ oscillation period

¼ F 2
0

ZmT

ð T

0

cos!t cos ð!t � �Þ dt

¼ F 2
0

ZmT

ð T

0

½cos2!t cos�þ cos!t sin!t sin�Þ dt

¼ F 2
0

2Zm

cos�
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because ð T

0

cos!t � sin!t dt ¼ 0

and

1

T

ð T

0

cos2 !t dt ¼ 1

2

The power supplied by the driving force is not stored in the system, but dissipated as

work expended in moving the system against the frictional force r _xx.

The rate of working (instantaneous power) by the frictional force is

ðr _xxÞ _xx ¼ r _xx2 ¼ r
F 2

0

Z 2
m

cos2ð!t � �Þ

and the average value of this over one period of oscillation

1

2

rF 2
0

Z 2
m

¼ 1

2

F 2
0

Zm

cos� for
r

Zm

¼ cos�

This proves the initial statement that the power supplied equals the power dissipated.

In an electrical circuit the power is given by VI cos�, where V and I are the instantaneous

r.m.s. values of voltage and current and cos� is known as the power factor.

VI cos� ¼ V 2

Ze

cos� ¼ V 2
0

2Ze

cos�

since

V ¼ V0ffiffiffi
2

p

(Problem 3.11)

Variation of Pav with x. Absorption Resonance Curve

Returning to the mechanical case, we see that the average power supplied

P av ¼ ðF 2
0=2ZmÞ cos�

is a maximum when cos� ¼ 1; that is, when � ¼ 0 and !m � s=! ¼ 0 or !2
0 ¼ s=m. The

force and the velocity are then in phase and Zm has its minimum value of r. Thus

P av(maximum) ¼ F 2
0=2r
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A graph of P av versus !, the frequency of the driving force, is shown in Figure 3.10. Like

the curve of displacement versus !, this graph measures the response of the oscillator; the

sharpness of its peak at resonance is also determined by the value of the damping constant

r, which is the only term remaining in Zm at the resonance frequency !0. The peak occurs

at the frequency of velocity resonance when the power absorbed by the system from the

driving force is a maximum; this curve is known as the absorption curve of the oscillator

(it is similar to curve (b) of Figure 3.9).

The Q-Value in Terms of the Resonance Absorption Bandwidth

In the last chapter we discussed the quality factor of an oscillator system in terms of energy

decay. We may derive the same parameter in terms of the curve of Figure 3.10, where the

sharpness of the resonance is precisely defined by the ratio

Q ¼ !0

!2 � !1

;

where !2 and !1 are those frequencies at which the power supplied

P av ¼ 1
2

P av(maximum)

The frequency difference !2 � !1 is often called the bandwidth.

ω0 ω2 ωω1

  F 0
2

 Pav(max)

2r

4r

=

F 0
2

Figure 3.10 Graph of average power versus ! supplied to an oscillator by the driving force.
Bandwidth !2 � !1 of resonance curve defines response in terms of the quality factor, Q ¼
!0=ð!2 � !1Þ, where !2

0 ¼ s=m
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Now

P av ¼ rF 2
0=2Z 2

m ¼ 1
2

P av (maximum) ¼ 1
2

F 2
0=2r

when

Z 2
m ¼ 2r 2

that is, when

r 2 þ X 2
m ¼ 2r 2 or Xm ¼ !m � s=! ¼ �r:

If !2 > !1, then

!2m � s=!2 ¼ þr

and

!1m � s=!1 ¼ �r

Eliminating s between these equations gives

!2 � !1 ¼ r=m

so that

Q ¼ !0m=r

Note that !1 ¼ !0 � r=2m and !2 ¼ !0 þ r=2m are the two significant frequencies in

Figure 3.9. The quality factor of an electrical circuit is given by

Q ¼ !0L

R
;

where

!2
0 ¼ ðLCÞ�1

Note that for high values of Q, where the damping constant r is small, the frequency ! 0

used in the last chapter to define Q ¼ ! 0m=r moves very close to the frequency !0, and the

two definitions of Q become equivalent to each other and to the third definition we meet in

the next section.

The Q-Value as an Amplification Factor

We have seen that the value of the displacement at resonance is given by

Amax ¼ F0

! 0r
where ! 02 ¼ s

m
� r 2

4m2
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At low frequencies ð!! 0Þ the displacement has a value A0 ¼ F0=s, so that

Amax

A0

� �2

¼ F 2
0

! 02r 2

s2

F 2
0

¼ m2!4
0

r 2½!2
0 � r 2=4m2�

¼ ! 2
0 m2

r 2½1 � 1=4Q2�1=2�
¼ Q2

½1 � 1=4Q2�

Hence:

Amax

A0

¼ Q

½1 � 1=4Q2�1=2
� Q 1 þ 1

8Q2

	 

� Q

for large Q.
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Figure 3.11 Curves of Figure 3.7 now given in terms of the quality factor Q of the system, where Q
is amplification at resonance of low frequency response x ¼ F0=s
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Thus, the displacement at low frequencies is amplified by a factor of Q at displacement

resonance.

Figure 3.7 is now shown as Figure 3.11 where the Q-values have been attached to each

curve. In tuning radio circuits, the Q-value is used as a measure of selectivity, where

the sharpness of response allows a signal to be obtained free from interference from signals

at nearby frequencies. In conventional radio circuits at frequencies of one megacycle,

Tr
an

si
en

t v
ec

to
r

A2

A3A4A0

A1

A2

A3

A4

A1

BOB

Steady state vector

0

(b)

(a)

At t = 0 , transient vector = BO = BA0

t = 0
t

Figure 3.12 (a) The steady state oscillation (heavy curve) is modulated by the transient which
decays exponentially with time. (b) In the vector diagram of (b) OB is the constant length steady
state vector and BA1 is the transient vector. Each vector rotates anti-clockwise with its own angular
velocity. At t ¼ 0 the vectors OB and BA0 are equal and opposite on the horizontal axis and their
vector sum is zero. At subsequent times the total amplitude is the length of OA1 which changes as A
traces a contracting spiral around B. The points A1, A2, A3 and A4 indicate how the amplitude is
modified in (a)
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Q-values are of the order of a few hundred; at higher radio frequencies resonant copper

cavities have Q-values of about 30 000 and piezo-electric crystals can produce Q-values of

500 000. Optical absorption in crystals and nuclear magnetic resonances are often

described in terms of Q-values. The Mössbauer effect in nuclear physics involves Q-values

of 1010.

The Effect of the Transient Term

Throughout this chapter we have considered only the steady state behaviour without

accounting for the transient term mentioned on p. 58. This term makes an initial

contribution to the total displacement but decays with time as e�rt=2m. Its effect is best

displayed by considering the vector sum of the transient and steady state components.

The steady state term may be represented by a vector of constant length rotating

anticlockwise at the angular velocity ! of the driving force. The vector tip traces a circle.

Upon this is superposed the transient term vector of diminishing length which rotates anti

clockwise with angular velocity ! 0 ¼ ðs=m � r 2=4m2Þ1=2
. Its tip traces a contracting spiral.

The locus of the magnitude of the vector sum of these terms is the envelope of the

varying amplitudes of the oscillator. This envelope modulates the steady state oscillations

of frequency ! at a frequency which depends upon ! 0 and the relative phase between !t

and ! 0t.
Thus, in Figure 3.12(a) where the total oscillator displacement is zero at time t ¼ 0 we

have the steady state and transient vectors equal and opposite in Figure 3.12(b) but because

! 6¼ ! 0 the relative phase between the vectors will change as the transient term decays.

The vector tip of the transient term is shown as the dotted spiral and the total amplitude

assumes the varying lengths OA1, OA2, OA3, OA4, etc.

(Problems 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18)

Problem 3.1
Show, if F0 e i!t represents F0 sin!t in the vector form of the equation of motion for the forced

oscillator that

x ¼ � F0

!Zm

cos ð!t � �Þ

and the velocity

v ¼ F0

Zm

sin ð!t � �Þ

Problem 3.2
The displacement of a forced oscillator is zero at time t ¼ 0 and its rate of growth is governed by the

rate of decay of the transient term. If this term decays to e�k of its original value in a time t show

that, for small damping, the average rate of growth of the oscillations is given by x 0=t ¼ F0=2km!0

where x 0 is the maximum steady state displacement, F0 is the force amplitude and !2
0 ¼ s=m.
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Problem 3.3
The equation m€xx þ sx ¼ F0 sin!t describes the motion of an undamped simple harmonic oscillator

driven by a force of frequency !. Show, by solving the equation in vector form, that the steady state

solution is given by

x ¼ F 0 sin!t

mð!2
0 � !2Þ where !2

0 ¼ s

m

Sketch the behaviour of the amplitude of x versus ! and note that the change of sign as ! passes

through !0 defines a phase change of � rad in the displacement. Now show that the general solution

for the displacement is given by

x ¼ F0 sin!t

mð!2
0 � !2Þ þ A cos!0t þ B sin!0t

where A and B are constant.

Problem 3.4
In problem 3.3, if x ¼ _xx ¼ 0 at t ¼ 0 show that

x ¼ F0

m

1

ð!2
0 � !2Þ sin!t � !

!0

sin!0t

� �

and, by writing ! ¼ !0 þ�! where �!=! 0 � 1 and �!t � 1, show that near resonance,

x ¼ F0

2m!2
0

ðsin! 0t � !0t cos!0tÞ

Sketch this behaviour, noting that the second term increases with time, allowing the oscillations to

grow (resonance between free and forced oscillations). Note that the condition �!t � 1 focuses

attention on the transient.

Problem 3.5
What is the general expression for the acceleration _vv of a simple damped mechanical oscillator

driven by a force F0 cos!t? Derive an expression to give the frequency of maximum acceleration

and show that if r ¼ ffiffiffiffiffiffi
sm

p
, then the acceleration amplitude at the frequency of velocity resonance

equals the limit of the acceleration amplitude at high frequencies.

Problem 3.6
Prove that the exact amplitude at the displacement resonance of a driven mechanical oscillator may

be written x ¼ F0=!
0r where F0 is the driving force amplitude and

! 02 ¼ s

m
� r 2

4m2

Problem 3.7
In a forced mechanical oscillator show that the following are frequency independent (a) the

displacement amplitude at low frequencies (b) the velocity amplitude at velocity resonance and (c)

the acceleration amplitude at high frequencies, ð!! 1Þ.
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Problem 3.8
In Figure 3.9 show that for small r, the maximum value of curve (a) is � F0=2!0r at

!1 ¼ !0 � r=2m and its minimum value is � �F0=2!0r at !2 ¼ !0 þ r=2m.

Problem 3.9
The equation €xx þ !2

0x ¼ ð�eE 0=mÞ cos!t describes the motion of a bound undamped electric

charge �e of mass m under the influence of an alternating electric field E ¼ E0 cos!t. For an

electron number density n show that the induced polarizability per unit volume (the dynamic

susceptibility) of a medium


 e ¼ � n ex

"0E
¼ n e 2

" 0mð! 2
0 � !2Þ

(The permittivity of a medium is defined as " ¼ " 0ð1 þ 
Þ where " 0 is the permittivity of free space.

The relative permittivity " r ¼ "=" 0 is called the dielectric constant and is the square of the refractive

index when E is the electric field of an electromagnetic wave.)

Problem 3.10
Repeat Problem 3.9 for the case of a damped oscillatory electron, by taking the displacement x as the

component represented by curve (a) in Figure 3.9 to show that

" r ¼ 1 þ 
 ¼ 1 þ n e 2mð!2
0 � !2Þ

" 0½m 2ð!2
0 � !2Þ2 þ ! 2r 2�

In fact, Figure 3.9(a) plots " r ¼ "=" 0. Note that for

!� !0; " r � 1 þ n e2

" 0 m!2
0

and for

!� !0; " r � 1 � n e2

" 0 m!2

Problem 3.11
Show that the energy dissipated per cycle by the frictional force r _xx at an angular frequency ! is given

by �r!x 2
max.

Problem 3.12
Show that the bandwidth of the resonance absorption curve defines the phase angle range

tan� ¼ �1.

Problem 3.13
An alternating voltage, amplitude V 0 is applied across an LCR series circuit. Show that the voltage at

current resonance across either the inductance or the condenser is QV 0.
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Problem 3.14
Show that in a resonant LCR series circuit the maximum potential across the condenser occurs at a

frequency ! ¼ !0ð1 � 1=2Q 2
0Þ

1=2
where !2

0 ¼ ðLCÞ�1
and Q0 ¼ !0L=R.

Problem 3.15
In Problem 3.14 show that the maximum potential across the inductance occurs at a frequency

! ¼ !0ð1 � 1=2Q 2
0Þ

�1=2
.

Problem 3.16
Light of wavelength 0.6 mm (6000 Å) is emitted by an electron in an atom behaving as a lightly

damped simple harmonic oscillator with a Q-value of 5 � 107. Show from the resonance bandwidth

that the width of the spectral line from such an atom is 1:2 � 10�14 m.

Problem 3.17
If the Q-value of Problem 3.6 is high show that the width of the displacement resonance curve is

approximately
ffiffiffi
3

p
r=m where the width is measured between those frequencies where x ¼ xmax=2.

Problem 3.18
Show that, in Problem 3.10, the mean rate of energy absorption per unit volume; that is, the power

supplied is

P ¼ n e2E 2
0

2

!2r

m2ð!2
0 � !2Þ 2 þ !2r 2

Summary of Important Results

Mechanical Impedance Zm ¼ F=v (force per unit velocity)

Zm ¼ Zm ei� ¼ r þ ið!m � s=!Þ

where Z 2
m ¼ r 2 þ ð!m � s=!Þ2

sin� ¼ !m � s=!

Zm

; cos� ¼ r

Zm

; tan� ¼ !m � s=!

r

� is the phase angle between the force and velocity.

Forced Oscillator

Equation of motion m€xx þ r _xx þ sx ¼ F0 cos!t

(Vector form) m€xx þ r _xx þ sx ¼ F0 e i!t

Use x ¼ A ei!t to give steady state displacement

x ¼ �i
F0

!Zm

eið!t��Þ
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and velocity

_xx ¼ v ¼ F0

Zm

e ið!t��Þ

When F0 e i!t represents F0 cos!t

x ¼ F0

!Zm

sin ð!t � �Þ

v ¼ F0

Zm

cos ð!t � �Þ

Maximum velocity ¼ F0

r
at velocity resonant frequency !0 ¼ ðs=mÞ1=2

Maximum displacement ¼ F0

! 0r
where ! 0 ¼ ðs=m � r 2=4m2Þ1=2

at displacement

resonant frequency ! ¼ ðs=m � r 2=2m2Þ1=2

Power Absorbed by Oscillator from Driving Force

Oscillator adjusts amplitude and phase so that power supplied equals power dissipated.

Power absorbed ¼ 1
2
ðF 2

0=ZmÞ cos� (cos f is power factor)

Maximum power absorbed ¼ F 2
0

2r
at !0

Maxmium power

2
absorbed ¼ F 2

0

4r
at !1 ¼ !0 �

r

2m
and !2 ¼ !0 þ

r

2m

Quality factor Q ¼ !0m

r
¼ !0

!2 � !1

Q ¼ maximum displacement at displacement resonance

displacement as !! 0

¼ AðmaxÞ
F0=s

For equivalent expressions for electrical oscillators replace m by L, r by R, s by 1=C and F0

by V0 (voltage).
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4

Coupled Oscillations

The preceding chapters have shown in some detail how a single vibrating system will

behave. Oscillators, however, rarely exist in complete isolation; wave motion owes its

existence to neighbouring vibrating systems which are able to transmit their energy to each

other.

Such energy transfer takes place, in general, because two oscillators share a common

component, capacitance or stiffness, inductance or mass, or resistance. Resistance coupling

inevitably brings energy loss and a rapid decay in the vibration, but coupling by either of

the other two parameters consumes no power, and continuous energy transfer over many

oscillators is possible. This is the basis of wave motion.

We shall investigate first a mechanical example of stiffness coupling between two

pendulums. Two atoms set in a crystal lattice experience a mutual coupling force and

would be amenable to a similar treatment. Then we investigate an example of mass, or

inductive, coupling, and finally we consider the coupled motion of an extended array of

oscillators which leads us naturally into a discussion on wave motion.

Stiffness (or Capacitance) Coupled Oscillators

Figure 4.1 shows two identical pendulums, each having a mass m suspended on a light rigid

rod of length l. The masses are connected by a light spring of stiffness s whose natural

length equals the distance between the masses when neither is displaced from equilibrium.

The small oscillations we discuss are restricted to the plane of the paper.

If x and y are the respective displacements of the masses, then the equations of

motion are

m€xx ¼ �mg
x

l
� sðx � yÞ

and

m€yy ¼ �mg
y

l
þ sðx � yÞ
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These represent the normal simple harmonic motion terms of each pendulum plus a coup-

ling term sðx � yÞ from the spring. We see that if x > y the spring is extended beyond its

normal length and will act against the acceleration of x but in favour of the acceleration of y.

Writing !2
0 ¼ g=l, where !0 is the natural vibration frequency of each pendulum, gives

€xx þ !2
0 x ¼ � s

m
ðx � yÞ ð4:1Þ

€yy þ !2
0 y ¼ � s

m
ðy � xÞ ð4:2Þ

Instead of solving these equations directly for x and y we are going to choose two new

coordinates

X ¼ x þ y

Y ¼ x � y

The importance of this approach will emerge as this chapter proceeds. Adding equations

(4.1) and (4.2) gives

€xx þ €yy þ !2
0ðx þ yÞ ¼ 0

that is

€XX þ !2
0X ¼ 0

and subtracting (4.2) from (4.1) gives

€YY þ ð!2
0 þ 2s=mÞY ¼ 0

The motion of the coupled system is thus described in terms of the two coordinates X and Y,

each of which has an equation of motion which is simple harmonic.

If Y ¼ 0, x ¼ y at all times, so that the motion is completely described by the equation

€XX þ !2
0 X ¼ 0

then the frequency of oscillation is the same as that of either pendulum in isolation and the

stiffness of the coupling has no effect. This is because both pendulums are always swinging

in phase (Figure 4.2a) and the light spring is always at its natural length.

y

s

l l

x

Figure 4.1 Two identical pendulums, each a light rigid rod of length l supporting a mass m and
coupled by a weightless spring of stiffness s and of natural length equal to the separation of the
masses at zero displacement
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If X ¼ 0, x ¼ �y at all times, so that the motion is completely described by

€YY þ ð!2
0 þ 2s=mÞY ¼ 0

The frequency of oscillation is greater because the pendulums are always out of phase

(Figure 4.2b) so that the spring is either extended or compressed and the coupling is

effective.

Normal Coordinates, Degrees of Freedom and Normal Modes
of Vibration

The significance of choosing X and Y to describe the motion is that these parameters give a

very simple illustration of normal coordinates.

� Normal coordinates are coordinates in which the equations of motion take the form of a

set of linear differential equations with constant coefficients in which each equation

contains only one dependent variable (our simple harmonic equations in X and Y ).

� A vibration involving only one dependent variable X (or Y ) is called a normal mode of

vibration and has its own normal frequency. In such a normal mode all components of

the system oscillate with the same normal frequency.

� The total energy of an undamped system may be expressed as a sum of the squares of

the normal coordinates multiplied by constant coefficients and a sum of the squares of

the first time derivatives of the coordinates multiplied by constant coefficients. The

energy of a coupled system when the X and Y modes are both vibrating would then be

expressed in terms of the squares of the velocities and displacements of X and Y.

� The importance of the normal modes of vibration is that they are entirely independent

of each other. The energy associated with a normal mode is never exchanged with

another mode; this is why we can add the energies of the separate modes to give the

total energy. If only one mode vibrates the second mode of our system will always be at

rest, acquiring no energy from the vibrating mode.

� Each independent way by which a system may acquire energy is called a degree of

freedom to which is assigned its own particular normal coordinate. The number of such

l l l l

(a) (b)

Figure 4.2 (a) The ‘in phase’ mode of vibration given by €XX þ !2
0 X ¼ 0, where X is the normal

coordinate X ¼ x þ y and ! 2
0 ¼ g=l. (b) ‘Out of phase’ mode of vibration given by €YY þ ð!2

0 þ 2s=mÞ
where Y is the normal coordinate Y ¼ x � y
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different ways in which the system can take up energy defines its number of degrees of

freedom and its number of normal coordinates. Each harmonic oscillator has two

degrees of freedom, it may take up both potential energy (normal coordinate X) and

kinetic energy (normal coordinate _XX). In our two normal modes the energies may be

written

EX ¼ a _XX 2 þ bX 2 ð4:3aÞ

and

EY ¼ c _YY 2 þ dY 2 ð4:3bÞ

where a, b, c and d are constant.

Our system of two coupled pendulums has, then, four degrees of freedom and four

normal coordinates.

Any configuration of our coupled system may be represented by the super-position of the

two normal modes

X ¼ x þ y ¼ X0 cos ð!1t þ �1Þ

and

Y ¼ x � y ¼ Y0 cos ð!2t þ �2Þ

where X0 and Y0 are the normal mode amplitudes, whilst !2
1 ¼ g=l and !2

2 ¼ ðg=l þ 2s=mÞ
are the normal mode frequencies. To simplify the discussion let us choose

X0 ¼ Y0 ¼ 2a

and put

�1 ¼ �2 ¼ 0

The pendulum displacements are then given by

x ¼ 1
2
ðX þ YÞ ¼ a cos!1t þ a cos!2t

and

y ¼ 1
2
ðX � YÞ ¼ a cos!1t � a cos!2t

with velocities

_xx ¼ �a!1 sin!1t � a!2 sin!2t

and

_yy ¼ �a!1 sin!1t þ a!2 sin!2t
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Now let us set the system in motion by displacing the right hand mass a distance x ¼ 2a

and releasing both masses from rest so that _xx ¼ _yy ¼ 0 at time t ¼ 0.

Figure 4.3 shows that our initial displacement x ¼ 2a, y ¼ 0 at t ¼ 0 may be seen as a

combination of the ‘in phase’ mode ðx ¼ y ¼ a so that x þ y ¼ X0 ¼ 2aÞ and of the ‘out of

phase’ mode ðx ¼ �y ¼ a so that Y0 ¼ 2aÞ. After release, the motion of the right hand

pendulum is given by

x ¼ a cos!1t þ a cos!2t

¼ 2a cos
ð!2 � !1Þt

2
cos

ð!1 þ !2Þt
2

and that of the left hand pendulum is given by

y ¼ a cos!1t � a cos!2t

¼ �2a sin
ð!1 � !2Þt

2
sin

ð!1 þ !2Þt
2

¼ 2a sin
ð!2 � !1Þt

2
sin

ð!1 þ !2Þt
2

If we plot the behaviour of the individual masses by showing how x and y change with time

(Figure 4.4), we see that after drawing the first mass aside a distance 2a and releasing it x

follows a consinusoidal behaviour at a frequency which is the average of the two normal

mode frequencies, but its amplitude varies cosinusoidally with a low frequency which is

half the difference between the normal mode frequencies. On the other hand, y, which

started at zero, vibrates sinusoidally with the average frequency but its amplitude builds up

to 2a and then decays sinusoidally at the low frequency of half the difference between the

normal mode frequencies. In short, the y displacement mass acquires all the energy of the x

displacement mass which is stationary when y is vibrating with amplitude 2a, but the

energy is then returned to the mass originally displaced. This complete energy exchange is

only possible when the masses are identical and the ratio ð!1 þ !2Þ=ð!2 � !1Þ is an

integer, otherwise neither will ever be quite stationary. The slow variation of amplitude at

half the normal mode frequency difference is the phenomenon of ‘beats’ which occurs

between two oscillations of nearly equal frequencies. We shall discuss this further in the

section on wave groups in Chapter 5.

y = 0 a2a a

YX

− a a

+

+

Figure 4.3 The displacement of one pendulum by an amount 2a is shown as the combination of the
two normal coordinates X þ Y
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The important point to recognize, however, is that although the individual pendulums

may exchange energy, there is no energy exchange between the normal modes. Figure 4.3

showed the initial configuration x ¼ 2a, y ¼ 0, decomposed into the X and Y modes. The

higher frequency of the Y mode ensures that after a number of oscillations the Y mode will

have gained half a vibration (a phase of � rad) on the X mode; this is shown in Figure 4.5.

The combination of the X and Y modes then gives y the value of 2a and x ¼ 0, and the

process is repeated. When Y gains another half vibration then x equals 2a again. The

pendulums may exchange energy; the normal modes do not.

To reinforce the importance of normal modes and their coordinates let us return to

equations (4.3a) and (4.3b). If we modify our normal coordinates to read

Xq ¼ m

2

� �1=2

ðx þ yÞ and Yq ¼ m

2

� �1=2

ðx � yÞ

t

t

y 
  d
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2a

2a

0

0

Figure 4.4 Behaviour with time of individual pendulums, showing complete energy exchange
between the pendulums as x decreases from 2a to zero whilst y grows from zero to 2a

x = 0 a2a a

YX

a − a

+

−

Figure 4.5 The faster vibration of the Y mode results in a phase gain of � rad over the X mode of
vibration, to give y ¼ 2a, which is shown here as a combination of the normal modes X � Y
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then we find that the kinetic energy in those equations becomes

Ek ¼ T ¼ a _XX 2 þ c _YY 2 ¼ 1

2
_XX 2

q þ
1

2
_YY 2

q ð4:4aÞ

and the potential energy

V ¼ bX 2 þ dY 2 ¼ 1

2

g

l

� �
X 2

q þ
1

2

g

l
þ 2s

m

� �
Y 2

q

¼ 1

2
!2

0 X 2
q þ

1

2
!2

s Y 2
q ;

ð4:4bÞ

where !2
0 ¼ g=l and !2

s ¼ g=l þ 2s=m.

Note that the coefficients of X 2
q and Y 2

q depend only on the mode frequencies and that the

properties of individual parts of the system are no longer explicit.

The total energy of the system is the sum of the energies of each separate excited mode

for there are no cross products XqYq in the energy expression of our example, i.e.,

E ¼ T þ V ¼ 1

2
_XX 2

q þ
1

2
!2

0 X 2
q

� �
þ 1

2
_YY 2

q þ 1

2
!2

s Y 2
q

� �

Atoms in polyatomic molecules behave as the masses of our pendulums; the normal

modes of two triatomic molecules CO2 and H2O are shown with their frequencies in

Figure 4.6. Normal modes and their vibrations will occur frequently throughout this book.

O

O C O

C

C

O

H H H H

O O

H H

O

OO

H2O

105°

ω1 = 11 × 1013 sec−1 ω2 = 11.27 × 1013 sec−1 ω3 = 4.78 × 1013 sec−1

ω3 = 2 × 1013 sec−1

ω2 = 7.05 × 1013 sec−1

ω1 = 4.16 × 1013 sec−1

CO2

Figure 4.6 Normal modes of vibration for triatomic molecules CO 2 and H 2O
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The General Method for Finding Normal Mode Frequencies,
Matrices, Eigenvectors and Eigenvalues

We have just seen that when a coupled system oscillates in a single normal mode each

component of the system will vibrate with frequency of that mode. This allows us to adopt

a method which will always yield the values of the normal mode frequencies and the

relative amplitudes of the individual oscillators at each frequency.

Suppose that our system of coupled pendulums in the last section oscillates in only one

of its normal modes of frequency !.

Then, in the equations of motion

m€xx þ mgðx=lÞ þ sðx � yÞ ¼ 0

and
m€yy þ mgðy=lÞ � sðx � yÞ ¼ 0

If the pendulums start from test, we may assume the solutions

x ¼ A ei!t

y ¼ B ei!t

where A and B are the displacement amplitudes of x and y at the frequency !. Using these

solutions, the equations of motion become

½�m!2A þ ðmg=lÞA þ sðA � BÞ� ei!t ¼ 0

½�m!2B þ ðmg=lÞB � sðA � BÞ� ei!t ¼ 0
ð4:5Þ

The sum of these expressions gives

ðA þ BÞð�m!2 þ mg=lÞ ¼ 0

which is satisfied when !2 ¼ g=l, the first normal mode frequency. The difference between

the expressions gives

ðA � BÞð�m!2 þ mg=l þ 2sÞ ¼ 0

which is satisfied when !2 ¼ g=l þ 2s=m, the second normal mode frequency.

Inserting the value !2 ¼ g=l in the pair of equations gives A ¼ B (the ‘in phase’

condition), whilst !2 ¼ g=l þ 2s=m gives A ¼ �B (the antiphase conditon).

These are the results we found in the previous section.

We may, however, by dividing through by m ei!t, rewrite equation (4.5) in matrix form as

!2
0 þ !2

s �!2
s

�!2
s !2

0 þ !2
s

� �
A

B

� �
¼ !2 A

B

� �
ð4:6Þ

where

!2
0 ¼ g

l
and !2

s ¼ s

m

86 Coupled Oscillations



This is called an eigenvalue equation. The value of !2 for which non-zero solutions exist

are called the eigenvalues of the matrix. The column vector with components A and B is an

eigenvector of the matrix.

Equation (4.6) may be written in the alternative form

ð!2
0 þ !2

s � !2Þ �!2
s

�!2
s ð!2

0 þ !2
s � !2Þ

� �
A

B

� �
¼ 0 ð4:7Þ

and these equations have a non-zero solution if and only if the determinant of the matrix

vanishes; that is, if

ð!2
0 þ !2

s � !2Þ2 � !4
s ¼ 0

or

ð!2
0 þ !2

s � !2Þ ¼ 	!2
s

i.e.

!2
1 ¼ !2

0 or !2
2 ¼ !2

0 þ 2!2
s

as we expect.

The solution !2
1 ¼ !2

0 in equation (4.6) yields A ¼ B as previously and !2
2 ¼ !2

0 þ 2!2
s

yields A ¼ �B.

Because the system started from rest we have been able to assume solutions of the

simple form

x ¼ A ei!t

y ¼ B ei!t

When the pendulums have an initial velocity at t ¼ 0, the boundary conditions require

solutions of the form

x ¼ Aeið!tþ�xÞ

y ¼ Beið!tþ�yÞ

where each normal mode frequency ! has its own particular value of the phase constant �.

The number of adjustable constants then allows the solutions to satisfy the arbitrary values

of the initial displacements and velocities of both pendulums.

(Problems 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11)

Mass or Inductance Coupling

In a later chapter we shall discuss the propagation of voltage and current waves along a

transmission line which may be considered as a series of coupled electrical oscillators

having identical values of inductance and of capacitance. For the moment we shall consider

the energy transfer between two electrical circuits which are inductively coupled.
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A mutual inductance (shared mass) exists between two electrical circuits when the

magnetic flux from the current flowing on one circuit threads the second circuit. Any

change of flux induces a voltage in both circuits.

A transformer depends upon mutual inductance for its operation. The power source is

connected to the transformer primary coil of np turns, over which is wound in the same

sense a secondary coil of ns turns. If unit current flowing in a single turn of the primary coil

produces a magnetic flux �, then the flux threading each primary turn (assuming no flux

leakage outside the coil) is np� and the total flux threading all np turns of the primary is

Lp ¼ n2
p�

where Lp is the self inductance of the primary coil. If unit current in a single turn of the

secondary coil produces a flux �, then the flux threading each secondary turn is ns� and the

total flux threading the secondary coil is

Ls ¼ n2
s�;

where Ls is the self inductance of the secondary coil.

If all the flux lines from unit current in the primary thread all the turns of the secondary,

then the total flux lines threading the secondary defines the mutual inductance

M ¼ nsðnp�Þ ¼
ffiffiffiffiffiffiffiffiffiffi
LpLs

p
In practice, because of flux leakage outside the coils, M <

ffiffiffiffiffiffiffiffiffiffi
LpLs

p
and the ratio

Mffiffiffiffiffiffiffiffiffiffi
LpLs

p ¼ k; the coefficient of coupling:

If the primary current Ip varies with e i!t, a change of Ip gives an induced voltage

�LpdIp= dt ¼ �i!LIp in the primary and an induced voltage �M dIp=dt ¼ �i!MIp in the

secondary.

If we consider now the two resistance-free circuits of Figure 4.7, where L1 and L2 are

coupled by flux linkage and allowed to oscillate at some frequency ! (the voltage and

current frequency of both circuits), then the voltage equations are

i!L1I1 � i
1

!C1

I1 þ i!MI2 ¼ 0 ð4:8Þ

C2L 2L1C 1

M = Mutual Inductance

M

Figure 4.7 Inductively (mass) coupled LC circuits with mutual inductance M
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and

i!L2I2 � i
1

!C2

I2 þ i!MI1 ¼ 0 ð4:9Þ

where M is the mutual inductance.

Multiplying (4.8) by !=iL1 gives

!2I1 �
I1

L1C1

þ M

L1

!2I2 ¼ 0

and multiplying (4.9) by !=iL2 gives

!2I2 �
I2

L2C2

þ M

L2

!2I1 ¼ 0;

where the natural frequencies of the circuit !2
1 ¼ 1=L1C1 and !2

2 ¼ 1=L2C2 give

ð!2
1 � !2ÞI1 ¼ M

L1

!2I2 ð4:10Þ

and

ð!2
2 � !2ÞI2 ¼ M

L2

!2I1 ð4:11Þ

The product of equations (4.10) and (4.11) gives

ð!2
1 � !2Þð!2

2 � !2Þ ¼ M 2

L1L2

!4 ¼ k 2!4; ð4:12Þ

where k is the coefficient of coupling.

Solving for ! gives the frequencies at which energy exchange between the circuits

allows the circuits to resonate. If the circuits have equal natural frequencies !1 ¼ !2 ¼ !0,

say, then equation (4.12) becomes

ð!2
0 � !2Þ2 ¼ k 2!4

or

ð!2
0 � !2Þ ¼ 	 k!2

that is

! ¼ 	 !0ffiffiffiffiffiffiffiffiffiffiffi
1 	 k

p

The positive sign gives two frequencies

! 0 ¼ !0ffiffiffiffiffiffiffiffiffiffiffi
1 þ k

p and ! 00 ¼ !0ffiffiffiffiffiffiffiffiffiffiffi
1 � k

p

at which, if we plot the current amplitude versus frequency, two maxima appear (Figure 4.8).
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In loose coupling k and M are small, and ! 0 � ! 00 � !0, so that both systems behave

almost independently. In tight coupling the frequency difference ! 00 � ! 0 increases, the

peak values of current are displaced and the dip between the peaks is more pronounced. In

this simple analysis the effect of resistance has been ignored. In practice some resistance is

always present to limit the amplitude maximum.

(Problems 4.12, 4.13, 4.14, 4.15, 4.16)

Coupled Oscillations of a Loaded String

As a final example involving a large number of coupled oscillators we shall consider a light

string supporting n equal masses m spaced at equal distance a along its length. The string is

fixed at both ends; it has a length ðn þ 1Þa and a constant tension T exists at all points and

all times in the string.

Small simple harmonic oscillations of the masses are allowed in only one plane and the

problem is to find the frequencies of the normal modes and the displacement of each mass

in a particular normal mode.

This problem was first treated by Lagrange, its particular interest being the use it makes

of normal modes and the light it throws upon the wave motion and vibration of a

continuous string to which it approximates as the linear separation and the magnitude of the

masses are progressively reduced.

Figure 4.9 shows the displacement yr of the r th mass together with those of its two

neighbours. The equation of motion of this mass may be written by considering the

components of the tension directed towards the equilibrium position. The r th mass is

pulled downwards towards the equilibrium position by a force T sin 
1, due to the tension

C
ur

re
nt

 a
m

pl
itu

de

Coupling

(a) k large

            (b) k intermediate

(c) k small

ω0 ω

(a) (b) (c)

Figure 4.8 Variation of the current amplitude in each circuit near the resonant frequency. A small
resistance prevents the amplitude at resonance from reaching infinite values but this has been
ignored in the simple analysis. Flattening of the response curve maximum gives ‘frequency band pass’
coupling
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on its left and a force T sin 
2 due to the tension on its right where

sin 
1 ¼ yr � yr�1

a

and

sin 
2 ¼ yr � yrþ1

a

Hence the equation of motion is given by

m
d2yr

dt 2
¼ �T ðsin 
1 þ sin 
2Þ

¼ �T
yr � yr�1

a
þ yr � yrþ1

a

� �
so

d2yr

dt 2
¼ €yyr ¼

T

ma
ðyr�1 � 2yr þ yrþ1Þ ð4:13Þ

If, in a normal mode of oscillation of frequency !, the time variation of yr is simple

harmonic about the equilibrium axis, we may write the displacement of the r th mass in this

mode as

yr ¼ Ar ei!t

where Ar is the maximum displacement. Similarly yrþ1 ¼ Arþ1 e i!t and yr�1 ¼ Ar�1 e i!t.

Using these values of y in the equation of motion gives

�!2Ar ei!t ¼ T

ma
ðAr�1 � 2Ar þ Arþ1Þ ei!t

or

�Ar�1 þ 2 � ma! 2

T

� �
Ar � Arþ1 ¼ 0 ð4:14Þ

This is the fundamental equation.

m

m

m

a a

yr + 1yr − 1 yr

yr − yr  − 1 yr − yr + 1

1θ
2θ

Figure 4.9 Displacements of three masses on a loaded string under tension T giving equation of
motion m€yyr ¼ Tðy rþ1 � 2y rþ y r�1Þ=a
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The procedure now is to start with the first mass r ¼ 1 and move along the string, writing

out the set of similar equations as r assumes the values r ¼ 1; 2; 3; . . . ; n remembering that,

because the ends are fixed

y0 ¼ A0 ¼ 0 and ynþ1 ¼ Anþ1 ¼ 0

Thus, when r ¼ 1 the equation becomes

2 � ma!2

T

� �
A1 � A2 ¼ 0 ðA0 ¼ 0Þ

When r ¼ 2 we have

�A1 þ 2 � ma!2

T

� �
A2 � A3 ¼ 0

and when r ¼ n we have

�An�1 þ 2 � ma!2

T

� �
An ¼ 0 ðAnþ1 ¼ 0Þ

Thus, we have a set of n equations which, when solved, will yield n different values of !2,

each value of ! being the frequency of a normal mode, the number of normal modes being

equal to the number of masses.

The formal solution of this set of n equations involves the theory of matrices. However,

we may easily solve the simple cases for one or two masses on the string (n ¼ 1 or 2) and,

in additon, it is possible to show what the complete solution for n masses must be without

using sophisticated mathematics.

First, when n ¼ 1, one mass on a string of length 2a, we need only the equation for r ¼ 1

where the fixed ends of the string give A0 ¼ A2 ¼ 0.

Hence we have

2 � ma!2

T

� �
A1 ¼ 0

giving

!2 ¼ 2T

ma

a single allowed frequency of vibration (Figure 4.10a).

When n ¼ 2, string length 3a (Figure 4.10b) we need the equations for both r ¼ 1 and

r ¼ 2; that is

2 � ma!2

T

� �
A1 � A2 ¼ 0
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and

�A1 þ 2 � ma!2

T

� �
A2 ¼ 0 ðA0 ¼ A3 ¼ 0Þ

Eliminating A1 or A2 shows that these two equations may be solved (are consistent)

when

2 � ma!2

T

� �2

�1 ¼ 0

that is

2 � ma!2

T
� 1

� �
2 � ma!2

T
þ 1

� �
¼ 0

Thus, there are two normal mode frequencies

!2
1 ¼ T

ma
and !2

2 ¼ 3T

ma

aa
m

(a)

(b)

m m

m

m

A1

A1 A2
A1 = −A2

A2

ω2
2 3T

ma=

A1 = A2

ω1
2 T

ma=

ω2 2T
ma=

n = 1

n = 2

Figure 4.10 (a) Normal vibration of a single mass m on a string of length 2a at a frequency
!2 ¼ 2T=ma. (b) Normal vibrations of two masses on a string of length 3a showing the loose coupled
‘in phase’ mode of frequency ! 2

1 ¼ T=ma and the tighter coupled ‘out of phase’ mode of frequency
!2

2 ¼ 3T=ma. The number of normal modes of vibration equals the number of masses

Coupled Oscillations of a Loaded String 93



Using the values of !1 in the equations for r ¼ 1 and r ¼ 2 gives A1 ¼ A2 the slow ‘in

phase’ oscillation of Figure 4.10b, whereas !2 gives A1 ¼ �A2 the faster ‘anti-phase’

oscillation resulting from the increased coupling.

To find the general solution for any value of n let us rewrite the equation

�Ar�1 þ 2 � ma!2

T

� �
Ar � Arþ1 ¼ 0

in the form

Ar�1 þ Arþ1

Ar

¼ 2!2
0 � !2

!2
0

where !2
0 ¼ T

ma

We see that for any particular fixed value of the normal mode frequency !ð!j say) the

right hand side of this equation is constant, independent of r, so the equation holds for all

values of r. What values can we give to Ar which will satisfy this equation, meeting the

boundary conditions A0 ¼ Anþ1 ¼ 0 at the end of the string?

Let us assume that we may express the amplitude of the rth mass at the frequency !j as

Ar ¼ C eir


where C is a constant and 
 is some constant angle for a given value of !j. The left hand

side of the equation then becomes

Ar�1 þ Arþ1

Ar

¼ Cðeiðr�1Þ
 þ eiðrþ1Þ
Þ
C eir


¼ ðe�i
 þ ei
Þ

¼ 2 cos 


which is constant and independent of r.

The value of 
j (constant at !j) is easily found from the boundary conditions

A0 ¼ Anþ1 ¼ 0

which, using sin r
 from eir
 gives

A0 ¼ C sin r
 ¼ 0 ðautomatically at r ¼ 0Þ

and

Anþ1 ¼ C sin ðn þ 1Þ
 ¼ 0

when

ðn þ 1Þ 
 j ¼ j� for j ¼ 1; 2; . . . ; n
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Hence


 j ¼
j�

n þ 1

and

Ar ¼ C sin r
j ¼ C sin
rj�

n þ 1

which is the amplitude of the rth mass at the fixed normal mode frequency ! j.

To find the allowed values of ! j we write

Ar�1 þ Arþ1

Ar

¼
2!2

0 � !2
j

!2
0

¼ 2 cos 
 j ¼ 2 cos
j�

n þ 1

giving

!2
j ¼ 2!2

0 1 � cos
j�

n þ 1

� �
ð4:15Þ

where j may take the values j ¼ 1; 2; . . . ; n and !2
0 ¼ T=ma.

Note that there is a maximum frequency of oscillation !j ¼ 2!0. This is called the ‘cut

off’ frequency and such an upper frequency limit is characteristic of all oscillating systems

composed of similar elements (the masses) repeated periodically throughout the structure

of the system. We shall meet this in the next chapter as a feature of wave propagation in

crystals.

To summarize, we have found the normal modes of oscillation of n coupled masses on

the string to have frequencies given by

!2
j ¼ 2T

ma
1 � cos

j�

n þ 1

� �
ð j ¼ 1; 2; 3 . . . nÞ

At each frequency !j the r th mass has an amplitude

Ar ¼ C sin
rj�

n þ 1

where C is a constant.

(Problems 4.17, 4.18, 4.19, 4.20, 4.21, 4.22)

The Wave Equation

Finally, in this chapter, we show how the coupled vibrations in the periodic structure of our

loaded string become waves in a continuous medium.
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We found the equation of motion of the r th mass to be

d2yr

dt 2
¼ T

ma
ðyrþ1 � 2yr þ yr�1Þ ð4:13Þ

We know also that in a given normal mode all masses oscillate with the same mode

frequency !, so all yr’s have the same time dependence. However, as we see in Fig-

ure 4.10(b) where A1 and A2 are anti-phase, the transverse displacement yr also depends

upon the value of r ; that is, the position of the r th mass on the string. In other words, yr is a

function of two independent variables, the time t and the location of r on the string.

If we use the separation a � �x and let �x ! 0, the masses become closer and we can

consider positions along the string in terms of a continuous variable x and any transverse

displacement as yðx; tÞ, a function of both x and t.

The partial derivative notation @yðx; tÞ=@t expresses the variation with time of yðx; tÞ
while x is kept constant.

The partial derivative @yðx; tÞ=@x expresses the variation with x of yðx; tÞ while the time t

is kept constant. (Chapter 5 begins with an extended review of this process for students

unfamiliar with this notation.)

In the same way, the second derivative @ 2yðx; tÞ=@t 2 continues to keep x constant and

@ 2yðx; tÞ=@x2 keeps t constant.

For example, if

y ¼ eið!tþkxÞ

then

@y

@t
¼ i! eið!tþkxÞ ¼ i!y and

@ 2y

@t 2
¼ �!2y

while

@y

@x
¼ ik eið!tþkxÞ ¼ iky and

@ 2y

@x2
¼ �k 2y

If we now locate the transverse displacement yr at a position x ¼ xr along the string,

then the left hand side of equation (4.13) becomes

@ 2yr

@t 2
! @ 2y

@t 2
;

where y is evaluated at x ¼ xr and now, as a ¼ �x ! 0, we may write xr ¼ x; xrþ1 ¼
x þ �x and xr�1 ¼ x � �x with yrðtÞ ! yðx; tÞ; yrþ1ðtÞ ! yðx þ �x; tÞ and yr�1ðtÞ !
yðx � �x; tÞ.

Using a Taylor series expansion to express yðx 	 �x; tÞ in terms of partial derivates of y

with respect to x we have

yðx 	 �x; tÞ ¼ yðxÞ 	 �x
@y

@x
þ 1

2
ð	�xÞ2 @

2y

@x2
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and equation (4.13) becomes after substitution

@ 2y

@t 2
¼ T

m

yrþ1 � yr

a
� yr � yr�1

a

� �

¼ T

m

�x
@y

@x
þ 1

2
ð�xÞ2 @

2y

@x2

�x
�
�x
@y

@x
� 1

2
ð�xÞ2 @

2y

@x2

�x

0
BB@

1
CCA

so

@ 2y

@t 2
¼ T

m

ð�xÞ2

�x

@ 2y

@x2
¼ T

m
�x

@ 2y

@x2

If we now write m ¼ 
 � x where 
 is the linear density (mass per unit length) of the

string, the masses must �!0 as �x�!0 to avoid infinite mass density. Thus, we have

@ 2y

@t 2
¼ T




@ 2y

@x2

This is the Wave Equation.

T=
 has the dimensions of the square of a velocity, the velocity with which the waves;

that is, the phase of oscillation, is propagated. The solution for y at any particular point

along the string is always that of a harmonic oscillation.

(Problem 4.23)

Problem 4.1
Show that the choice of new normal coordinates Xq and Y q expresses equations (4.3a) and (4.3b) as

equations (4.4a) and (4.4b).

Problem 4.2
Express the total energy of Problem 4.1 in terms of the pendulum displacements x and y as

E ¼ ðEkin þ EpotÞ x þ ðEkin þ EpotÞ y þ ðEpotÞ xy;

where the brackets give the energy of each pendulum expressed in its own coordinates and ðEpotÞ xy

is the coupling or interchange energy involving the product of these coordinates.

Problem 4.3
Figures 4.3 and 4.5 show how the pendulum configurations x ¼ 2a; y ¼ 0 and x ¼ 0; y ¼ 2a result

from the superposition of the normal modes X and Y. Using the same initial conditions
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ðx ¼ 2a; y ¼ 0; _xx ¼ _yy ¼ 0Þ draw similar sketches to show how X and Y superpose to produce

x ¼ �2a; y ¼ 0 and x ¼ 0; y ¼ �2a.

Problem 4.4
In the figure two masses m1 and m2 are coupled by a spring of stiffness s and natural length l. If x is

the extension of the spring show that equations of motion along the x axis are

m1€xx 1 ¼ sx

and

m 2€xx2 ¼ �sx

and combine these to show that the system oscillates with a frequency

!2 ¼ s

�
;

where

� ¼ m1m 2

m 1 þ m2

is called the reduced mass.

The figure now represents a diatomic molecule as a harmonic oscillator with an effective mass
equal to its reduced mass. If a sodium chloride molecule has a natural vibration frequency
¼ 1:14 � 10 13 Hz (in the infrared region of the electromagnetic spectrum) show that the interatomic
force constant s ¼ 120 N m�1 (this simple model gives a higher value for s than more refined
methods which account for other interactions within the salt crystal lattice)

Mass of Na atom¼ 23 a.m.u.

Mass of Cl atom¼ 35 a.m.u.

1 a.m.u.¼ 1.67�10�27 kg

m1
m2

x1
x2

l

Problem 4.5
The equal masses in the figure oscillate in the vertical direction. Show that the frequencies of the

normal modes of oscillation are given by

!2 ¼ ð3 	
ffiffiffi
5

p
Þ s

2 m

and that in the slower mode the ratio of the amplitude of the upper mass to that of the lower mass is
1
2
ð
ffiffiffi
5

p
� 1Þ whilst in the faster mode this ratio is � 1

2
ð
ffiffiffi
5

p
þ 1Þ.

98 Coupled Oscillations



m

m

s

s

In the calculations it is not necessary to consider gravitational forces because they play no part in
the forces responsible for the oscillation.

Problem 4.6
In the coupled pendulums of Figure 4.3 let us write the modulated frequency !m ¼ ð!2 � !1Þ=2 and

the average frequency !a ¼ ð!2 þ !1Þ=2 and assume that the spring is so weak that it stores a

negligible amount of energy. Let the modulated amplitude

2a cos!mt or 2a sin!mt

be constant over one cycle at the average frequency !a to show that the energies of the masses may

be written

Ex ¼ 2ma 2! 2
a cos2 !mt

and

Ey ¼ 2ma 2!2
a sin 2 !mt

Show that the total energy E remains constant and that the energy difference at any time is

Ex � Ey ¼ E cos ð! 2 � !1Þt
Prove that

Ex ¼
E

2
½1 þ cos ð!2 � !1Þt�

and

Ey ¼
E

2
½1 � cos ð!2 � !1Þt�

to show that the constant total energy is completely exchanged between the two pendulums at the

beat frequency ð!2 � !1Þ.

Problem 4.7
When the masses of the coupled pendulums of Figure 4.1 are no longer equal the equations of

motion become

m 1€xx ¼ �m1ðg=lÞx � sðx � yÞ
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and

m 2€yy ¼ �m2ðg=lÞy þ sðx � yÞ

Show that we may choose the normal coordinates

X ¼ m 1x þ m2y

m 1 þ m2

with a normal mode frequency !2
1 ¼ g=l and Y ¼ x � y with a normal mode frequency

!2
2 ¼ g=l þ sð1=m1 þ 1=m 2Þ.
Note that X is the coordinate of the centre of mass of the system whilst the effective mass in the Y

mode is the reduced mass � of the system where 1=� ¼ 1=m 1 þ 1=m2.

Problem 4.8
Let the system of Problem 4.7 be set in motion with the initial conditions x ¼ A; y ¼ 0; _xx ¼ _yy ¼ 0 at

t ¼ 0. Show that the normal mode amplitudes are X0 ¼ ðm 1=MÞA and Y 0 ¼ A to yield

x ¼ A

M
ðm1 cos!1t þ m 2 cos!2tÞ

and

y ¼ A
m1

M
ðcos!1t � cos!2tÞ;

where M ¼ m 1 þ m2.
Express these displacements as

x ¼ 2 A cos!mt cos! at þ 2A

M
ðm1 � m 2Þ sin!mt sin!at

and

y ¼ 2 A
m 1

M
sin!mt sin!at;

where !m ¼ ð!2 � !1Þ=2 and !a ¼ ð!1 þ !2Þ=2.

Problem 4.9
Apply the weak coupling conditions of Problem 4.6 to the system of Problem 4.8 to show that the

energies

Ex ¼
E

M 2
½m 2

1 þ m2
2 þ 2m1m 2 cos ð!2 � !1Þt�

and

Ey ¼ E
2m1m 2

M 2

� �
½1 � cos ð!2 � !1Þt�

Note that Ex varies between a maximum of E (at t ¼ 0) and a minimum of ½ðm 1 � m2Þ=M� 2
E, whilst

Ey oscillates between a minimum of zero at t ¼ 0 and a maximum of 4ðm1m2=M2ÞE at the beat

frequency of ð!2 � !1Þ.
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Problem 4.10
In the figure below the right hand pendulum of the coupled system is driven by the horizontal force

F0 cos!t as shown. If a small damping constant r is included the equations of motion may be written

m€xx ¼ �mg

l
x � r _xx � sðx � yÞ þ F0 cos!t

and

m€yy ¼ �mg

l
y � r _yy þ sðx � yÞ

Show that the equations of motion for the normal coordinates X ¼ x þ y and Y ¼ x � y are those
for damped oscillators driven by a force F0 cos!t.

Solve these equations for X and Y and, by neglecting the effect of r, show that

x � F0

2m
cos!t

1

!2
1 � ! 2

þ 1

!2
2 � !2

� �

and

y � F0

2m
cos!t

1

!2
1 � ! 2

� 1

!2
2 � !2

� �

where

!2
1 ¼ g

l
and ! 2

2 ¼ g

l
þ 2s

m

Show that

y

x
� !2

2 � ! 2
1

!2
2 þ !2

1 � 2!2

and sketch the behaviour of the oscillator with frequency to show that outside the frequency range

!2 � !1 the motion of y is attenuated.

m

s

y

ll

m

x

F0 cos ωt

Problem 4.11
The diagram shows an oscillatory force Fo cos!t acting on a mass M which is part of a simple

harmonic system of stiffness k and is connected to a mass m by a spring of stiffness s. If all
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oscillations are along the x axis show that the condition for M to remain stationary is !2 ¼ s=m.

(This is a simple version of small mass loading in engineering to quench undesirable oscillations.)

mM

F0 cos ωt

Problem 4.12
The figure below shows two identical LC circuits coupled by a common capacitance C with the

directions of current flow indicated by arrows. The voltage equations are

V1 � V2 ¼ L
d I a

d t

and

V2 � V3 ¼ L
d I b

d t

whilst the currents are given by

dq1

d t
¼ �I a

dq2

d t
¼ I a � I b

and

dq3

d t
¼ I b

Solve the voltage equations for the normal coordinates ðI a þ I bÞ and ðI a � I bÞ to show that the
normal modes of oscillation are given by

I a ¼ I b at !2
1 ¼ 1

LC

and

I a ¼ �I b at !2
2 ¼ 3

LC

Note that when I a ¼ I b the coupling capacitance may be removed and q1 ¼ �q2. When I a ¼ �I b,

q 2 ¼ �2q1 ¼ �2q3.

C CC

q1

V1
Ia Ib

q3q2

V2

V3L L
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Problem 4.13
A generator of e.m.f. E is coupled to a load Z by means of an ideal transformer. From the diagram,

Kirchhoff’s Law gives

E ¼ �e1 ¼ i!LpI 1 � i!MI2

and

I 2Z2 ¼ e2 ¼ i!MI1 � i!LsI2:

Show that E=I1, the impedance of the whole system seen by the generator, is the sum of the primary

impedance and a ‘reflected impedance’ from the secondary circuit of !2M 2=Zs where

Z s ¼ Z 2 þ i!L s.

E

M

I2I1

Z2e1

Lp Ls

e2

Problem 4.14
Show, for the perfect transformer of Problem 4.13, that the impedance seen by the generator consists

of the primary impedance in parallel with an impedance ðnp=nsÞ 2
Z 2, where np and ns are the

number of primary and secondary transformer coil turns respectively.

Problem 4.15
If the generator delivers maximum power when its load equals its own internal impedance show how

an ideal transformer may be used as a device to match a load to a generator, e.g. a loudspeaker of a

few ohms impedance to an amplifier output of 10 3 � impedance.

Problem 4.16
The two circuits in the diagram are coupled by a variable mutual inductance M and Kirchhoff’s Law

gives

Z 1I1 þ Z MI2 ¼ E

and

ZMI1 þ Z 2I2 ¼ 0;

where

Z M ¼ þi!M

M is varied at a resonant frequency where the reactance X1 ¼ X2 ¼ 0 to give a maximum value

of I2. Show that the condition for this maximum is !M ¼
ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
and that this defines a
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‘critical coefficient of coupling’ k ¼ ðQ1Q 2Þ�1=2
, where the Q’s are the quality factors of the

circuits.

E

M R2R1

L1

C1 C2

L2

Problem 4.17
Consider the case when the number of masses on the loaded string of this chapter is n ¼ 3. Use

equation (4.15) to show that the normal mode frequencies are given by

!2
1 ¼ ð2 �

ffiffiffi
2

p
Þ!2

0; !2
2 ¼ 2!2

0

and

!2
3 ¼ ð2 þ

ffiffiffi
2

p
Þ! 2

0

Repeat the problem using equation (4.14) (with !2
0 ¼ T=ma) in the matrix method of equation (4.7),

where the eigenvector components are Ar�1, Ar and Arþ1.

Problem 4.18
Show that the relative displacements of the masses in the modes of Problem 4.17 are 1 :

ffiffiffi
2

p
: 1,

1 : 0 : �1, and 1 : �
ffiffiffi
2

p
: 1. Show by sketching these relative displacements that tighter coupling

increases the mode frequency.

Problem 4.19

η2 η3η1

Mm m

The figure represents a triatomic molecule with a heavy atom mass M bound to equal atoms of

smaller mass m on either side. The binding is represented by springs of stiffness s and in equilibrium

the atom centres are equally spaced along a straight line. Simple harmonic vibrations are considered

only along this linear axis and are given by

� J ¼ � 0
J e i!t

where � J is the displacement from equilibrium of the j th atom.

Set up the equation of motion for each atom and use the matrix method of equation (4.7) to show
that the normal modes have frequencies

!2
1 ¼ 0; !2

2 ¼ s

m
and !2

3 ¼ sðM þ 2mÞ
mM

Describe the motion of the atoms in each normal mode.
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Problem 4.20
Taking the maximum value of

! 2
J ¼ 2T

ma
1 � cos

j�

n þ 1

� �

at j ¼ n as that produced by the strongest coupling, deduce the relative displacements of

neighbouring masses and confirm your deduction by inserting your values in consecutive difference

equations relating the displacements y rþ1; y r and yr�1. Why is your solution unlikely to satisfy the

displacements of those masses near the ends of the string?

Problem 4.21
Expand the value of

! 2
J ¼ 2T

ma
1 � cos

j�

n þ 1

� �

when j � n in powers of ð j=n þ 1Þ to show that in the limit of very large values of n, a low

frequency

! J ¼ j�

l

ffiffiffiffi
T




s
;

where 
 ¼ m=a and l ¼ ðn þ 1Þa.

Problem 4.22
An electrical transmission line consists of equal inductances L and capacitances C arranged as

shown. Using the equations

L d I r�1

d t
¼ Vr�1 � Vr ¼

qr�1 � qr

C

and

I r�1 � I r ¼
dqr

d t
;

show that an expression for I r may be derived which is equivalent to that for yr in the case of the

mass-loaded string. (This acts as a low pass electric filter and has a cut-off frequency as in the case of

the string. This cut-off frequency is a characteristic of wave propagation in periodic structures and

electromagnetic wave guides.)

C C CIrIr −1

qr −1

Vr −1

qr +1

Vr +1Vr 

qr 
LL

Problem 4.23
Show that

y ¼ e i!t e ikx

satisfies the wave equation

@ 2y

@t 2
¼ c2 @

2y

@x 2
; if ! ¼ ck
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Summary of Important Results

In coupled systems each normal coordinate defines a degree of freedom, each degree of

freedom defines a way in which a system may take up energy. The total energy of the

system is the sum of the energies in its normal modes of oscillation because these remain

separate and distinct, and energy is never exchanged between them.

A simple harmonic oscillator has two normal coordinates [velocity (or momentum) and

displacement] and therefore two degrees of freedom, the first connected with kinetic

energy, the second with potential energy.

n Equal Masses, Separation a, Coupled on a String under Constant Tension T

Equation of motion of the rth mass is

m€yyr ¼ ðT=aÞðyr�1 � 2yr þ yrþ1Þ

which for yr ¼ Ar ei!t gives

�Arþ1 þ
2 � ma!2

T

� �
Ar � Ar�1 ¼ 0

There are n normal modes with frequencies !J given by

!2
J ¼ 2T

ma
1 � cos

j�

n þ 1

� �

In a normal mode of frequency !J the rth mass has an amplitude

Ar ¼ C sin
rj�

n þ 1

where C is a constant.

Wave Equation

In the limit, as separation a ¼ �x ! 0 equation of motion of the rth mass on a loaded

string m€yyr ¼ ðT=aÞðyr�1 � 2yr þ yrþ1Þ becomes the wave equation

@ 2y

@t 2
¼ T




@ 2y

@x2
¼ c2 @

2y

@x2

where 
 is mass per unit length and c is the wave velocity.
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5

Transverse Wave Motion

Partial Differentiation

From this chapter onwards we shall often need to use the notation of partial differentiation.

When we are dealing with a function of only one variable, y ¼ f ðxÞ say, we write the

differential coefficient

dy

dx
¼ lim

�x!0

f ðx þ �xÞ � f ðxÞ
�x

but if we consider a function of two or more variables, the value of this function will vary

with a change in any or all of the variables. For instance, the value of the co-ordinate z on

the surface of a sphere whose equation is x2þy2þz2 ¼ a2, where a is the radius of the

sphere, will depend on x and y so that z is a function of x and y written z ¼ zðx; yÞ. The

differential change of z which follows from a change of x and y may be written

dz ¼ @z

@x

� �
y

dx þ @z

@y

� �
x

dy

where ð@z=@xÞ y means differentiating z with respect to x whilst y is kept constant, so that

@z

@x

� �
y

¼ lim
�x!0

zðx þ �x; yÞ � zðx; yÞ
�x

The total change dz is found by adding the separate increments due to the change of each

variable in turn whilst the others are kept constant. In Figure 5.1 we can see that keeping y

constant isolates a plane which cuts the spherical surface in a curved line, and the

incremental contribution to dz along this line is exactly as though z were a function of x

only. Now by keeping x constant we turn the plane through 90� and repeat the process with

y as a variable so that the total increment of dz is the sum of these two processes.

If only two independent variables are involved, the subscript showing which variable is

kept constant is omitted without ambiguity.
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In wave motion our functions will be those of variables of distance and time, and we

shall write @=@x and @ 2=@x2 for the first or second derivatives with respect to x, whilst the

time t remains constant. Again, @=@t and @ 2=@t 2 will denote first and second derivatives

with respect to time, implying that x is kept constant.

Waves

One of the simplest ways to demonstrate wave motion is to take the loose end of a long

rope which is fixed at the other end and to move the loose end quickly up and down. Crests

and troughs of the waves move down the rope, and if the rope were infinitely long such

waves would be called progressive waves– these are waves travelling in an unbounded

medium free from possible reflection (Figure 5.2).

Plane y = constant

0

y

plane x = constant

Small element of
spherical surface, radius a

x 
2+y 

2+z 
2 = a 

2

x

dx
dy

dz1

dz1

dz2

z (y) only

gradient (     )∂z
∂yx

z (x) only

gradient (     )∂z
∂xy

z

Figure 5.1 Small element of a Spherical Surface showing dz ¼ dz 1 þ dz 2 ¼ ð@z=@xÞ y dxþ
ð@z=@yÞ x dy where each gradient is calculated with one variable remaining constant

Progressive waves on infinitely long string

trough

crest

Figure 5.2 Progressive transverse waves moving along a string
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If the medium is limited in extent; for example, if the rope were reduced to a violin

string, fixed at both ends, the progressive waves travelling on the string would be reflected

at both ends; the vibration of the string would then be the combination of such waves

moving to and fro along the string and standing waves would be formed.

Waves on strings are transverse waves where the displacements or oscillations in the

medium are transverse to the direction of wave propagation. When the oscillations are parallel

to the direction of wave propagation the waves are longitudinal. Sound waves are longitudinal

waves; a gas can sustain only longitudinal waves because transverse waves require a shear

force to maintain them. Both transverse and longitudinal waves can travel in a solid.

In this book we are going to discuss plane waves only. When we see wave motion as a

series of crests and troughs we are in fact observing the vibrational motion of the individual

oscillators in the medium, and in particular all of those oscillators in a plane of the medium

which, at the instant of observation, have the same phase in their vibrations.

If we take a plane perpendicular to the direction of wave propagation and all oscillators

lying within that plane have a common phase, we shall observe with time how that plane of

common phase progresses through the medium. Over such a plane, all parameters

describing the wave motion remain constant. The crests and troughs are planes of

maximum amplitude of oscillation which are � rad out of phase; a crest is a plane of

maximum positive amplitude, while a trough is a plane of maximum negative amplitude. In

formulating such wave motion in mathematical terms we shall have to relate the phase

difference between any two planes to their physical separation in space. We have, in

principle, already done this in our discussion on oscillators.

Spherical waves are waves in which the surfaces of common phase are spheres and the

source of waves is a central point, e.g. an explosion; each spherical surface defines a set of

oscillators over which the radiating disturbance has imposed a common phase in vibration.

In practice, spherical waves become plane waves after travelling a very short distance. A

small section of a spherical surface is a very close approximation to a plane.

Velocities in Wave Motion

At the outset we must be very clear about one point. The individual oscillators which make

up the medium do not progress through the medium with the waves. Their motion is simple

harmonic, limited to oscillations, transverse or longitudinal, about their equilibrium

positions. It is their phase relationships we observe as waves, not their progressive motion

through the medium.

There are three velocities in wave motion which are quite distinct although they are

connected mathematically. They are

1. The particle velocity, which is the simple harmonic velocity of the oscillator about its

equilibrium position.

2. The wave or phase velocity, the velocity with which planes of equal phase, crests or

troughs, progress through the medium.

3. The group velocity. A number of waves of different frequencies, wavelengths and

velocities may be superposed to form a group. Waves rarely occur as single
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monochromatic components; a white light pulse consists of an infinitely fine spectrum

of frequencies and the motion of such a pulse would be described by its group velocity.

Such a group would, of course, ‘disperse’ with time because the wave velocity of each

component would be different in all media except free space. Only in free space would

it remain as white light. We shall discuss group velocity as a separate topic in a later

section of this chapter. Its importance is that it is the velocity with which the energy in

the wave group is transmitted. For a monochromatic wave the group velocity and the

wave velocity are identical. Here we shall concentrate on particle and wave velocities.

The Wave Equation

This equation will dominate the rest of this text and we shall derive it, first of all, by

considering the motion of transverse waves on a string.

We shall consider the vertical displacement y of a very short section of a uniform string.

This section will perform vertical simple harmonic motions; it is our simple oscillator. The

displacement y will, of course, vary with the time and also with x, the position along the

string at which we choose to observe the oscillation.

The wave equation therefore will relate the displacement y of a single oscillator to

distance x and time t. We shall consider oscillations only in the plane of the paper, so that

our transverse waves on the string are plane polarized.

The mass of the uniform string per unit length or its linear density is �, and a constant

tension T exists throughout the string although it is slightly extensible.

This requires us to consider such a short length and such small oscillations that we may

linearize our equations. The effect of gravity is neglected.

Thus in Figure 5.3 the forces acting on the curved element of length ds are T at an angle �
to the axis at one end of the element, and T at an angle �þ d� at the other end. The length

of the curved element is

ds ¼ 1 þ @y

@x

� �2
" #1=2

dx

displacement

y

x xdx

dS

x + dx

q

q + dq

String
element

T

T

Figure 5.3 Displaced element of string of length ds � dx with tension T acting at an angle � at x
and at �þ d� at x þ dx
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but within the limitations imposed @y=@x is so small that we ignore its square and take

ds ¼ dx. The mass of the element of string is therefore �ds ¼ �d _xx. Its equation of motion is

found from Newton’s Law, force equals mass times acceleration.

The perpendicular force on the element dx is T sin ð�þ d�Þ � T sin � in the positive y

direction, which equals the product of �dx (mass) and @ 2y=@t 2 (acceleration).

Since � is very small sin � � tan � ¼ @y=@x, so that the force is given by

T
@y

@x

� �
xþdx

� @y

@x

� �
x

� �

where the subscripts refer to the point at which the partial derivative is evaluated. The

difference between the two terms in the bracket defines the differential coefficient of the

partial derivative @y=@x times the space interval dx, so that the force is

T
@ 2y

@x2
dx

The equation of motion of the small element dx then becomes

T
@ 2y

@x2
dx ¼ � dx

@ 2y

@t 2

or

@ 2y

@x2
¼ �

T

@ 2y

@t 2

giving

@ 2y

@x2
¼ 1

c2

@ 2y

@t 2

where T=� has the dimensions of a velocity squared, so c in the preceding equation is a

velocity. THIS IS THE WAVE EQUATION.

It relates the acceleration of a simple harmonic oscillator in a medium to the second

derivative of its displacement with respect to its position, x, in the medium. The position of

the term c2 in the equation is always shown by a rapid dimensional analysis.

So far we have not explicitly stated which velocity c represents. We shall see that it is the

wave or phase velocity, the velocity with which planes of common phase are propagated. In

the string the velocity arises as the ratio of the tension to the inertial density of the string.

We shall see, whatever the waves, that the wave velocity can always be expressed as a

function of the elasticity or potential energy storing mechanism in the medium and the

inertia of the medium through which its kinetic or inductive energy is stored. For

longitudinal waves in a solid the elasticity is measured by Young’s modulus, in a gas by �P,

where � is the specific heat ratio and P is the gas pressure.
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Solution of the Wave Equation

The solution of the wave equation

@ 2y

@x2
¼ 1

c2

@ 2y

@t 2

will, of course, be a function of the variables x and t. We are going to show that any

function of the form y ¼ f1ðct � xÞ is a solution. Moreover, any function y ¼ f2ðct þ xÞ
will be a solution so that, generally, their superposition y ¼ f1ðct � xÞ þ f2ðct þ xÞ is the

complete solution.

If f 0
1 represents the differentiation of the function with respect to the bracket ðct � xÞ,

then using the chain rule which also applies to partial differentiation

@y

@x
¼ �f 0

1ðct � xÞ

and

@ 2y

@x2
¼ f 00

1 ðct � xÞ

also

@y

@t
¼ cf 0

1ðct � xÞ

and

@ 2y

@t 2
¼ c2f 00

1 ðct � xÞ

so that

@ 2y

@x2
¼ 1

c2

@ 2y

@t 2

for y ¼ f1ðct � xÞ. When y ¼ f2ðct þ xÞ a similar result holds.

(Problems 5.1, 5.2)

If y is the simple harmonic displacement of an oscillator at position x and time t we

would expect, from Chapter 1, to be able to express it in the form y ¼ a sin ð!t � 
Þ, and in

fact all of the waves we discuss in this book will be described by sine or cosine functions.

The bracket ðct � xÞ in the expression y ¼ f ðct � xÞ has the dimensions of a length and,

for the function to be a sine or cosine, its argument must have the dimensions of radians so

that ðct � xÞ must be multiplied by a factor 2�=�, where � is a length to be defined.
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We can now write

y ¼ a sin ð!t � 
Þ ¼ a sin
2�

�
ðct � xÞ

as a solution to the wave equation if 2�c=� ¼ ! ¼ 2��, where � is the oscillation

frequency and 
 ¼ 2�x=�.

This means that if a wave, moving to the right, passes over the oscillators in a medium

and a photograph is taken at time t ¼ 0, the locus of the oscillator displacements (Fig-

ure 5.4) will be given by the expression y ¼ a sin ð!t � 
Þ ¼ a sin 2�ðct � xÞ=�. If we now

observe the motion of the oscillator at the position x ¼ 0 it will be given by y ¼ a sin!t.

Any oscillator to its right at some position x will be set in motion at some later time by

the wave moving to the right; this motion will be given by

y ¼ a sin ð!t � 
Þ ¼ a sin
2�

�
ðct � xÞ

having a phase lag of 
 with respect to the oscillator at x ¼ 0. This phase lag 
 ¼ 2�x=�,

so that if x ¼ � the phase lag is 2� rad that is, equivalent to exactly one complete vibration

of an oscillator.

This defines � as the wavelength, the separation in space between any two oscillators

with a phase difference of 2� rad. The expression 2�c=� ¼ ! ¼ 2�� gives c ¼ ��, where

c, the wave or phase velocity, is the product of the frequency and the wavelength. Thus,

�=c ¼ 1=� ¼ 
 , the period of oscillation, showing that the wave travels one wavelength in

this time. An observer at any point would be passed by � wavelengths per second, a

distance per unit time equal to the velocity c of the wave.

If the wave is moving to the left the sign of 
 is changed because the oscillation at x

begins before that at x ¼ 0. Thus, the bracket

ðct � xÞ denotes a wave moving to the right

λ

0
di

sp
la

ce
m

en
t y

a

x

Figure 5.4 Locus of oscillator displacements in a continuous medium as a wave passes over them
travelling in the positive x-direction. The wavelength � is defined as the distance between any two
oscillators having a phase difference of 2� rad
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and

ðct þ xÞ gives a wave moving in the direction of negative x:

There are several equivalent expressions for y ¼ f ðct � xÞ which we list here as sine

functions, although cosine functions are equally valid.

They are:

y ¼ a sin
2�

�
ðct � xÞ

y ¼ a sin 2� �t � x

�

� �
y ¼ a sin! t � x

c

� �
y ¼ a sin ð!t � kxÞ

where k ¼ 2�=� ¼ !=c is called the wave number; also y ¼ a eið!t�kxÞ, the exponential

representation of both sine and cosine.

Each of the expressions above is a solution to the wave equation giving the displacement

of an oscillator and its phase with respect to some reference oscillator. The changes of the

displacements of the oscillators and the propagation of their phases are what we observe as

wave motion.

The wave or phase velocity is, of course, @x=@t, the rate at which the disturbance moves

across the oscillators; the oscillator or particle velocity is the simple harmonic velocity

@y=@t.

Choosing any one of the expressions above for a right-going wave, e.g.

y ¼ a sin ð!t � kxÞ
we have

@y

@t
¼ !a cos ð!t � kxÞ

and
@y

@x
¼ �ka cos ð!t � kxÞ

so that

@y

@t
¼ �!

k

@y

@x
¼ �c

@y

@x
¼ � @x

@t

@y

@x

� �

The particle velocity @y=@t is therefore given as the product of the wave velocity

c ¼ @x

@t

and the gradient of the wave profile preceded by a negative sign for a right-going wave

y ¼ f ðct � xÞ
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In Figure 5.5 the arrows show the direction of the particle velocity at various points of

the right-going wave. It is evident that the particle velocity increases in the same direction

as the transverse force in the wave and we shall see in the next section that this force is

given by

�T@y=@x

where T is the tension in the string.

(Problem 5.3)

Characteristic Impedance of a String (the string as a forced
oscillator)

Any medium through which waves propagate will present an impedance to those waves. If

the medium is lossless, and possesses no resistive or dissipation mechanism, this

impedance will be determined by the two energy storing parameters, inertia and elasticity,

and it will be real. The presence of a loss mechanism will introduce a complex term into

the impedance.

A string presents such an impedance to progressive waves and this is defined, because of

the nature of the waves, as the transverse impedance

Z ¼ transverse force

transverse velocity
¼ F

v

y

x

x

∂y
∂t

∂y
∂x

= –c

Figure 5.5 The magnitude and direction of the particle velocity @y=@t ¼ �cð@y=@xÞ at any point x
is shown by an arrow in the right-going sine wave above
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The following analysis will emphasize the dual role of the string as a medium and as a

forced oscillator.

In Figure 5.6 we consider progressive waves on the string which are generated at one end

by an oscillating force, F0 e i!t, which is restricted to the direction transverse to the string

and operates only in the plane of the paper. The tension in the string has a constant value, T,

and at the end of the string the balance of forces shows that the applied force is equal and

opposite to T sin � at all time, so that

F0 e i!t ¼ �T sin � � �T tan � ¼ �T
@y

@x

� �

where � is small.

The displacement of the progressive waves may be represented exponentially by

y ¼ A eið!t�kxÞ

where the amplitude A may be complex because of its phase relation with F. At the end of

the string, where x ¼ 0,

F0 e i!t ¼ �T
@y

@x

� �
x¼0

¼ ikTA eið!t�k
0Þ

giving

A ¼ F0

ikT
¼ F0

i!

c

T

� �

and

y ¼ F0

i!

c

T

� �
eið!t�kxÞ

(since c ¼ !=kÞ:

F0eiwt = –T sin q

F0eiwt

T

T

q
q

x

Figure 5.6 The string as a forced oscillator with a vertical force F0 e i!t driving it at one end
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The transverse velocity

v ¼ _yy ¼ F0

c

T

� �
eið!t�kxÞ

where the velocity amplitude v ¼ F0=Z, gives a transverse impedance

Z ¼ T

c
¼ �c ðsince T ¼ �c2Þ

or Characteristic Impedance of the string.

Since the velocity c is determined by the inertia and the elasticity, the impedance is also

governed by these properties.

(We can see that the amplitude of displacement y ¼ F0=!Z, with the phase relationship

�i with respect to the force, is in complete accord with our discussion in Chapter 3.)

Reflection and Transmission of Waves on a String at a Boundary

We have seen that a string presents a characteristic impedance �c to waves travelling along

it, and we ask how the waves will respond to a sudden change of impedance; that is, of the

value �c. We shall ask this question of all the waves we discuss, acoustic waves, voltage

and current waves and electromagnetic waves, and we shall find a remarkably consistent

pattern in their behaviour.

We suppose that a string consists of two sections smoothly joined at a point x ¼ 0 with a

constant tension T along the whole string. The two sections have different linear densities

�1 and �2, and therefore different wave velocities T=�1 ¼ c2
1 and T=�2 ¼ c2

2. The specific

impedances are �1c1 and �2c2, respectively.

An incident wave travelling along the string meets the discontinuity in impedance at the

position x ¼ 0 in Figure 5.7. At this position, x ¼ 0, a part of the incident wave will be

reflected and part of it will be transmitted into the region of impedance �2c2.

We shall denote the impedance �1c1 by Z1 and the impedance �2c2 by Z2. We write the

displacement of the incident wave as yi ¼ A1 e ið!t�kxÞ, a wave of real (not complex)

x = 0

P2C2

P1C1

TIncident wave

Transmitted wave

Reflected wave

T

Figure 5.7 Waves on a string of impedance �1c 1 reflected and transmitted at the boundary x ¼ 0
where the string changes to impedance � 2c 2
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amplitude A1 travelling in the positive x-direction with velocity c1. The displacement of

the reflected wave is yr ¼ B1 e ið!tþk 1xÞ, of amplitude B1 and travelling in the negative

x-direction with velocity c1.

The transmitted wave displacement is given by yt ¼ A2 e ið!t�k 2xÞ, of amplitude A2 and

travelling in the positive x-direction with velocity c2.

We wish to find the reflection and transmission amplitude coefficients; that is, the relative

values of B1 and A2 with respect to A1. We find these via two boundary conditions which

must be satisfied at the impedance discontinuity at x ¼ 0.

The boundary conditions which apply at x ¼ 0 are:

1. A geometrical condition that the displacement is the same immediately to the left and

right of x ¼ 0 for all time, so that there is no discontinuity of displacement.

2. A dynamical condition that there is a continuity of the transverse force Tð@y=@xÞ at

x ¼ 0, and therefore a continuous slope. This must hold, otherwise a finite difference in

the force acts on an infinitesimally small mass of the string giving an infinite

acceleration; this is not permitted.

Condition (1) at x ¼ 0 gives

yi þ yr ¼ yt

or

A
ið!t�k 1xÞ
1 þ B1 e ið!tþk 1xÞ ¼ A2 e ið!t�k 2xÞ

At x ¼ 0 we may cancel the exponential terms giving

A1 þ B1 ¼ A2 ð5:1Þ

Condition (2) gives

T
@

@x
ðyi þ yrÞ ¼ T

@

@x
yt

at x ¼ 0 for all t, so that

�k1TA1 þ k1TB1 ¼ �k2TA2

or

�! T

c1

A1 þ !
T

c1

B1 ¼ �! T

c2

A2

after cancelling exponentials at x ¼ 0. But T=c1 ¼ �1c1 ¼ Z1 and T=c2 ¼ �2c2 ¼ Z2,

so that

Z1ðA1 � B1Þ ¼ Z2A2 ð5:2Þ
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Equations (5.1) and (5.2) give the

Reflection coefficient of amplitude;
B1

A1

¼ Z1 � Z2

Z1 þ Z2

and the

Transmission coefficient of amplitude;
A2

A1

¼ 2Z1

Z1 þ Z2

We see immediately that these coefficients are independent of ! and hold for waves of all

frequencies; they are real and therefore free from phase changes other than that of � rad

which will change the sign of a term. Moreover, these ratios depend entirely upon the ratios

of the impedances. (See summary on p. 546). If Z2 ¼ 1, this is equivalent to x ¼ 0 being a

fixed end to the string because no transmitted wave exists. This gives B1=A1 ¼ �1, so that

the incident wave is completely reflected (as we expect) with a phase change of � (phase

reversal)—conditions we shall find to be necessary for standing waves to exist. A group of

waves having many component frequencies will retain its shape upon reflection at Z2 ¼ 1,

but will suffer reversal (Figure 5.8). If Z2 ¼ 0, so that x ¼ 0 is a free end of the string, then

B1=A1 ¼ 1 and A2=A1 ¼ 2. This explains the ‘flick’ at the end of a whip or free ended

string when a wave reaches it.

Reflection of pulse having many
                   frequency components

Incident
     Pulse

Reflected
     Pulse

Infinite
Impedance

    pC = ∞

B

A C

C′

Figure 5.8 A pulse of arbitrary shape is reflected at an infinite impedance with a phase change of
� rad, so that the reflected pulse is the inverted and reversed shape of the initial waveform. The pulse
at reflection is divided in the figure into three sections A, B, and C. At the moment of observation
section C has already been reflected and suffered inversion and reversal to become C 0. The actual
shape of the pulse observed at this instant is A being Aþ B� C 0 where B¼ C 0. The displacement at
the point of reflection must be zero.
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(Problems 5.4, 5.5, 5.6)

Reflection and Transmission of Energy

Our interest in waves, however, is chiefly concerned with their function of transferring

energy throughout a medium, and we shall now consider what happens to the energy in a

wave when it meets a boundary between two media of different impedance values.

If we consider each unit length, mass �, of the string as a simple harmonic oscillator of

maximum amplitude A, we know that its total energy will be E ¼ 1
2
�!2A2, where ! is the

wave frequency.

The wave is travelling at a velocity c so that as each unit length of string takes up its

oscillation with the passage of the wave the rate at which energy is being carried along the

string is

(energy� velocity) ¼ 1
2
�!2A2c

Thus, the rate of energy arriving at the boundary x ¼ 0 is the energy arriving with the

incident wave; that is

1
2
�1c1!

2A2
1 ¼ 1

2
Z1!

2A2
1

The rate at which energy leaves the boundary, via the reflected and transmitted waves, is

1
2
�1c1!

2B2
1 þ 1

2
�2c2!

2A2
2 ¼ 1

2
Z1!

2B2
1 þ 1

2
Z2!

2A2
2

which, from the ratio B1=A1 and A2=A1,

¼ 1
2
!2A2

1

Z1ðZ1 � Z2Þ2 þ 4Z 2
1 Z2

ðZ1 þ Z2Þ2
¼ 1

2
Z1!

2A2
1

Thus, energy is conserved, and all energy arriving at the boundary in the incident

wave leaves the boundary in the reflected and transmitted waves.

The Reflected and Transmitted Intensity Coefficients

These are given by

Reflected Energy

Incident Energy
¼ Z1B2

1

Z1A2
1

¼ B1

A1

� �2

¼ Z1 � Z2

Z1 þ Z2

� �2

Transmitted Energy

Incident Energy
¼ Z2A2

2

Z1A2
1

¼ 4Z1Z2

ðZ1 þ Z2Þ2

We see that if Z1 ¼ Z2 no energy is reflected and the impedances are said to be matched.
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(Problems 5.7, 5.8)

The Matching of Impedances

Impedance matching represents a very important practical problem in the transfer of

energy. Long distance cables carrying energy must be accurately matched at all joints to

avoid wastage from energy reflection. The power transfer from any generator is a

maximum when the load matches the generator impedance. A loudspeaker is matched to

the impedance of the power output of an amplifier by choosing the correct turns ratio on the

coupling transformer. This last example, the insertion of a coupling element between two

mismatched impedances, is of fundamental importance with applications in many branches

of engineering physics and optics. We shall illustrate it using waves on a string, but the

results will be valid for all wave systems.

We have seen that when a smooth joint exists between two strings of different

impedances, energy will be reflected at the boundary. We are now going to see that the

insertion of a particular length of another string between these two mismatched strings will

allow us to eliminate energy reflection and match the impedances.

In Figure 5.9 we require to match the impedances Z1 ¼ �1c1 and Z3 ¼ �3c3 by the

smooth insertion of a string of length l and impedance Z2 ¼ �2c2. Our problem is to find

the values of l and Z2.

yi = A1 e
i(wt 

 
– k1x )

yr = B1 e
i(wt

  
+ k1x )

yi = A2 e
i(wt

  
– k2x )

yi = A3 e
i(wt

  
– k3 (x – L))

yr = B2 e
i(wt

  
+ k2x )

l

x = 0

Z 2 = P2C2 Z 3 = P3C3Z 1 = P1C1

x = l

Figure 5.9 The impedances Z1 and Z3 of two strings are matched by the insertion of a length l of a
string of impedance Z 2. The incident and reflected waves are shown for the boundaries x ¼ 0 and
x ¼ l. The impedances are matched when Z 2

2 ¼ Z1Z 3 and l ¼ �=4 in Z2, results which are true for
waves in all media

The Matching of Impedances 121



The incident, reflected and transmitted displacements at the junctions x ¼ 0 and x ¼ l are

shown in Figure 5.9 and we seek to make the ratio

Transmitted energy

Incident energy
¼ Z3A2

3

Z1A2
1

equal to unity.

The boundary conditions are that y and Tð@y=@xÞ are continuous across the junctions

x ¼ 0 and x ¼ l.

Between Z1 and Z2 the continuity of y gives

A1 e ið!t�k 1xÞ þ B1 e ið!tþk 1xÞ ¼ A2 e ið!t�k 2xÞ þ B2 e ið!tþk 2xÞ

or

A1 þ B1 ¼ A2 þ B2 ðat x ¼ 0Þ ð5:3Þ

Similarly the continuity of Tð@y=@xÞ at x ¼ 0 gives

Tð�ik1A1 þ ik1B1Þ ¼ Tð�ik2A2 þ ik2B2Þ

Dividing this equation by ! and remembering that Tðk=!Þ ¼ T=c ¼ �c ¼ Z we have

Z1ðA1 � B1Þ ¼ Z2ðA2 � B2Þ ð5:4Þ

Similarly at x ¼ l, the continuity of y gives

A2 e�ik 2l þ B2 e ik 2l ¼ A3 ð5:5Þ

and the continuity of Tð@y=@xÞ gives

Z2ðA2 e�ik 2l � B2 e ik 2lÞ ¼ Z3A3 ð5:6Þ

From the four boundary equations (5.3), (5.4), (5.5) and (5.6) we require the ratio A3=A1.

We use equations (5.3) and (5.4) to eliminate B1 and obtain A1 in terms of A2 and B2. We

then use equations (5.5) and (5.6) to obtain both A2 and B2 in terms of A3. Equations (5.3)

and (5.4) give

Z1ðA1 � A2 � B2 þ A1Þ ¼ Z2ðA2 � B2Þ

or

A1 ¼ A2ðr12 þ 1Þ þ B2ðr12 � 1Þ
2r12

ð5:7Þ

where

r12 ¼ Z1

Z2

122 Transverse Wave Motion



Equations (5.5) and (5.6) give

A2 ¼ r23 þ 1

2r23

A3 e ik 2l ð5:8Þ

and

B2 ¼ r23 � 1

2r23

A3 e�ik 2l

where

r23 ¼ Z2

Z3

Equations (5.7) and (5.8) give

A1 ¼ A3

4r12r23

½ðr12 þ 1Þðr23 þ 1Þ eik 2l þ ðr12 � 1Þðr23 � 1Þ e�ik 2l�

¼ A3

4r13

½ðr13 þ 1Þðeik 2l þ e�ik 2lÞ þ ðr12 þ r23Þðeik 2l � e�ik 2lÞ�

¼ A3

2r13

½ðr13 þ 1Þ cos k2l þ iðr12 þ r23Þ sin k2l �

where

r12r23 ¼ Z1

Z2

Z2

Z3

¼ Z1

Z3

¼ r13

Hence

A3

A1

� �2

¼ 4r 2
13

ðr13 þ 1Þ2
cos2 k2l þ ðr12 þ r23Þ2

sin2 k2l

or

transmitted energy

incident energy
¼ Z3

Z1

A2
3

A2
1

¼ 1

r13

A2
3

A2
1

¼ 4r13

ðr13 þ 1Þ2
cos2 k2l þ ðr12 þ r23Þ2

sin2 k2l

If we choose l ¼ �2=4; cos k2l ¼ 0 and sin k2l ¼ 1 we have

Z3

Z1

A2
3

A2
1

¼ 4r13

ðr12 þ r23Þ2
¼ 1

when

r12 ¼ r23
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that is, when

Z1

Z2

¼ Z2

Z3

or Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Z1Z3

p

We see, therefore, that if the impedance of the coupling medium is the harmonic mean of

the two impedances to be matched and the thickness of the coupling medium is

�2

4
where �2 ¼ 2�

k2

all the energy at frequency ! will be transmitted with zero reflection.

The thickness of the dielectric coating of optical lenses which eliminates reflections

as light passes from air into glass is one quarter of a wavelength. The ‘bloomed’ appearance

arises because exact matching occurs at only one frequency. Transmission lines are matched

to loads by inserting quarter wavelength stubs of lines with the appropriate impedance.

(Problems 5.9, 5.10)

Standing Waves on a String of Fixed Length

We have already seen that a progressive wave is completely reflected at an infinite

impedance with a � phase change in amplitude. A string of fixed length l with both ends

rigidly clamped presents an infinite impedance at each end; we now investigate the

behaviour of waves on such a string. Let us consider the simplest case of a monochromatic

wave of one frequency ! with an amplitude a travelling in the positive x-direction and an

amplitude b travelling in the negative x-direction. The displacement on the string at any

point would then be given by

y ¼ a eið!t�kxÞ þ b eið!tþkxÞ

with the boundary condition that y ¼ 0 at x ¼ 0 and x ¼ l at all times.

The condition y ¼ 0 at x ¼ 0 gives 0 ¼ ða þ bÞ e i!t for all t, so that a ¼ �b. This

expresses physically the fact that a wave in either direction meeting the infinite impedance

at either end is completely reflected with a � phase change in amplitude. This is a general

result for all wave shapes and frequencies.

Thus

y ¼ a ei!tðe�ikx � eikxÞ ¼ ð�2iÞa ei!t sin kx ð5:9Þ

an expression for y which satisfies the standing wave time independent form of the wave

equation

@ 2y=@x2 þ k 2y ¼ 0

because ð1=c2Þð@ 2y=@t 2Þ ¼ ð�!2=c2Þy ¼ �k 2y: The condition that y ¼ 0 at x ¼ l for all t

requires

sin kl ¼ sin
!l

c
¼ 0 or

!l

c
¼ n�
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limiting the values of allowed frequencies to

!n ¼ n�c

l

or

�n ¼ nc

2l
¼ c

�n

that is

l ¼ n�n

2

giving

sin
!nx

c
¼ sin

n�x

l

These frequencies are the normal frequencies or modes of vibration we first met in

Chapter 4. They are often called eigenfrequencies, particularly in wave mechanics.

Such allowed frequencies define the length of the string as an exact number of half

wavelengths, and Figure 5.10 shows the string displacement for the first four harmonics

ðn ¼ 1; 2; 3; 4Þ: The value for n ¼ 1 is called the fundamental.

As with the loaded string of Chapter 4, all normal modes may be present at the same

time and the general displacement is the superposition of the displacements at each

frequency. This is a more complicated problem which we discuss in Chapter 10 (Fourier

Methods).

For the moment we see that for each single harmonic n > 1 there will be a number of

positions along the string which are always at rest. These points occur where

sin
!nx

c
¼ sin

n�x

l
¼ 0

or

n�x

l
¼ r� ðr ¼ 0; 1; 2; 3; . . . nÞ

n = 4

n = 3

n = 2

n = 1

Figure 5.10 The first four harmonics, n ¼ 1; 2; 3; 4 of the standing waves allowed between the two
fixed ends of a string

Standing Waves on a String of Fixed Length 125



The values r¼0 and r ¼ n give x ¼ 0 and x ¼ l, the ends of the string, but between the ends

there are n � 1 positions equally spaced along the string in the nth harmonic where the

displacement is always zero. These positions are called nodes or nodal points, being the

positions of zero motion in a system of standing waves. Standing waves arise when a

single mode is excited and the incident and reflected waves are superposed. If the amplitudes

of these progressive waves are equal and opposite (resulting from complete reflection),

nodal points will exist. Often however, the reflection is not quite complete and the waves in

the opposite direction do not cancel each other to give complete nodal points. In this case

we speak of a standing wave ratio which we shall discuss in the next section but one.

Whenever nodal points exist, however, we know that the waves travelling in opposite

directions are exactly equal in all respects so that the energy carried in one direction is

exactly equal to that carried in the other. This means that the total energy flux; that is, the

energy carried across unit area per second in a standing wave system, is zero.

Returning to equation (5.9), we see that the complete expression for the displacement of

the nth harmonic is given by

yn ¼ 2að�iÞðcos!nt þ i sin!ntÞ sin
!nx

c

We can express this in the form

yn ¼ ðAn cos!nt þ Bn sin!ntÞ sin
!nx

c
ð5:10Þ

where the amplitude of the nth mode is given by ðA2
n þ B2

nÞ
1=2 ¼ 2a:

(Problem 5.11)

Energy of a Vibrating String

A vibrating string possesses both kinetic and potential energy. The kinetic energy of an

element of length dx and linear density � is given by 1
2
� dx _yy2; the total kinetic energy is the

integral of this along the length of the string.

Thus

Ekin ¼ 1
2

ð 1

0

� _yy2 dx

The potential energy is the work done by the tension T in extending an element dx to a new

length ds when the string is vibrating.

Thus

Epot ¼
ð

Tðds � dxÞ ¼
ð

T 1 þ @y

@x

� �2
" #1=2

�1

8<
:

9=
; dx

¼ 1

2
T

ð
@y

@x

� �2

dx

if we neglect higher powers of @y=@x.
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Now the change in the length of the element dx is 1
2
ð@y=@xÞ2

dx, and if the string is

elastic the change in tension is proportional to the change in length so that, provided

ð@y=@xÞ in the wave is of the first order of small quantities, the change in tension is of the

second order and T may be considered constant.

Energy in Each Normal Mode of a Vibrating String

The total displacement y in the string is the superposition of the displacements yn of the

individual harmonics and we can find the energy in each harmonic by replacing yn for y in

the results of the last section. Thus, the kinetic energy in the nth harmonic is

EnðkineticÞ ¼ 1
2

ð l

0

� _yy2
n dx

and the potential energy is

EnðpotentialÞ ¼ 1
2

T

ð l

0

@yn

@x

� �2

dx

Since we have already shown for standing waves that

yn ¼ ðAn cos!nt þ Bn sin!ntÞ sin
!nx

c

then

_yyn ¼ ð�An!n sin!nt þ Bn!n cos!ntÞ sin
!nx

c

and

@yn

@x
¼ !n

c
ðAn cos!nt þ Bn sin!ntÞ cos

!nx

c

Thus

EnðkineticÞ ¼ 1
2
�!2

n½�An sin!nt þ Bn cos!nt�2

ð l

0

sin2 !nx

c
dx

and

EnðpotentialÞ ¼ 1
2

T
!2

n

c2
½An cos!nt þ Bn sin!nt�2

ð l

0

cos2 !nx

c
dx

Remembering that T ¼ �c2 we have

Enðkinetic þ potentialÞ ¼ 1
4
�l!2

nðA2
n þ B2

nÞ
¼ 1

4
m!2

nðA2
n þ B2

nÞ

where m is the mass of the string and ðA2
n þ B2

nÞ is the square of the maximum

displacement (amplitude) of the mode. To find the exact value of the total energy En of the
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mode we would need to know the precise value of An and Bn and we shall evaluate these in

Chapter 10 on Fourier Methods. The total energy of the vibrating string is, of course, the

sum of all the En’s of the normal modes.

(Problem 5.12)

Standing Wave Ratio

When a wave is completely reflected the superposition of the incident and reflected

amplitudes will give nodal points (zero amplitude) where the incident and reflected

amplitudes cancel each other, and points of maximum displacement equal to twice the

incident amplitude where they reinforce.

If a progressive wave system is partially reflected from a boundary let the amplitude

reflection coefficient B1=A1 of the earlier section be written as r, where r < 1.

The maximum amplitude at reinforcement is then A1 þ B1; the minimum amplitude is

given by A1 � B1. In this case the ratio of maximum to minimum amplitudes in the

standing wave system is called the

Standing Wave Ratio ¼ A1 þ B1

A1 � B1

¼ 1 þ r

1 � r

where r ¼ B1=A1.

Measuring the values of the maximum and minimum amplitudes gives the value of the

reflection coefficient for

r ¼ B1=A1 ¼ SWR � 1

SWR þ 1

where SWR refers to the Standing Wave Ratio.

(Problem 5.13)

Wave Groups and Group Velocity

Our discussion so far has been limited to monochromatic waves—waves of a single

frequency and wavelength. It is much more common for waves to occur as a mixture of

a number or group of component frequencies; white light, for instance, is composed of

a continuous visible wavelength spectrum extending from about 3000 Å in the blue to

7000 Å in the red. Examining the behaviour of such a group leads to the third kind of

velocity mentioned at the beginning of this chapter; that is, the group velocity.

Superposition of Two Waves of Almost Equal Frequencies

We begin by considering a group which consists of two components of equal amplitude a

but frequencies !1 and !2 which differ by a small amount.

Their separate displacements are given by

y1 ¼ a cos ð!1t � k1xÞ
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and

y2 ¼ a cos ð!2t � k2xÞ

Superposition of amplitude and phase gives

y¼y1þ y2 ¼ 2a cos
ð!1 � !2Þt

2
� ðk1 � k2Þx

2

� �
cos

ð!1 þ !2Þt
2

� ðk1 þ k2Þx
2

� �

a wave system with a frequency ð!1 þ !2Þ=2 which is very close to the frequency of either

component but with a maximum amplitude of 2a, modulated in space and time by a very

slowly varying envelope of frequency ð!1 � !2Þ=2 and wave number ðk1 � k2Þ=2.

This system is shown in Figure 5.11 and shows, of course a behaviour similar to that of

the equivalent coupled oscillators in Chapter 4. The velocity of the new wave is

ð!1�!2Þ=ðk1�k2Þ which, if the phase velocities !1=k1 ¼ !2=k2 ¼ c, gives

!1 � !2

k1 � k2

¼ c
ðk1 � k2Þ
k1 � k2

¼ c

so that the component frequencies and their superposition, or group will travel with the

same velocity, the profile of their combination in Figure 5.11 remaining constant.

If the waves are sound waves the intensity is a maximum whenever the amplitude is a

maximum of 2a; this occurs twice for every period of the modulating frequency; that is, at

a frequency �1 � �2.

Oscillation of

frequency ω1 + ω2

2

Envelope of

frequency ω1 – ω2

2

2a

Figure 5.11 The superposition of two waves of slightly different frequency !1 and !2 forms a
group. The faster oscillation occurs at the average frequency of the two components ð!1 þ ! 2Þ=2
and the slowly varying group envelope has a frequency ð!1 � !2Þ=2, half the frequency difference
between the components
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The beats of maximum intensity fluctuations thus have a frequency equal to the

difference �1 � �2 of the components. In the example here where the components have

equal amplitudes a, superposition will produce an amplitude which varies between 2a and

0; this is called complete or 100% modulation.

More generally an amplitude modulated wave may be represented by

y ¼ A cos ð!t � kxÞ

where the modulated amplitude

A ¼ a þ b cos! 0t

This gives

y ¼ a cos ð!t � kxÞ þ b

2
f½cos ð!þ ! 0Þt � kx� þ ½cos ð!� ! 0Þt � kx�g

so that here amplitude modulation has introduced two new frequencies !� ! 0, known as

combination tones or sidebands. Amplitude modulation of a carrier frequency is a common

form of radio transmission, but its generation of sidebands has led to the crowding of radio

frequencies and interference between stations.

Wave Groups and Group Velocity

Suppose now that the two frequency components of the last section have different phase

velocities so that !1=k1 6¼ !2=k2. The velocity of the maximum amplitude of the group;

that is, the group velocity

!1 � !2

k1 � k2

¼ �!

�k

is now different from each of these velocities; the superposition of the two waves will no

longer remain constant and the group profile will change with time.

A medium in which the phase velocity is frequency dependent ð!=k not constant) is

known as a dispersive medium and a dispersion relation expresses the variation of ! as a

function of k. If a group contains a number of components of frequencies which are nearly

equal the original expression for the group velocity is written

�!

�k
¼ d!

dk

The group velocity is that of the maximum amplitude of the group so that it is the velocity

with which the energy in the group is transmitted. Since ! ¼ kv, where v is the phase

velocity, the group velocity

v g ¼ d!

dk
¼ d

dk
ðkvÞ ¼ v þ k

dv

dk

¼ v � �
dv

d�
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where k ¼ 2�=�. Usually dv=d� is positive, so that v g < v. This is called normal

dispersion, but anomalous dispersion can arise when dv=d� is negative, so that v g > v.

We shall see when we discuss electromagnetic waves that an electrical conductor is

anomalously dispersive to these waves whilst a dielectric is normally dispersive except at the

natural resonant frequencies of its atoms. In the chapter on forced oscillations we saw that

the wave then acted as a driving force upon the atomic oscillators and that strong

absorption of the wave energy was represented by the dissipation fraction of the oscillator

impedance, whilst the anomalous dispersion curve followed the value of the reactive part of

the impedance.

The three curves of Figure 5.12 represent

� A non-dispersive medium where !=k is constant, so that v g ¼ v, for instance free space

behaviour towards light waves.

� A normal dispersion relation v g < v.

� An anomalous dispersion relation v g > v.

Example. The electric vector of an electromagnetic wave propagates in a dielectric with a

velocity v ¼ ð�"Þ�1=2
where � is the permeability and " is the permittivity. In free space

the velocity is that of light, c ¼ ð�0"0Þ�1=2
. The refractive index

n ¼ c=v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�"=�0"0

p
¼ ffiffiffiffiffiffiffiffiffiffi

� r" r
p

where � r ¼ �=�0 and " r ¼ "="0. For many substances

� r is constant and � 1, but " r is frequency dependent, so that v depends on �.

The group velocity

v g ¼ v � � dv=d� ¼ v 1 þ �

2" r

@" r

@�

� �

ω (k)

k

ω
k

V =

ω
k

V =
dω
dk

Vg =

dω
dk

Vg =

gradient

gradient

(c)

(a)

(b)

Vg  > V

Vg  = V

Vg  < V

anomalous
dispersion

no dispersion

normal
dispersion

Figure 5.12 Curves illustrating dispersion relations: (a) a straight line representing a non-
dispersive medium, v ¼ v g; (b) a normal dispersion relation where the gradient v ¼ !=k >
v g ¼ d!=dk; (c) an anomalous dispersion relation where v < v g
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so that v g > v (anomalous dispersion) when @� r=@� is þve. Figure 5.13 shows the

behaviour of the refractive index n ¼ ffiffiffiffiffi
" r

p
versus !, the frequency, and �, the wavelength,

in the region of anomalous dispersion associated with a resonant frequency. The dotted

curve shows the energy absorption (compare this with Figure 3.9).

(Problems 5.14, 5.15, 5.16, 5.17, 5.18, 5.19)

Wave Group of Many Components. The Bandwidth Theorem

We have so far considered wave groups having only two frequency components. We may

easily extend this to the case of a group of many frequency components, each of amplitude

a, lying within the narrow frequency range �!.

We have already covered the essential physics of this problem on p. 20, where we found

the sum of the series

R ¼
Xn�1

0

a cos ð!t þ n�Þ

where � was the constant phase difference between successive components. Here we are

concerned with the constant phase difference ð�!Þt which results from a constant frequency

difference �! between successive components. The spectrum or range of frequencies of this

group is shown in Figure 5.14a and we wish to follow its behaviour with time.

We seek the amplitude which results from the superposition of the frequency

components and write it

R ¼ a cos!1t þ a cos ð!1 þ �!Þt þ a cos ð!1 þ 2�!Þt þ 
 
 

þ a cos ½!1 þ ðn � 1Þð�!Þ�t

Refractive
index

n = 2

n = 1

n =    r

Absorption
curve

λ ω0 ω

∋

Figure 5.13 Anomalous dispersion showing the behaviour of the refractive index n ¼ ffiffiffiffiffi
" r

p
versus !

and �, where !0 is a resonant frequency of the atoms of the medium. The absorption in such a region
is also shown by the dotted line
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The result is given on p. 21 by

R ¼ a
sin ½nð�!Þt=2�
sin ½ð�!Þt=2� cos �!!t

where the average frequency in the group or band is

�!! ¼ !1 þ 1
2
ðn � 1Þð�!Þ

Now nð�!Þ ¼ �!, the bandwidth, so the behaviour of the resultant R with time may be

written

RðtÞ ¼ a
sin ð�! 
 t=2Þ
sin ð�! 
 t=n2Þ cos �!!t ¼ na

sin ð�! 
 t=2Þ
�! 
 t=2

cos �!!t

when n is large,

or

RðtÞ ¼ A
sin�

�
cos �!!t

a

(a)

(b)

2A

half width
of maximum

t = 0

R (t )max = A

R (t ) =

A

∆ω

∆ω⋅t

∆t

δω
ω

π

ω
ω1

2
∆ω⋅t
2

sin

t

2πt  = ∆ω

cos ω t

Figure 5.14 A rectangular wave band of width �! having n frequency components of amplitude a
with a common frequency difference �!. (b) Representation of the frequency band on a time axis is a
cosine curve at the average frequency �!!, amplitude modulated by a sin�=� curve where
� ¼ �! 
 t=2. After a time t ¼ 2�=�! the superposition of the components gives a zero amplitude
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where A ¼ na and � ¼ �! 
 t=2 is half the phase difference between the first and last

components at time t.

This expression gives us the time behaviour of the band and is displayed on a time axis in

Figure 5.14b. We see that the amplitude RðtÞ is given by the cosine curve of the average

frequency �!! modified by the A sin�=� term.

At t ¼ 0, sin�=�! 1 and all the components superpose with zero phase difference to

give the maximum amplitude RðtÞ ¼ A ¼ na. After some time interval �t when

� ¼ �!�t

2
¼ �

the phases between the frequency components are such that the resulting amplitude RðtÞ is

zero.

The time �t which is a measure of the width of the central pulse of Figure 5.14b is

therefore given by

�!�t

2
¼ �

or ���t ¼ 1 where �! ¼ 2���.

The true width of the base of the central pulse is 2�t but the interval �t is taken as an

arbitrary measure of time, centred about t ¼ 0, during which the amplitude RðtÞ remains

significantly large ð> A=2Þ. With this arbitrary definition the exact expression

���t ¼ 1

becomes the approximation

���t � 1 or ð�!�t � 2�Þ

and this approximation is known as the Bandwidth Theorem.

It states that the components of a band of width �! in the frequency range will

superpose to produce a significant amplitude RðtÞ only for a time �t before the band

decays from random phase differences. The greater the range �! the shorter the period �t.

Alternatively, the theorem states that a single pulse of time duration �t is the result of

the superposition of frequency components over the range �!; the shorter the period �t of

the pulse the wider the range �! of the frequencies required to represent it.

When �! is zero we have a single frequency, the monochromatic wave which is

therefore required (in theory) to have an infinitely long time span.

We have chosen to express our wave group in the two parameters of frequency and time

(having a product of zero dimensions), but we may just as easily work in the other pair of

parameters wave number k and distance x.

Replacing ! by k and t by x would define the length of the wave group as �x in terms of

the range of component wavelengths �ð1=�Þ.
The Bandwidth Theorem then becomes

�x�k � 2�
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or

�x�ð1=�Þ � 1 i:e: �x � �2=��

Note again that a monochromatic wave with �k ¼ 0 requires �x ! 1; that is, an

infinitely long wavetrain.

In the wave group we have just considered the problem has been simplified by assuming

all frequency components to have the same amplitude a. When this is not the case, the

different values að!Þ are treated by Fourier methods as we shall see in Chapter 10.

We shall meet the ideas of this section several times in the course of this text, noting

particularly that in modern physics the Bandwidth Theorem becomes Heisenberg’s

Uncertainty Principle.

(Problem 5.20)

Transverse Waves in a Periodic Structure

At the end of the chapter on coupled oscillations we discussed the normal transverse

vibrations of n equal masses of separation a along a light string of length ðn þ 1Þa under a

tension T with both ends fixed. The equation of motion of the rth particle was found to be

m€yyr ¼
T

a
ðyrþ1 þ yr�1 � 2yrÞ

and for n masses the frequencies of the normal modes of vibration were given by

!2
j ¼ 2T

ma
1 � cos

j�

n þ 1

� �
ð4:15Þ

where j ¼ 1; 2; 3; . . . ; n. When the separation a becomes infinitesimally small ð¼ �x, say)

the term in the equation of motion

1

a
ðyrþ1 þ yr�1 � 2yrÞ !

1

�x
ðyrþ1 þ yr�1 � 2yrÞ

¼ ðyrþ1 � yrÞ
�x

� ðyr � yr�1Þ
�x

¼ @y

@x

� �
rþ1=2

� @y

@x

� �
r�1=2

¼ @ 2y

@x2

� �
r

dx

so that the equation of motion becomes

@ 2y

@t 2
¼ T

�

@ 2y

@x2
;

the wave equation, where � ¼ m=�x, the linear density and

y / eið!t�kxÞ

We are now going to consider the propagation of transverse waves along a linear array of

atoms, mass m, in a crystal lattice where the tension T now represents the elastic force

between the atoms (so that T=a is the stiffness) and a, the separation between the atoms, is
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about 1 Å or 10�10 m. When the clamped ends of the string are replaced by the ends of

the crystal we can express the displacement of the rth particle due to the transverse

waves as

yr ¼ Ar eið!t�kxÞ ¼ Ar eið!t�kraÞ;

since x ¼ ra. The equation of motion then becomes

�!2m ¼ T

a
ðeika þ e�ika � 2Þ

¼ T

a
ðeika=2 � e�ika=2Þ2 ¼ � 4T

a
sin2 ka

2

giving the permitted frequencies

!2 ¼ 4T

ma
sin2 ka

2
ð5:11Þ

This expression for !2 is equivalent to our earlier value at the end of Chapter 4:

!2
j ¼ 2T

ma
1 � cos

j�

n þ 1

� �
¼ 4T

ma
sin2 j�

2ðn þ 1Þ ð4:15Þ

if

ka

2
¼ j�

2ðn þ 1Þ

where j ¼ 1; 2; 3; . . . ; n.

But ðn þ 1Þa ¼ l, the length of the string or crystal, and we have seen that wavelengths

� are allowed where p�=2 ¼ l ¼ ðn þ 1Þa.

Thus

ka

2
¼ 2�

�

 a

2
¼ �a

�
¼ ja�

2ðn þ 1Þa ¼ j

p

 �a

�

if j ¼ p. When j ¼ p, a unit change in j corresponds to a change from one allowed number

of half wavelengths to the next so that the minimum wavelength is � ¼ 2a, giving a

maximum frequency !2
m ¼ 4T=ma. Thus, both expressions may be considered equivalent.

When � ¼ 2a, sin ka=2 ¼ 1 because ka ¼ �, and neighbouring atoms are exactly � rad

out of phase because

yr

yrþ1

/ eika ¼ ei� ¼ �1

The highest frequency is thus associated with maximum coupling, as we expect.

If in equation (5.11) we plot jsin ka=2j against k (Figure 5.15) we find that when ka

is increased beyond � the phase relationship is the same as for a negative value of
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ka beyond ��. It is, therefore, sufficient to restrict the values of k to the region

��
a

� k � �

a

which is known as the first Brillouin zone. We shall use this concept in the section on

electron waves in solids in Chapter 13.

For long wavelengths or low values of the wave number k, sin ka=2 ! ka=2 so that

!2 ¼ 4T

ma

k 2a2

4

and the velocity of the wave is given by

c2 ¼ !2

k 2
¼ Ta

m
¼ T

�

as before, where � ¼ m=a.

In general the phase velocity is given by

v ¼ !

k
¼ c

sin ka=2

ka=2

� �
ð5:12Þ

a dispersion relation which is shown in Figure 5.16. Only at very short wavelengths does

the atomic spacing of the crystal structure affect the wave propagation, and here the limiting

or maximum value of the wave number km ¼ �=a � 1010 m�1.

The elastic force constant T=a for a crystal is about 15 Nm�1; a typical ‘reduced’ atomic

mass is about 60 � 10�27 kg. These values give a maximum frequency

!2 ¼ 4T

ma
� 60

60 � 10�27
¼ 1027 rad s�1

that is, a frequency � � 5 � 1012 Hz.

−2π/a 2π/a
k

−π/a

sin ka/2

π/a0

Figure 5.15 jsin ka
2 j versus k from equation (5.11) shows the repetition of values beyond the region

��
a � k � �

a; this region defines a Brillouin zone
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(Note that the value of T=a used here for the crystal is a factor of 8 lower than that found

in Problem 4.4 for a single molecule. This is due to the interaction between neighbouring

ions and the change in their equilibrium separation.)

This frequency is in the infrared region of the electromagnetic spectrum. We shall see in

a later chapter that electromagnetic waves of frequency ! have a transverse electric field

vector E ¼ E0 e i!t, where E0 is the maximum amplitude, so that charged atoms or ions in a

crystal lattice could respond as forced oscillators to radiation falling upon the crystal,

which would absorb any radiation at the resonant frequency of its oscillating atoms.

Linear Array of Two Kinds of Atoms in an Ionic Crystal

We continue the discussion of this problem using a one dimensional line which contains

two kinds of atoms with separation a as before, those atoms of mass M occupying the odd

numbered positions, 2r � 1; 2r þ 1, etc. and those of mass m occupying the even numbered

positions, 2r; 2r þ 2, etc. The equations of motion for each type are

m€yy2r ¼
T

a
ðy2rþ1 þ y2r�1 � 2y2rÞ

and

M€yy2rþ1 ¼ T

a
ðy2rþ2 þ y2r � 2y2rþ1Þ

with solutions

y2r ¼ Am eið!t�2rkaÞ

y2rþ1 ¼ AM eið!t�ð2rþ1ÞkaÞ

where Am and AM are the amplitudes of the respective masses.

The equations of motion thus become

�!2mAm ¼ TAM

a
ðe�ika þ eikaÞ � 2TAm

a

kπ
akm =

ω

ωm

Figure 5.16 The dispersion relation !ðkÞ versus k for waves travelling along a linear one-
dimensional array of atoms in a periodic structure
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and

�!2MAM ¼ TAm

a
ðe�ika þ e ikaÞ � 2TAM

a

equations which are consistent when

!2 ¼ T

a

1

m
þ 1

M

� �
� T

a

1

m
þ 1

M

� �2

� 4 sin2ka

mM

" #1=2

ð5:13Þ

Plotting the dispersion relation ! versus k for the positive sign and m > M gives the upper

curve of Figure 5.17 with

!2 ¼ 2T

a

1

m
þ 1

M

� �
for k ¼ 0

and

!2 ¼ 2T

aM
for km ¼ �

2a
ðminimum � ¼ 4aÞ

The negative sign in equation (5.13) gives the lower curve of Figure 5.17 with

!2 ¼ 2Tk 2a2

aðM þ mÞ for very small k

and

!2 ¼ 2T

am
for k ¼ �

2a

Optical branch

m > M

Acoustical
branch

π
2a

ω

k

2T
a

1 +
m

1
2

1
M

2T
aM

1
2

2T
am

1
2

Figure 5.17 Dispersion relations for the two modes of transverse oscillation in a crystal structure
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The upper curve is called the ‘optical’ branch and the lower curve is known as the

‘acoustical’ branch. The motions of the two types of atom for each branch are shown in

Figure 5.18.

In the optical branch for long wavelengths and small k;Am=AM ¼ �M=m, and the atoms

vibrate against each other, so that the centre of mass of the unit cell in the crystal remains

fixed. This motion can be generated by the action of an electromagnetic wave when

alternate atoms are ions of opposite charge; hence the name ‘optical branch’. In the

acoustic branch, long wavelengths and small k give Am ¼ AM, and the atoms and their

centre of mass move together (as in longitudinal sound waves). We shall see in the next

chapter that the atoms may also vibrate in a longitudinal wave.

The transverse waves we have just discussed are polarized in one plane; they may also

vibrate in a plane perpendicular to the plane considered here. The vibrational energy of

these two transverse waves, together with that of the longitudinal wave to be discussed in

the next chapter, form the basis of the theory of the specific heats of solids, a topic to which

we shall return in Chapter 9.

Absorption of Infrared Radiation by Ionic Crystals

Radiation of frequency 3 � 1012 Hz. gives an infrared wavelength of 100 mm (10�4 m) and

a wave number k ¼ 2�=� � 6:104 m�1. We found the cut-off frequency in the crystal

lattice to give a wave number km � 1010 m�1, so that the k value of infrared radiation is a

negligible quantity relative to km and may be taken as zero. When the ions of opposite

charge �e move under the influence of the electric field vector E ¼ E0 e i!t of

electromagnetic radiation, the equations of motion (with k ¼ 0) become

�!2mAm ¼ 2T

a
ðAM � AmÞ � eE0

Optical mode

Acoustical mode

Figure 5.18 The displacements of the different atomic species in the two modes of transverse
oscillations in a crystal structure (a) the optical mode, and (b) the acoustic mode
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and

�!2MAM ¼ �2T

a
ðAM � AmÞ þ eE0

which may be solved to give

AM ¼ eE0

Mð!2
0 � !2Þ and Am ¼ �e

m

E0

ð!2
0 � !2Þ

where

!2
0 ¼ 2T

a

1

m
þ 1

M

� �

the low k limit of the optical branch.

Thus, when ! ¼ !0 infrared radiation is strongly absorbed by ionic crystals and the ion

amplitudes AM and Am increase. Experimentally, sodium chloride is found to absorb

strongly at � ¼ 61mm; potassium chloride has an absorption maximum at � ¼ 71mm.

(Problem 5.21)

Doppler Effect

In the absence of dispersion the velocity of waves sent out by a moving source is constant

but the wavelength and frequency noted by a stationary observer are altered.

In Figure 5.19 a stationary source S emits a signal of frequency � and wavelength � for a

period t so the distance to a stationary observer O is ��t. If the source S 0 moves towards O

at a velocity u during the period t then O registers a new frequency � 0.
We see that

��t ¼ ut þ �� 0t

S

S′

O

O

n t λ′

ut 

n t λ

Figure 5.19 If waves from a stationary source S are received by a stationary observer O at frequency
� and wavelength � the frequency is observed as � 0 and the wavelength as � 0 at O if the source S 0

moves during transmission. This is the Doppler effect
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which, for

c ¼ �� ¼ � 0� 0

gives

c � u

�
¼ � 0 ¼ c

� 0

Hence

� 0 ¼ �c

c � u

This observed change of frequency is called the Doppler Effect.

Suppose that the source S is now stationary but that an observer O 0 moves with a velocity

v away from S. If we superimpose a velocity �v on observer, source and waves, we bring

the observer to rest; the source now has a velocity �v and waves a velocity of c � v.

Using these values in the expression for � 0 gives a new observed frequency

� 00 ¼ �ðc � vÞ
c

(Problems 5.22, 5.23, 5.24, 5.25, 5.26, 5.27, 5.28, 5.29, 5.30, 5.31)

Problem 5.1
Show that y ¼ f2ðct þ xÞ is a solution of the wave equation

@ 2y

@x2
¼ 1

c2

@ 2y

@t 2

Problem 5.2
Show that the wave profile; that is,

y ¼ f1ðct � xÞ
remains unchanged with time when c is the wave velocity. To do this consider the expression for y at

a time t þ�t where �t ¼ �x=c.
Repeat the problem for y ¼ f 2ðct þ xÞ.

Problem 5.3
Show that

@y

@t
¼ þc

@y

@x

for a left-going wave drawing a diagram to show the particle velocities as in Figure 5.5 (note that c is

a magnitude and does not change sign).

Problem 5.4
A triangular shaped pulse of length l is reflected at the fixed end of the string on which it travels

ðZ 2 ¼ 1Þ. Sketch the shape of the pulse (see Figure 5.8) after a length (a) l=4 (b) l=2 (c) 3l=4 and

(d) l of the pulse has been reflected.
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Problem 5.5
A point mass M is concentrated at a point on a string of characteristic impedance �c. A transverse

wave of frequency ! moves in the positive x direction and is partially reflected and transmitted at the

mass. The boundary conditions are that the string displacements just to the left and right of the mass

are equal ðy i þ yr ¼ y tÞ and that the difference between the transverse forces just to the left and

right of the mass equal the mass times its acceleration. If A1, B1 and A2 are respectively the incident,

reflected and transmitted wave amplitudes show that

B1

A1

¼ �iq

1 þ iq
and

A2

A1

¼ 1

1 þ iq

where q ¼ !M=2�c and i2 ¼ �1.

Problem 5.6
In problem 5.5, writing q ¼ tan �, show that A2 lags A1 by � and that B1 lags A1 by ð�=2 þ �Þ for

0 < � < �=2.
Show also that the reflected and transmitted energy coefficients are represented by sin2 � and

cos2 �, respectively.

Problem 5.7
If the wave on the string in Figure 5.6 propagates with a displacement

y ¼ a sin ð!t � kxÞ

Show that the average rate of working by the force (average value of transverse force times

transverse velocity) equals the rate of energy transfer along the string.

Problem 5.8
A transverse harmonic force of peak value 0.3 N and frequency 5 Hz initiates waves of amplitude

0.1 m at one end of a very long string of linear density 0.01 kg=m. Show that the rate of energy

transfer along the string is 3�=20 W and that the wave velocity is 30=�m s�1.

Problem 5.9
In the figure, media of impedances Z 1 and Z 3 are separated by a

medium of intermediate impedance Z2 and thickness �=4 mea-

sured in this medium. A normally incident wave in the first

medium has unit amplitude and the reflection and transmission

coefficients for multiple reflections are shown. Show that the total

reflected amplitude in medium 1 which is

R þ tTR 0ð1 þ rR 0 þ r 2R 02 . . .Þ

is zero at R ¼ R 0 and show that this defines the condition

Z 2
2 ¼ Z 1Z 3

(Note that for zero total reflection in medium 1, the first reflection

R is cancelled by the sum of all subsequent reflections.)

T

1

R

T t R ′

T R ′

T R ′ r

T R ′3r 2

T t R ′3r 2

T t R ′2r T R ′2r 2

T R ′2r 

Z 1 Z 2 Z 3
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Problem 5.10
The relation between the impedance Z and the refractive index n of a dielectric is given by Z ¼ 1=n.

Light travelling in free space enters a glass lens which has a refractive index of 1.5 for a free space

wavelength of 5:5 � 10�7 m. Show that reflections at this wavelength are avoided by a coating of

refractive index 1.22 and thickness 1:12 � 10�7 m.

Problem 5.11
Prove that the displacement yn of the standing wave expression in equation (5.10) satisfies the time

independent form of the wave equation

@ 2y

@x2
þ k 2y ¼ 0:

Problem 5.12
The total energy En of a normal mode may be found by an alternative method. Each section dx of the

string is a simple harmonic oscillator with total energy equal to the maximum kinetic energy of

oscillation

k:e:max ¼ 1
2
� dxð _yy2

nÞmax ¼ 1
2
� dx!2

nðy 2
nÞmax

Now the value of ðy2
nÞmax at a point x on the string is given by

ðy2
nÞmax ¼ ðA2

n þ B2
nÞ sin 2 !nx

c

Show that the sum of the energies of the oscillators along the string; that is, the integral

1
2
�!2

n

ð l

0

ðy2
nÞmax dx

gives the expected result.

Problem 5.13
The displacement of a wave on a string which is fixed at both ends is given by

yðx; tÞ ¼ A cos ð!t � kxÞ þ rA cos ð!t þ kxÞ

where r is the coefficient of amplitude reflection. Show that this may be expressed as the

superposition of standing waves

yðx; tÞ ¼ Að1 þ rÞ cos!t cos kx þ Að1 � rÞ sin!t sin kx:

Problem 5.14
A wave group consists of two wavelengths � and �þ�� where ��=� is very small.

Show that the number of wavelengths � contained between two successive zeros of the modulating
envelope is � �=��.

Problem 5.15
The phase velocity v of transverse waves in a crystal of atomic separation a is given by

v ¼ c
sin ðka=2Þ
ðka=2Þ

� �
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where k is the wave number and c is constant. Show that the value of the group velocity is

c cos
ka

2

What is the limiting value of the group velocity for long wavelengths?

Problem 5.16
The dielectric constant of a gas at a wavelength � is given by

" r ¼
c2

v 2
¼ A þ B

�2
� D�2

where A, B and D are constants, c is the velocity of light in free space and v is its phase velocity. If

the group velocity is V g show that

V g" r ¼ vðA � 2D�2Þ

Problem 5.17
Problem 3.10 shows that the relative permittivity of an ionized gas is given by

" r ¼
c2

v 2
¼ 1 � ! e

!

� �2

where v is the phase velocity, c is the velocity of light and ! e is the constant value of the

electron plasma frequency. Show that this yields the dispersion relation !2 ¼ !2
e þ c2k 2,

and that as !! ! e the phase velocity exceeds that of light, c, but that the group velocity

(the velocity of energy transmission) is always less than c.

Problem 5.18
The electron plasma frequency of Problem 5.17 is given by

!2
e ¼ nee2

me" 0

:

Show that for an electron number density ne � 1020ð10�5 of an atmosphere), electromagnetic waves

must have wavelengths � < 3 � 10�3 m (in the microwave region) to propagate. These are typical

wavelengths for probing thermonuclear plasmas at high temperatures.

" 0 ¼ 8:8 � 10�12 F m�1

m e ¼ 9:1 � 10�31 kg

e ¼ 1:6 � 10�19 C

Problem 5.19
In relativistic wave mechanics the dispersion relation for an electron of velocity v ¼ �hk=m is given

by !2=c2 ¼ k 2 þ m2c 2=�h2, where c is the velocity of light, m is the electron mass (considered

constant at a given velocity) �h ¼ h=2� and h is Planck’s constant. Show that the product of the group

and particle velocities is c 2.
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Problem 5.20
The figure shows a pulse of length �t given by y ¼ A cos!0t.

Show that the frequency representation

yð!Þ ¼ a cos!1t þ a cos ð!1 þ �!Þt 
 
 
 þ a cos ½!1 þ ðn � 1Þð�!Þ�t

is centred on the average frequency !0 and that the range of frequencies making significant

contributions to the pulse satisfy the criterion

�!�t � 2�

Repeat this process for a pulse of length �x with y ¼ A cos k 0x to show that in k space the pulse is

centred at k0 with the significant range of wave numbers �k satisfying the criterion �x�k � 2�:

∆ t

t

A y = A cos ω0 t

Problem 5.21
The elastic force constant for an ionic crystal is � 15 N m�1. Show that the experimental values for

the frequencies of infrared absorption quoted at the end of this chapter for NaCl and KCl are in

reasonable agreement with calculated values.

1 a:m:u: ¼ 1:66 � 10�27 kg

Na mass ¼ 23 a:m:u:

K mass ¼ 39 a:m:u:

Cl mass ¼ 35 a:m:u:

Problem 5.22
Show that, in the Doppler effect, the change of frequency noted by a stationary observer O as a

moving source S 0 passes him is given by

�� ¼ 2�cu

ðc 2 � u 2Þ

where c ¼ ��, the signal velocity and u is the velocity of S 0.

Problem 5.23
Suppose, in the Doppler effect, that a source S 0 and an observer O 0 move in the same direction with

velocities u and v, respectively. Bring the observer to rest by superimposing a velocity �v on the

system to show that O 0 now registers a frequency

� 000 ¼ �ðc � vÞ
ðc � uÞ

Problem 5.24
Light from a star of wavelength 6 � 10�7 m is found to be shifted 10�11 m towards the red when

compared with the same wavelength from a laboratory source. If the velocity of light is

3 � 10 8 m s�1 show that the earth and the star are separating at a velocity of 5 Km s�1.

146 Transverse Wave Motion



Problem 5.25
An aircraft flying on a level course transmits a signal of 3 � 109 Hz which is reflected from a distant

point ahead on the flight path and received by the aircraft with a frequency difference of 15 kHz.

What is the aircraft speed?

Problem 5.26
Light from hot sodium atoms is centred about a wavelength of 6 � 10�7 m but spreads 2 � 10�12 m

on either side of this wavelength due to the Doppler effect as radiating atoms move towards and

away from the observer. Calculate the thermal velocity of the atoms to show that the gas temperature

is � 900 K.

Problem 5.27
Show that in the Doppler effect when the source and observer are not moving in the same direction

that the frequencies

� 0 ¼ �c

c � u 0 ; � 00 ¼ �ðc � vÞ
c

and

� 000 ¼ �
c � v

c � u

� �
are valid if u and v are not the actual velocities but the components of these velocities along the

direction in which the waves reach the observer.

Problem 5.28
In extending the Doppler principle consider the accompanying figure where O is a stationary

observer at the origin of the coordinate system Oðx; tÞ and O 0 is an observer situated at the origin of

the system O 0ðx 0; t 0Þ which moves with a constant velocity v in the x direction relative to the system

O. When O and O 0 are coincident at t ¼ t 0 ¼ 0 a light source sends waves in the x direction with

constant velocity c. These waves obey the relation

0 � x2 � c 2t 2ðseen by OÞ � x 02 � c2t 02ðseen by O 0Þ: ð1Þ
Since there is only one relative velocity v, the transformation

x 0 ¼ kðx � vtÞ ð2Þ
and

x ¼ k 0ðx 0 þ vt 0Þ ð3Þ
must also hold. Use (2) and (3) to eliminate x 0 and t 0 from (1) and show that this identity is satisfied

only by k ¼ k 0 ¼ 1=ð1 � � 2Þ 1=2
, where � ¼ v=c. (Hint—in the identity of equation (1) equate

coefficients of the variables to zero.).

0 0 ′ v

 v t

0 (xt ) 0′ (x ′t  ′)
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This is the Lorentz transformation in the theory of relativity giving

x 0 ¼ ðx � vtÞ
ð1 � � 2Þ 1=2

; x ¼ x 0 þ vt 0

ð1 � � 2Þ 1=2

t 0 ¼ ðt � ðv=c 2ÞxÞ
ð1 � � 2Þ 1=2

; t ¼ ðt 0 þ ðv=c 2Þx 0Þ
ð1 � � 2Þ1=2

Problem 5.29
Show that the interval �t ¼ t2 � t 1 seen by O in Problem 5.28 is seen as �t 0 ¼ k�t by O 0 and that

the length l ¼ x2 � x1 seen by O is seen by O 0 as l 0 ¼ l=k.

Problem 5.30
Show that two simultaneous events at x 2 and x1ðt2 ¼ t1Þ seen by O in the previous problems are not

simultaneous when seen by O 0 (that is, t 01 6¼ t 02Þ.

Problem 5.31
Show that the order of events seen by Oðt2 > t1Þ of the previous problems will not be reversed

when seen by O 0 (that is, t 02 > t 01Þ as long as the velocity of light c is the greatest velocity

attainable.

Summary of Important Rules

Wave Equation
@ 2y

@x2
¼ 1

c2

@ 2y

@t 2

Wave (phase) velocity ¼ c ¼ !

k
¼ @x

@t

k ¼ wave number ¼ 2�

�

where the wavelength � defines separation between two oscillations with phase difference

of 2� rad.

Particle velocity
@y

@t
¼ �c

@y

@x

Displacement y ¼ a eið!t�kxÞ;
where a is wave amplitude.

Characteristic Impedance of a String

Z ¼ transverse force

transverse velocity
¼ �T

@y

@x

. @y

@t
¼ �c
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Reflection and Transmission Coefficients

Reflected Amplitude

Incident Amplitude
¼ Z1 � Z2

Z1 þ Z2

Transmitted Amplitude

Incident Amplitude
¼ 2Z1

Z1 þ Z2

Reflected Energy

Incident Energy
¼ Z1 � Z2

Z1 þ Z2

� �2

Transmitted Energy

Incident Energy
¼ 4Z1Z2

ðZ1 þ Z2Þ2

Impedance Matching

Impedances Z1 and Z3 are matched by insertion of impedance Z2 where Z 2
2 ¼ Z1Z3

Thickness of Z2 is �=4 measured in Z2.

Standing Waves. Normal Modes. Harmonics

Solution of wave equation separates time and space dependence to satisfy time independent

wave equation

@ 2y

@x2
þ k 2y ¼ 0 ðcancel e i!tÞ

Standing waves on string of length l have wavelength �n where

n
�n

2
¼ l

Displacement of nth harmonic is

yn ¼ ðAn cos!nt þ Bn sin!ntÞ sin
!nx

c

Energy of nth harmonic (string mass m)

En ¼ KEn þ PEn ¼ 1

4
m!2

nðA2
n þ B2

nÞ

Doppler Effect 149



Group Velocity

In a dispersive medium the wave velocity v varies with frequency ! (wave number k). The

energy of a group of such waves travels with the group velocity

v g ¼ d!

dk
¼ v þ k dv

dk
¼ v � �

dv

d�

Rectangular Wave Group of n Frequency Components Amplitude a, Width �!, represented

in time by

RðtÞ ¼ a 
 sin ð�! 
 t=2Þ
sin ð�! 
 t=n 
 2Þ cos �!!t

where �!! is average frequency. RðtÞ is zero when

�! 
 t

2
¼ �

i.e. Bandwidth Theorem gives

�! 
�t ¼ 2�

or

�x�k ¼ 2�

A pulse of duration �t requires a frequency band width �! to define it in frequency space

and vice versa.

Doppler Effect

Signal of frequency � and velocity c transmitted by a stationary source S and received by a

stationary observer O becomes

� 0 ¼ �c

c � u

when source is no longer stationary but moves towards O with a velocity u.
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6

Longitudinal Waves

In deriving the wave equation

@ 2y

@x2
¼ 1

c2

@ 2y

@t 2

in Chapter 5, we used the example of a transverse wave and continued to discuss waves of

this type on a vibrating string. In this chapter we consider longitudinal waves, waves in

which the particle or oscillator motion is in the same direction as the wave propagation.

Longitudinal waves propagate as sound waves in all phases of matter, plasmas, gases,

liquids and solids, but we shall concentrate on gases and solids. In the case of gases,

limitations of thermodynamic interest are imposed; in solids the propagation will depend

on the dimensions of the medium. Neither a gas nor a liquid can sustain the transverse

shear necessary for transverse waves, but a solid can maintain both longitudinal and

transverse oscillations.

Sound Waves in Gases

Let us consider a fixed mass of gas, which at a pressure P0 occupies a volume V0 with a

density �0. These values define the equilibrium state of the gas which is disturbed, or

deformed, by the compressions and rarefactions of the sound waves. Under the influence of

the sound waves

the pressure P0 becomes P ¼ P0 þ p

the volume V0 becomes V ¼ V0 þ v

and

the density �0 becomes � ¼ �0 þ �d:

The excess pressure pm is the maximum pressure amplitude of the sound wave and p is an

alternating component superimposed on the equilibrium gas pressure P0.
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The fractional change in volume is called the dilatation, written v=V0 ¼ �, and the

fractional change of density is called the condensation, written �d=�0 ¼ s. The values of �
and s are �10�3 for ordinary sound waves, and a value of pm ¼ 2 � 10�5 N m�2 (about

10�10 of an atmosphere) gives a sound wave which is still audible at 1000 Hz. Thus, the

changes in the medium due to sound waves are of an extremely small order and define

limitations within which the wave equation is appropriate.

The fixed mass of gas is equal to

�0V0 ¼ �V ¼ �0V0ð1 þ �Þð1 þ sÞ
so that ð1 þ �Þð1 þ sÞ ¼ 1, giving s ¼ �� to a very close approximation. The elastic

property of the gas, a measure of its compressibility, is defined in terms of its bulk modulus

B ¼ � dP

dV=V
¼ �V

dP

dV

the difference in pressure for a fractional change in volume, a volume increase with fall in

pressure giving the negative sign. The value of B depends on whether the changes in the gas

arising from the wave motion are adiabatic or isothermal. They must be thermodynamically

reversible in order to avoid the energy loss mechanisms of diffusion, viscosity and thermal

conductivity. The complete absence of these random, entropy generating processes defines

an adiabatic process, a thermodynamic cycle with a 100% efficiency in the sense that none

of the energy in the wave, potential or kinetic, is lost. In a sound wave such thermodynamic

concepts restrict the excess pressure amplitude; too great an amplitude raises the local

temperature in the gas at the amplitude peaks and thermal conductivity removes energy

from the wave system. Local particle velocity gradients will also develop, leading to

diffusion and viscosity.

Using a constant value of the adiabatic bulk modulus limits sound waves to small

oscillations since the total pressure P ¼ P0 þ p is taken as constant; larger amplitudes lead

to non-linear effects and shock waves, which we shall discuss separately in Chapter 15.

All adiabatic changes in the gas obey the relation PV� ¼ constant, where � is the ratio of

the specific heats at constant pressure and volume, respectively.

Differentiation gives

V � dP þ �PV ��1 dV ¼ 0

or

�V
dP

dV
¼ �P ¼ Ba (where the subscript a denotes adiabatic)

so that the elastic property of the gas is �P, considered to be constant. Since P ¼ P0 þ p,

then dP ¼ p, the excess pressure, giving

Ba ¼ � p

v=V0

or p ¼ �Ba� ¼ Bas

In a sound wave the particle displacements and velocities are along the x-axis and we

choose the co-ordinate � to define the displacement where �ðx; tÞ.
In obtaining the wave equation we consider the motion of an element of the gas of

thickness �x and unit cross section. Under the influence of the sound wave the behaviour
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of this element is shown in Figure 6.1. The particles in the layer x are displaced a distance �
and those at x þ�x are displaced a distance � þ��, so that the increase in the thick-

ness �x of the element of unit cross section (which therefore measures the increase in

volume) is

�� ¼ @�

@x
�x

and

� ¼ v

V0

¼ @�

@x

� �
�x=�x ¼ @�

@x
¼ �s

where @�=�x is called the strain.

The medium is deformed because the pressures along the x-axis on either side of the thin

element are not in balance (Figure 6.1). The net force acting on the element is given by

Px � Pxþ�x ¼ Px � Px þ
@Px

@x
�x

� �� �

¼ � @Px

@x
�x ¼ � @

@x
ðP0 þ pÞ�x ¼ � @p

@x
�x

The mass of the element is �0�x and its acceleration is given, to a close approxmation, by

@ 2�=dt 2.

From Newton’s Law we have

� @p

@x
�x ¼ �0�x

@ 2�

@t 2

Px

η η + ∆η

∆x

∆x + ∆η = ∆x + ∂η
∂x

∆x

∂Px

∂x
∆xPx +

Figure 6.1 Thin element of gas of unit cross-section and thickness �x displaced an amount � and
expanded by an amount ð��=@xÞ�x under the influence of a pressure differene �ð@Px=@xÞ�x
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where

p ¼ �Ba� ¼ �Ba

@�

@x

so that

� @p

@x
¼ Ba

@ 2�

@x2
; giving Ba

@ 2�

@x2
¼ �0

@ 2�

@t 2

But Ba=�0 ¼ �P=�0 is the ratio of the elasticity to the inertia or density of the gas, and this

ratio has the dimensions

force

area
� volume

mass
¼ ðvelocityÞ2; so

�P

�0

¼ c2

where c is the sound wave velocity.

Thus

@ 2�

@x2
¼ 1

c2

@ 2�

@t 2

is the wave equation. Writing �m as the maximum amplitude of displacement we have the

following expressions for a wave in the positive x-direction:

� ¼ �m eið!t�kxÞ _�� ¼ @�

@t
¼ i!�

� ¼ @�

@x
¼ �ik� ¼ �s ðso s ¼ ik�Þ

p ¼ Bas ¼ iBak�

The phase relationships between these parameters (Figure 6.2a) show that when the wave is

in the positive x-direction, the excess pressure p, the fractional density increase s and the

particle velocity _�� are all 
=2 rad in phase ahead of the displacement �, whilst the volume

change (
 rad out of phase with the density change) is 
=2 rad behind the displacement.

These relationships no longer hold when the wave direction is reversed (Figure 6.2b); for a

wave in the negative x-direction

� ¼ �m eið!tþkxÞ _�� ¼ @�

@t
¼ i!�

� ¼ @�

@x
¼ �ik� ¼ �s ðso s ¼ ik�Þ

p ¼ Bas ¼ �iBak�

In both waves the particle displacement � is measured in the positive x-direction and the

thin element �x of the gas oscillates about the value � ¼ 0, which defines its central

position. For a wave in the positive x-direction the value � ¼ 0, with _�� a maximum in the

positive x-direction, gives a maximum positive excess pressure (compression) with a

maximum condensation sm (maximum density) and a minimum volume. For a wave in the
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negative x-direction, the same value � ¼ 0, with _�� a maximum in the positive x-direction,

gives a maximum negative excess pressure (rarefaction), a maximum volume and a

minimum density. To produce a compression in a wave moving in the negative x-direction

the particle velocity _�� must be a maximum in the negative x-direction at � ¼ 0. This

distinction is significant when we are defining the impedance of the medium to the waves.

A change of sign is involved with a change of direction—a convention we shall also have

to follow when discussing the waves of Chapters 7 and 8.

Energy Distribution in Sound Waves

The kinetic energy in the sound wave is found by considering the motion of the individual

gas elements of thickness �x.

Each element will have a kinetic energy per unit cross section

�Ekin ¼ 1
2
�0 �x _�� 2

where _�� will depend upon the position x of the element. The average value of the kinetic

energy density is found by taking the value of _�� 2 averaged over a region of n wavelengths.

Now

_�� ¼ _��m sin
2


�
ðct � xÞ

so that

_�� 2 ¼
_�� 2

m

Ð n�

0
sin2 2
ðct � xÞ=��x

n�
¼ 1

2
_�� 2

m

so that the average kinetic energy density in the medium is

�E kin ¼ 1
4
�0 _��

2
m ¼ 1

4
�0!

2� 2
m

p,s,

p,s

η ηη

ηη

∂
∂x

, δ

η∂
∂x

, δ

(a) (b)

Wave in +ve x
direction

Wave in −ve x
direction

Figure 6.2 Phase relationships between the particle displacement �, particle velocity _��, excess
pressure p and condensation s ¼ �� (the dilatation) for waves travelling in the positive and
negative x directions. The displacement � is taken in the positive x direction for both waves
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(a simple harmonic oscillator of maximum amplitude a has an average kinetic energy over

one cycle of 1
4

m!2a2).

The potential energy density is found by considering the work P dV done on the fixed

mass of gas of volume V0 during the adiabatic changes in the sound wave. This work is

expressed for the complete cycle as

�Epot ¼ �
ð

PdV ¼ � �1

2


ð 2


0

pvdð!tÞ ¼ pmvm

2
:

p

pm

¼ �v

vm

¼ sinð!t � kxÞ
� �

The negative sign shows that the potential energy change is positive in both

a compression ( p positive, dV negative) and a rarefaction ( p negative, dV positive)

Figure 6.3.

The condensation

s ¼ �
Ð

dv

V0

¼ �v

V0

¼ ��

we write

s

sm

¼ ��
�m

¼ sinð!t � kxÞ and �v ¼ V0 s

which, with

p ¼ Bas

gives

�Epot ¼
�1

2


ð2


0

pvdð!tÞ ¼ BaV0

2


ð 2


0

s2dð!tÞ

Work done
in compression

Work done
in rarefaction

V0

P0

+p

v−v

−p

Figure 6.3 Shaded triangles show that potential energy pv
2 ¼ pmvm

4 gained by gas in compression
equals that gained in rarefaction when both p and v change sign
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where s ¼ �� and the thickness �x of the element of unit cross section represents its

volume V0.

Now

� ¼ �m e ið!t	kxÞ

so that

� ¼ @�

@x
¼ 	 1

c

@�

@t
; where c ¼ !

k

Thus

�Epot ¼
1

2

Ba

c2
_�� 2�x ¼ 1

2
�0 _��

2�x

and its average value over n� gives the potential energy density

�E pot ¼ 1
4
�0 _��

2
m

We see that the average values of the kinetic and potential energy density in the sound

wave are equal, but more important, since the value of each for the element �x is
1
2
�0 _��

2�x, we observe that the element possesses maximum (or minimum) potential and

kinetic energy at the same time. A compression or rarefaction produces a maximum in the

energy of the element since the value _�� governs the energy content. Thus, the energy in the

wave is distributed in the wave system with distance as shown in Figure 6.4. Note that this

distribution is non-uniform with distance unlike that for a transverse wave.

Intensity of Sound Waves

This is a measure of the energy flux, the rate at which energy crosses unit area, so that it is

the product of the energy density (kinetic plus potential) and the wave velocity c. Normal

sound waves range in intensity between 10�12 and 1 W m�2, extremely low levels which

testify to the sensitivity of the ear. The roar of a large football crowd greeting a goal will

just about heat a cup of coffee.

Total
energy
in sound
wave

Distance
x

Figure 6.4 Energy distribution in space for a sound wave in a gas. Both potential and kinetic
energies are at a maximum when the particle velocity _�� is a maximum and zero at _�� ¼ 0
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The intensity may be written

I ¼ 1
2
�0c _�� 2

m ¼ 1
2
�0c!2� 2

m ¼ �0c _�� 2
rms ¼ p2

rms=�0c ¼ p rms _�� rms

A commonly used standard of sound intensity is given by

I0 ¼ 10�2 W m�2

which is about the level of the average conversational tone between two people standing

next to each other. Shouting at this range raises the intensity by a factor of 100 and in the

range 100 I0 to 1000 I0 (10 W m�2) the sound is painful.

Whenever the sound intensity increases by a factor of 10 it is said to have increased by

1 B so the dynamic range of the ear is about 12 B. An intensity increase by a factor of

100:1 ¼ 1 � 26

increases the intensity by 1 dB, a change of loudness which is just detected by a person

with good hearing. dB is a decibel.

We see that the product �0c appears in most of the expressions for the intensity; its

significance becomes apparent when we define the impedance of the medium to the waves

as the

Specific Acoustic Impedance ¼ excess pressure

particle velocity
¼ p

_��

(the ratio of a force per unit area to a velocity).

Now, for a wave in the positive x-direction.

p ¼ Bas ¼ iBak� and _�� ¼ i!�

so that,

p

_��
¼ Bak

!
¼ Ba

c
¼ �oc

Thus, the acoustic impedance presented by the medium to these waves, as in the case of the

transverse waves on the string, is given by the product of the density and the wave velocity

and is governed by the elasticity and inertia of the medium. For a wave in the negative

x-direction, the specific acoustic impedance

p

_��
¼ � iBak�

i!�
¼ ��0c

with a change of sign because of the changed phase relationship.

The units of �0c are normally stated as kg m�2 s�1 in books on practical acoustics; in

these units air has a specific acoustic impedance value of 400, water a value of 1.45�106

and steel a value of 3.9�107. These values will become more significant when we use them

later in examples on the reflection and transmission of sound waves.
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Although the specific acoustic impedance �0c is a real quantity for plane sound waves, it

has an added reactive component ik=r for spherical waves, where r is the distance travelled

by the wavefront. This component tends to zero with increasing r as the spherical wave

becomes effectively plane.

(Problems 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8)

Longitudinal Waves in a Solid

The velocity of longitudinal waves in a solid depends upon the dimensions of the specimen

in which the waves are travelling. If the solid is a thin bar of finite cross section the analysis

for longitudinal waves in a gas is equally valid, except that the bulk modulus Ba is replaced

by Young’s modulus Y, the ratio of the longitudinal stress in the bar to its longitudinal

strain.

The wave equation is then

@ 2�

@x2
¼ 1

c2

@ 2�

@t 2
; with c2 ¼ Y

�

A longitudinal wave in a medium compresses the medium and distorts it laterally.

Because a solid can develop a shear force in any direction, such a lateral distortion is

accompanied by a transverse shear. The effect of this upon the wave motion in solids of

finite cross section is quite complicated and has been ignored in the very thin specimen

above. In bulk solids, however, the longitudinal and transverse modes may be considered

separately.

We have seen that the longitudinal compression produces a strain @�=@x; the

accompanying lateral distortion produces a strain @�=@y (of opposite sign to @�=@x and

perpendicular to the x-direction).

Here � is the displacement in the y-direction and is a function of both x and y. The ratio

of these strains

� @�

@y

. @�
@x

¼ 


is known as Poisson’s ratio and is expressed in terms of Lamé’s elastic constants � and �
for a solid as


 ¼ �

2ð�þ �Þ where � ¼ 
Y

ð1 þ 
Þð1 � 2
Þ
These constants are always positive, so that 
 < 1

2
, and is commonly � 1

3
. In terms of these

constants Young’s modulus becomes

Y ¼ ð�þ 2�� 2�
Þ

The constant � is the transverse coefficient of rigidity; that is, the ratio of the transverse

stress to the transverse strain. It plays the role of the elasticity in the propagation of pure
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transverse waves in a bulk solid which Young’s modulus plays for longitudinal waves in

a thin specimen. Figure 6.5 illustrates the shear in a transverse plane wave, where the

transverse strain is defined by @�=@x. The transverse stress at x is therefore Tx ¼ �@�=@x.

The equation of transverse motion of the thin element dx is then given by

Txþdx � Tdx ¼ � dx€yy

where � is the density, or

@

@x
�
@�

@x

� �
¼ �€yy

but €yy ¼ @ 2�=@t 2, hence

@ 2�

@x2
¼ �

�

@ 2�

@t 2

the wave equation with a velocity given by c2 ¼ �=�.
The effect of the transverse rigidity � is to stiffen the solid and increase the elastic

constant governing the propagation of longitudinal waves. In a bulk solid the velocity of

these waves is no longer given by c2 ¼ Y=�, but becomes

c2 ¼ �þ 2�

�

Since Young’s modulus Y ¼ �þ 2�� 2�
, the elasticity is increased by the amount

2�
 � �, so that longitudinal waves in a bulk solid have a higher velocity than the same

waves along a thin specimen.

In an isotropic solid, where the velocity of propagation is the same in all directions,

the concept of a bulk modulus, used in the discussion on waves in gases, holds equally

(x )

=   (xy )β

β

β
β

β 

x

dy

x

x

x + dx

(x + dx )

∂
∂

= transverse strain

Figure 6.5 Shear in a bulk solid producing a transverse wave. The transverse shear strain is @�=@x
and the transverse shear stress is � @�=@x, where � is the shear modulus of rigidity
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well. Expressed in terms of Lamé’s elastic constants the bulk modulus for a solid is

written

B ¼ �þ 2
3
� ¼ Y ½3ð1 � 2
Þ��1

the longitudinal wave velocity for a bulk solid becomes

cL ¼ B þ ð4=3Þ�
�

� �1=2

whilst the transverse velocity remains as

cT ¼ �

�

� �1=2

Application to Earthquakes

The values of these velocities are well known for seismic waves generated by earthquakes.

Near the surface of the earth the longitudinal waves have a velocity of 8 km s�1 and the

transverse waves travel at 4.45 km s�1. The velocity of the longitudinal waves increases

with depth until, at a depth of about 1800 miles, no waves are transmitted because of a

discontinuity and severe mismatch of impedances associated with the fluid core.

At the surface of the earth the transverse wave velocity is affected by the fact that stress

components directed through the surface are zero there and these waves, known as

Rayleigh Waves, travel with a velocity given by

c ¼ f ð
Þ �

�

� �1=2

where

f ð
Þ ¼ 0:9194 when 
 ¼ 0 � 25

and

f ð
Þ ¼ 0:9553 when 
 ¼ 0 � 5

The energy of the Rayleigh Waves is confined to two dimensions; their amplitude is

often much higher than that of the three dimensional longitudinal waves and therefore they

are potentially more damaging.

In an earthquake the arrival of the fast longitudinal waves is followed by the Rayleigh

Waves and then by a complicated pattern of reflected waves including those affected by the

stratification of the earth’s structure, known as Love Waves.
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(Problem 6.9)

Longitudinal Waves in a Periodic Structure

Lamé’s elastic constants, � and �, which are used to define such macroscopic quantities as

Young’s modulus and the bulk modulus, are themselves determined by forces which

operate over interatomic distances. The discussion on transverse waves in a periodic

structure has already shown that in a one-dimensional array representing a crystal lattice a

stiffness s ¼ T=a dyn cm�1 can exist between two atoms separated by a distance a.

When the waves along such a lattice are longitudinal the atomic displacements from

equilibrium are represented by � (Figure 6.6). An increase in the separation between two

atoms from a to a þ � gives a strain " ¼ �=a, and a stress normal to the face area a2 of a

unit cell in a crystal equal to s�=a2 ¼ s"=a, a force per unit area.

Now Young’s modulus is the ratio of this longitudinal stress to the longitudinal strain, so

that Y ¼ s"="a or s ¼ Ya. The longitudinal vibration frequency of the atoms of mass m

connected by stiffness constants s is given, very approximately by

� ¼ !

2

¼ 1

2


ffiffiffiffi
s

m

r
� 1

2
a

ffiffiffiffi
Y

�

s
� c0

2
a

where m ¼ �a3 and c0 is the velocity of sound in a solid. The value of

c0 � 5 � 103 m s�1, and a � 2 � 10�10 m, so that � � 3 � 1012 Hz, which is almost

the same value as the frequency of the transverse wave in the infrared region of the

electromagnetic spectrum. The highest ultrasonic frequency generated so far is about a

factor of 10 lower than � ¼ c0=2
a. At frequencies � 5 � 1012 to 1013 Hz many

interesting experimental results must be expected. A more precise mathematical treatment

yields the same equation of motion for the r th particle as in the transverse wave;

namely

m€�� r ¼ sð� rþ1 þ � r�1 � 2� rÞ

where s ¼ T=a and

� r ¼ �max e ið!t�kraÞ

aa

ηr −1 ηr +1ηr 

Figure 6.6 Displacement of atoms in a linear array due to a longitudinal wave in a crysal structure
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The results are precisely the same as in the case of transverse waves and the shape of the

dispersion curve is also similar. The maximum value of the cut-off frequency !m is,

however, higher for the longitudinal than for the transverse waves. This is because the

longitudinal elastic constant Y is greater than the transverse constant �; that is, the force

required for a given displacement in the longitudinal direction is greater than that for

the same displacement in the transverse direction.

Reflection and Transmission of Sound Waves at Boundaries

When a sound wave meets a boundary separating two media of different acoustic

impedances two boundary conditions must be met in considering the reflection and

transmission of the wave. They are that

(i) the particle velocity _��

and

(ii) the acoustic excess pressure p

are both continuous across the boundary. Physically this ensures that the two media are in

complete contact everywhere across the boundary.

Figure 6.7 shows that we are considering a plane sound wave travelling in a medium of

specific acoustic impedance Z1 ¼ �1c1 and meeting, at normal incidence, an infinite plane

boundary separating the first medium from another of specific acoustic impedance

Z2 ¼ �2c2. If the subscripts i, r and t denote incident, reflected and transmitted

respectively, then the boundary conditions give

� i þ _�� r ¼ _�� t ð6:1Þ
and

p i þ p r ¼ p t ð6:2Þ
For the incident wave p i ¼ �1c1 _�� i and for the reflected wave p r ¼ ��1c1 _�� r, so equation

(6.2) becomes

�1c1 _�� i � �1c1 _�� r ¼ �2c2 _�� t

reflected

incident
transmitted

2 C21 C1 ρρ

Figure 6.7 Incident, reflected and transmitted sound waves at a plane boundary between media of
specific acoustic impedances �1c1 and � 2c 2
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or

Z1 _�� i � Z1 _�� r ¼ Z2 _�� t ð6:3Þ

Eliminating _�� t from (6.1) and (6.3) gives

_�� r

_�� i

¼ !� r

!� i

¼ � r

� i

¼ Z1 � Z2

Z1 þ Z2

Eliminatiing _�� r from (6.1) and (6.3) gives

_�� t

_�� i

¼ � t

� i

¼ 2Z1

Z1 þ Z2

Now

p r

p i

¼ � Z1 _�� r

Z1 _�� i

¼ Z2 � Z1

Z1 þ Z2

¼ � _�� r

_�� i

and

p t

p i

¼ Z2 _�� t

Z1 _�� i

¼ 2Z2

Z1 þ Z2

We see that if Z1 > Z2 the incident and reflected particle velocities are in phase, whilst the

incident and reflected acoustic pressures are out of phase. The superposition of incident and

reflected velocities which are in phase leads to a cancellation of pressure (a pressure node

in a standing wave system). If Z1 < Z2 the pressures are in phase and the velocities are out

of phase.

The transmitted particle velocity and acoustic pressure are always in phase with their

incident counterparts.

At a rigid wall, where Z2 is infinite, the velocity _�� ¼ 0 ¼ _�� i þ _�� r, which leads to a

doubling of pressure at the boundary. (See Summary on p. 546.)

Reflection and Transmission of Sound Intensity

The intensity coefficients of reflection and transmission are given by

I r

I i

¼ Z1ð _�� 2
r Þ rms

Z1ð _�� 2
i Þ rms

¼ Z1 � Z2

Z1 þ Z2

� �2

and

I t

I i

¼ Z2ð _�� 2
t Þ rms

Z1ð _�� 2
i Þ rms

¼ Z2

Z1

2Z1

Z1 þ Z2

� �2

¼ 4Z1Z2

ðZ1 þ Z2Þ2

The conservation of energy gives

I r

I i

þ I t

I i

¼ 1 or I i ¼ I t þ I r
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The great disparity between the specific acoustic impedance of air on the one hand and

water or steel on the other leads to an extreme mismatch of impedances when the

transmission of acoustic energy between these media is attempted.

There is an almost total reflection of sound wave energy at an air-water interface,

independent of the side from which the wave approaches the boundary. Only 14% of

acoustic energy can be transmitted at a steel-water interface, a limitation which has severe

implications for underwater transmission and detection devices which rely on acoustics.

(Problems 6.10, 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, 6.17)

Problem 6.1
Show that in a gas at temperature T the average thermal velocity of a molecule is approximatley

equal to the velocity of sound.

Problem 6.2
The velocity of sound in air of density 1.29 kg m�3 may be taken as 330 m s�1. Show that the

acoustic pressure for the painful sound of 10 W m�2 � 6:5 � 10�4 of an atmosphere.

Problem 6.3
Show that the displacement amplitude of an air molecule at a painful sound level of 10 W m�2 at

500 Hz � 6:9 � 10�5 m.

Problem 6.4
Barely audible sound in air has an intensity of 10�10 I0. Show that the displacement amplitude of an

air molecule for sound at this level at 500 Hz is � 10�10 m; that is, about the size of the molecular

diameter.

Problem 6.5
Hi-fi equipment is played very loudly at an intensity of 100 I 0 in a small room of cross section

3 m � 3 m. Show that this audio output is about 10 W.

Problem 6.6
Two sound waves, one in water and one in air, have the same intensity. Show that the ratio of their

pressure amplitudes ( p water/p air) is about 60. When the pressure amplitudes are equal show that

the intensity ratio is � 3 � 10�2.

Problem 6.7
A spring of mass m, stiffness s and length L is stretched to a length L þ l. When longitudinal waves

propagate along the spring the equation of motion of a length dx may be written

� dx
@ 2�

@t 2
¼ @F

@x
dx

where � is the mass per unit length of the spring, � is the longitudinal displacement and F is the

restoring force. Derive the wave equation to show that the wave velocity v is given by

v 2 ¼ sðL þ lÞ=�
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Problem 6.8
In Problem 1.10 we showed that a mass M suspended by a spring of stiffness s and mass m oscillated

simple harmonically at a frequency given by

!2 ¼ s

M þ m=3

We may consider the same problem in terms of standing waves along the vertical spring with

displacement

� ¼ ðA cos kx þ B sin kxÞ sin!t

where k ¼ !=v is the wave number. The boundary conditions are that � ¼ 0 at x ¼ 0 (the top of the

spring) and

M
@ 2�

@t 2
¼ �sL

@�

@x
at x ¼ L

(the bottom of the spring). Show that these lead to the expression

kL tan kL ¼ m

M

and expand tan kL in powers of kL to show that, in the second order approximation

!2 ¼ s

M þ m=3

The value of v is given in Problem 6.7.

Problem 6.9
A solid has a Poissons ratio 
 ¼ 0:25. Show that the ratio of the longitudinal wave velocity to the

transverse wave velocity is
ffiffiffi
3

p
. Use the values of these velocities given in the text to derive an

appropriate value of 
 for the earth.

Problem 6.10
Show that when sound waves are normally incident on a plane steel water interface 86% of the

energy is reflected. If the waves are travelling in water and are normally incident on a plane water-ice

interface show that 82.3% of the energy is transmitted.

ð�c values in kg m�2 s�1Þ

water ¼ 1:43 � 106

ice ¼ 3:49 � 106

steel ¼ 3:9 � 107
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Problem 6.11
Use the boundary conditions for standing acoustic waves in a tube to confirm the following:

Particle displacement Pressure
——————————— ————————————
closed end open end closed end open end

Phase change on reflection 180
 0 0 180


node antinode antinode node

Problem 6.12
Standing acoustic waves are formed in a tube of length l with (a) both ends open and (b) one end

open and the other closed. If the particle displacement

� ¼ ðA cos kx þ B sin kxÞ sin!t

and the boundary conditions are as shown in the diagrams, show that for

ðaÞ � ¼ A cos kx sin!t with � ¼ 2l=n

and for

ðbÞ � ¼ A cos kx sin!t with � ¼ 4l=ð2n þ 1Þ

Sketch the first three harmonics for each case.

(a)

l

(b)

l

∂
∂x = 0
η ∂

∂x = 0
η ∂

∂x = 0 = 0
η η

Problem 6.13
On p. 121 we discussed the problem of matching two strings of impedances Z 1 and Z 3 by the

insertion of a quarter wave element of impedance

Z 2 ¼ ðZ 1Z 3Þ 1=2

Repeat this problem for the acoustic case where the expressions for the string displacements

y i; y r; y t

now represent the appropriate acoustic pressures p i, p r and p t.

Show that the boundary condition for pressure continuity at x ¼ 0 is

A1 þ B1 ¼ A2 þ B2

and that for continuity of particle velocity is

Z 2ðA1 � B1Þ ¼ Z1ðA2 � B2Þ

Similarly, at x ¼ l, show that the boundary conditions are

A2 e�ik 2l þ B2 e ik 2l ¼ A3
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and

Z3ðA2 e�ik 2l � B2 e ik 2lÞ ¼ Z 2A3

Hence prove that the coefficient of sound transmission

Z1

Z3

A2
3

A2
1

¼ 1

when

Z 2
2 ¼ Z 1Z 3 and l ¼ �2

4

(Note that the expressions for both boundary conditions and transmission coefficient differ from

those in the case of the string.)

Problem 6.14
For sound waves of high amplitude the adiabatic bulk modulus may no longer be considered as a

constant. Use the adiabatic condition that

P

P0

¼ V0

V0ð1 þ �Þ

� � �

in deriving the wave equation to show that each part of the high amplitude wave has its

own sound velocity c 0ð1 þ sÞ ð�þ1Þ=2
, where c 2

0 ¼ �P0=� 0, � is the dilatation, s the condensation and

� the ratio of the specific heats at constant pressure and volume.

Problem 6.15
Some longitudinal waves in a plasma exhibit a combination of electrical and acoustical phenomena.

They obey a dispersion relation at temperature T of !2 ¼ !2
e þ 3aTk 2, where ! e is the constant

electron plasma frequency (see Problem 5.18) and the Boltzmann constant is written as a to avoid

confusion with the wave number k. Show that the product of the phase and group velocities is related

to the average thermal energy of an electron (found from pV ¼ RT).

Problem 6.16
It is possible to obtain the wave equation for tidal waves (long waves in shallow water) by the

method used in deriving the acoustic wave equation. In the figure a constant mass of fluid in an

element of unit width, height h and length �x moves a distance � and assumes

∂
∂x
η

η

1+

∆ x
∆ x

hh

a

Liquid su
rfa

ce
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a new height h þ � and length ð1 þ @�@xÞ�x, but retains unit width. Show that, to a first

approximation,

� ¼ �h
@�

@x

Neglecting surface tension, the force on the element face of height h þ � arises from the product of

the height and the mean hydrostatic pressure. Show, if �gh � P 0 (i.e. h � 10 m) and �� h, that

the net force on the liquid element is given by

� @F

@x
�x ¼ ��gh

@�

@x
�x

Continue the derivation using the acoustic case as a model to show that these waves are non-

dispersive with a phase velocity given by v 2 ¼ gh.

Problem 6.17
Waves near the surface of a non-viscous incompressible liquid of density � have a phase velocity

given by

v 2ðkÞ ¼ g

k
þ Tk

�

� �
tanh kh

where g is the acceleration due to gravity, T is the surface tension, k is the wave number and h is the

liquid depth. When h � � the liquid is shallow; when h � � the liquid is deep.

(a) Show that, when gravity and surface tension are equally important and h � �, the wave velocity
is a minimum at v 4 ¼ 4gT=�, and show that this occurs for a ‘critical’ wavelength
� c ¼ 2
ðT=�gÞ1=2

.

(b) The condition �� � c defines a gravity wave, and surface tension is negligible. Show that
gravity waves in a shallow liquid are non-dispersive with a velocity v ¼

ffiffiffiffiffi
gh

p
(see Problem

6.16).
(c) Show that gravity waves in a deep liquid have a phase velocity v ¼

ffiffiffiffiffiffiffiffi
g=k

p
and a group velocity

of half this value.

(d) The condition � < � c defines a ripple (dominated by surface tension). Show that short ripples in

a deep liquid have a phase velocity v ¼
ffiffiffiffiffiffiffiffiffiffi
Tk=�

p
and a group velocity of 3

2
v. (Note the anomalous

dispersion).

Summary of Important Results

Wave Velocity

c2 ¼ Bulk Modulus

�
¼ �P

�

Reflection and Transmission of Sound Intensity 169



Specific Acoustic Impedance

Z ¼ acoustic pressure

particle velocity

Z ¼ �c (for right-going wave)

¼ ��c (for left-going wave because pressure

and particle velocity become anti-phaseÞ

Intensity ¼ 1
2
�c _�� 2

m ¼ p2
rms

�c
¼ p rms _�� rms

Reflection and Transmission Coefficients

Reflected Amplitude

Incident Amplitude

displacement

and velocity

� 

¼ Z1 � Z2

Z1 þ Z2

¼ �Reflected pressure

Incident pressure

Transmitted Amplitude

Incident Amplitude

displacement

and velocity

� 

¼ 2Z1

Z1 þ Z2

¼ Z1

Z2

� Transmitted pressure

Incident pressure

Reflected Intensity

Incident Intensity
ðenergyÞ ¼ Z1 � Z2

Z1 þ Z2

� �2

Transmitted Intensity

Incident Intensity
ðenergyÞ ¼ 4Z1Z2

ðZ1 þ Z2Þ2
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7

Waves on Transmission Lines

In the wave motion discussed so far four major points have emerged. They are

1. Individual particles in the medium oscillate about their equilibrium positions with

simple harmonic motion but do not propagate through the medium.

2. Crests and troughs and all planes of equal phase are transmitted through the medium to

give the wave motion.

3. The wave or phase velocity is governed by the product of the inertia of the medium and

its capacity to store potential energy; that is, its elasticity.

4. The impedance of the medium to this wave motion is governed by the ratio of the

inertia to the elasticity (see table on p. 546).

In this chapter we wish to investigate the wave propagation of voltages and currents and

we shall see that the same physical features are predominant. Voltage and current waves are

usually sent along a geometrical configuration of wires and cables known as transmission

lines. The physical scale or order of magnitude of these lines can vary from that of an

oscilloscope cable on a laboratory bench to the electric power distribution lines supported

on pylons over hundreds of miles or the submarine telecommunication cables lying on an

ocean bed.

Any transmission line can be simply represented by a pair of parallel wires into one end

of which power is fed by an a.c. generator. Figure 7.1a shows such a line at the instant

when the generator terminal A is positive with respect to terminal B, with current flowing

out of the terminal A and into terminal B as the generator is doing work. A half cycle later

the position is reversed and B is the positive terminal, the net result being that along each of

the two wires there will be a distribution of charge as shown, reversing in sign at each half

cycle due to the oscillatory simple harmonic motion of the charge carriers (Figure 7.1b).

These carriers move a distance equal to a fraction of a wavelength on either side of their

equilibrium positions. As the charge moves current flows, having a maximum value where

the product of charge density and velocity is greatest.
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The existence along the cable of maximum and minimum current values varying simple

harmonically in space and time describes a current wave along the cable. Associated with

these currents there are voltage waves (Figure 7.1a), and if the voltage and current at the

generator are always in phase then power is continuously fed into the transmission line and

the waves will always be carrying energy away from the generator. In a laboratory the

voltage and current waves may be shown on a Lecher Wire sysem (Figure 7.1c).

In deriving the wave equation for both voltage and current to obtain the velocity of wave

propagation we shall concentrate our attention on a short element of the line having a

length very much less than that of the waves. Over this element we may consider the

variables to change linearly to the first order and we can use differentials.

The currents which flow will generate magnetic flux lines which thread the region

between the cables, giving rise to a self inductance L0 per unit length measured in henries

per metre. Between the lines, which form a condenser, there is an electrical capacitance C0

A

B

A

B
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(a)
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Figure 7.1 Power fed continuously by a generator into an infinitely long transmission line. Charge
distribution and voltage waves for (a) generator terminal positive at A and (b) a half period later,
generator terminal positive at B. Laboratory demonstration (c) of voltage maxima along a Lecher wire
system. The neon lamp glows when held near a position of Vmax
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per unit length measured in farads per metre. In the absence of any resistance in the line

these two parameters completely describe the line, which is known as ideal or lossless.

Ideal or Lossless Transmission Line

Figure 7.2 represents a short element of zero resistance of an ideal transmission line length

dx � � (the voltage or current wavelength). The self inductance of the element is L0 dx

and its capacitance if C0 dx F.

If the rate of change of voltage per unit length at constant time is @V=@x, then the

voltage difference between the ends of the element dx is @V=@x dx, which equals the

voltage drop from the self inductance �ðL0 dxÞ@I=@t.

Thus

@V

@x
dx ¼ �ðL0 dxÞ @I

@t

or

@V

@x
¼ �L0

@I

@t
ð7:1Þ

If the rate of change of current per unit length at constant time is @I=@x there is a loss of

current along the length dx of �@I=@x dx because some current has charged the capacitance

C0 dx of the line to a voltage V.

If the amount of charge is q ¼ ðC0 dxÞV ,

dI ¼ dq

dt
¼ @

@t
ðC0 dxÞV

so that

�@I

@x
dx ¼ @

@t
ðC0 dxÞV

V V +       dx

I

dx

L0dx

C0dx ∂V

∂x

I +       dx∂I

∂x

Figure 7.2 Representation of element of an ideal transmission line of inductance L 0 H per unit
length and capacitance C0 F per unit length. The element length � �, the voltage and current
wavelength
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or �@I

@x
¼ C0

@V

@t
ð7:2Þ

Since @ 2=@x@t ¼ @ 2=@t @x it follows, by taking @=@x of equation (7.1) and @=@t of

equation (7.2) that

@ 2V

@x2
¼ L0C0

@ 2V

@t 2
ð7:3Þ

a pure wave equation for the voltage with a velocity of propagation given by v 2 ¼ 1=L0C0.

Similarly @=@t of (7.1) and @=@x of (7.2) gives

@ 2I

@x2
¼ L0C0

@ 2I

@t 2
ð7:4Þ

showing that the current waves propagate with the same velocity v 2 ¼ 1=L0C0. We must

remember here, in checking dimensions, that L0 and C0 are defined per unit length.

So far then, the oscillatory motion of the charge carriers (our particles in a medium) has

led to the propagation of voltage and current waves with a velocity governed by the product

of the magnetic inertia or inductance of the medium and its capactiy to store potential

energy.

Coaxial Cables

Many transmission lines are made in the form of coaxial cables, e.g. a cylinder of dielectric

material such as polythene having one conductor along its axis and the other surrounding

its outer surface. This configuration has an inductance per unit length of

L0 ¼ �

2�
loge

r2

r1

H

where r1 and r2 are the radii of the inner and outer conductors respectively and � is the

magnetic permeability of the dielectric (henries per metre). Its capacitance per unit length

C0 ¼ 2�"

loge r2=r1

F

where " is the permittivity of the dielectric (farads per metre) so that v 2 ¼ 1=L0C0 ¼ 1=�".
The velocity of the voltage and current waves along such a cable is wholly determined

by the properties of the dielectric medium. We shall see in the next chapter on

electromagnetic waves that � and " represent the inertial and elastic properties of any

medium in which such waves are propagating; the velocity of these waves will be given by

v 2 ¼ 1=�". In free space these parameters have the values

�0 ¼ 4�� 10�7 H m�1

"0 ¼ ð36�� 109Þ�1
F m�1

and v 2 becomes c2 ¼ ð�0"0Þ�1
where c is the velocity of light, equal to 3 � 108 m s�1.
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As we shall see in the next section the ratio of the voltage to the current in the waves

travelling along the cable is

V

I
¼ Z0 ¼

ffiffiffiffiffiffi
L0

C0

r

where Z0 defines the impedance seen by the waves moving down an infinitely long cable. It

is called the Characteristic Impedance.

We write " ¼ "r "0 where "r is the relative permittivity (dielectric constant) of a material

and � ¼ �r�0, where �r is the relative permeability. Polythene, which commonly fills the

space between r1 and r2, has "r � 10 and �r � 1.

Hence

Z0 ¼
ffiffiffiffiffiffi
L0

C0

r
¼ 1

2�

ffiffiffi
�

"

r
loge

r2

r1

¼ 1

2�

1ffiffiffi
"

p
r

loge

r2

r1

ffiffiffiffiffi
�0

"0

r

where

ffiffiffiffiffi
�0

"0

r
¼ 376:6 �

Typically, the ratio r2=r1 varies between 2 and 102 and for a laboratory cable using

polythene Z0 � 50�75 � with a signal speed � c=3 where c is the speed of light.

Coaxial cables can be made to a very high degree of precision and the time for an

electrical signal to travel a given length can be accurately calculated because the velocity is

known.

Such a cable can be used as a ‘delay line’ in order to separate the arrival of signals at a

given point by very small intervals of time.

Characteristic Impedance of a Transmission Line

The solutions to equations (7.3) and (7.4) are, of course,

Vþ ¼ V0þ sin
2�

�
ðvt � xÞ

and

Iþ ¼ I0þ sin
2�

�
ðvt � xÞ

where V0 and I0 are the maximum values and where the subscript + refers to a wave

moving in the positive x-direction. Equation (7.1), @V=@x ¼ �L0 @I=@t, therefore gives

�V 0
þ ¼ �vL0I 0þ, where the superscript refers to differentiation with respect to the bracket

ðvt � xÞ.
Integration of this equation gives

Vþ ¼ vL0Iþ
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where the constant of integration has no significance because we are considering only

oscillatory values of voltage and current whilst the constant will change merely the d.c.

level.

The ratio

Vþ
Iþ

¼ vL0 ¼
ffiffiffiffiffiffi
L0

C0

r
�

and the value of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=C0

p
, written as Z0, is a constant for a transmission line of given

properties and is called the characteristic impedance. Note that it is a pure resistance

(no dimensions of length are involved) and it is the impedance seen by the wave

system propagating along an infinitely long line, just as an acoustic wave experiences a

specific acoustic impedance �c. The physical correspondence between �c and

L0v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=C0

p
¼ Z0 is immediately evident.

The value of Z0 for the coaxial cable considered earlier can be shown to be

Z0 ¼ 1

2�

ffiffiffi
�

"

r
loge

r2

r1

Electromagnetic waves in free space experience an impedance Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�0="0

p
¼ 376:6 �.

So far we have considered waves travelling only in the x-direction. Waves which travel

in the negative x-direction will be represented (from solving the wave equation) by

V� ¼ V0� sin
2�

�
ðvt þ xÞ

and

I� ¼ I0� sin
2�

�
ðvt þ xÞ

where the negative subscript denotes the negative x-direction of propagation.

Equation (7.1) then yields the results that

V�
I�

¼ �vL0 ¼ �Z0

so that, in common with the specific acoustic impedance, a negative sign is introduced into

the ratio when the waves are travelling in the negative x-direction.

When waves are travelling in both directions along the transmission line the total voltage

and current at any point will be given by

V ¼ Vþ þ V�

and

I ¼ Iþ þ I�

When a transmission line has waves only in the positive direction the voltage and current

waves are always in phase, energy is propagated and power is being fed into the line by the

generator at all times. This situation is destroyed when waves travel in both directions;
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waves in the negative x-direction are produced by reflection at a boundary when a line is

terminated or mismatched; we shall now consider such reflections.

(Problems 7.1, 7.2)

Reflections from the End of a Transmission Line

Suppose that a transmission line of characteristic impedance Z0 has a finite length and that

the end opposite that of the generator is terminated by a load of impedance ZL as shown in

Figure 7.3.

A wave travelling to the right ðVþ; IþÞ may be reflected to produce a wave ðV�; I�Þ
The boundary conditions at ZL must be VþþV�¼VL, where VL is the voltage across the

load and IþþI�¼ IL. In addition Vþ=Iþ¼Z0, V�=I� ¼ �Z0 and VL=IL ¼ ZL. It is easily

shown that these equations yield

V�
Vþ

¼ ZL � Z0

ZL þ Z0

(the voltage amplitude reflection coefficient),

I�
Iþ

¼ Z0 � ZL

ZL þ Z0

(the current amplitude reflection coefficient),

VL

Vþ
¼ 2ZL

ZL þ Z0

and

IL

Iþ
¼ 2Z0

ZL þ Z0

in complete correspondence with the reflection and transmission coefficients we have met

so far. (See Summary on p. 546.)

VL

Z0

Z0

V++V− = VL

I++I− = IL
ZL V+

I+

−V−

I−
= =

(V+ , I+ 
)

(V− , I− 
)

Figure 7.3 Transmission line terminated by impedance Z L to produce reflected waves unless
Z L ¼ Z0, the characteristic impedance
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We see that if the line is terminated by a load ZL ¼ Z0, its characteristic impedance, the

line is matched, all the energy propagating down the line is absorbed and there is no

reflected wave. When ZL ¼ Z0, therefore, the wave in the positive direction continues to

behave as though the transmission line were infinitely long.

Short Circuited Transmission Line ðZL ¼ 0Þ
If the ends of the transmission line are short circuited (Figure 7.4), ZL ¼ 0, and we have

VL ¼ Vþ þ V� ¼ 0

so that Vþ ¼ �V�, and there is total reflection with a phase change of �, But this is the

condition, as we saw in an earlier chapter, for the existence of standing waves; we shall see

that such waves exist on the transmission line.

At any position x on the line we may express the two voltage waves by

Vþ ¼ Z0Iþ ¼ V0þ eið!t�kxÞ

and

V� ¼ �Z0I� ¼ V0� eið!tþkxÞ

where, with total reflection and � phase change, V0þ ¼ �V0�. The total voltage at x is

Vx ¼ ðVþ þ V�Þ ¼ V0þðe�ikx � eikxÞ e i!t ¼ ð�iÞ2V0þ sin kx ei!t

and the total current at x is

Ix ¼ ðIþ þ I�Þ ¼
V0þ
Z0

ðe�ikx þ eikxÞ ei!t ¼ 2V0þ
Z0

cos kx ei!t

We see then that at any point x along the line the voltage Vx varies as sin kx and the

current Ix varies as cos kx, so that voltage and current are 90� out of phase in space. In

addition the � i factor in the voltage expression shows that the voltage lags the current 90�

in time, so that if we take the voltage to vary with cos !t from the ei!t term, then the current

Current

Voltage

ZL= 0

Figure 7.4 Short circuited transmission line of length (2n þ 1Þ�=4 produces a standing wave with
a current maximum and zero voltage at end of line
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will vary with � sin !t. If we take the time variation of voltage to be as sin !t the current

will change with cos !t.

Voltage and current at all points are 90� out of phase in space and time, and the power

factor cos� ¼ cos 90� ¼ 0, so that no power is consumed. A standing wave system exists

with equal energy propagated in each direction and the total energy propagation equal to

zero. Nodes of voltage and current are spaced along the transmission line as shown in

Figure 7.4, with I always a maximum where V ¼ 0 and vice versa.

If the current I varies with cos !t it will be at a maximum when V ¼ 0; when V is a

maximum the current is zero. The energy of the system is therefore completely exchanged

each quarter cycle between the magnetic inertial energy 1
2

L0I 2 and the electric potential

energy 1
2

C0V 2.

(Problems 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 7.10, 7.11)

The Transmission Line as a Filter

The transmission line is a continuous network of impedances in series and parallel

combination. The unit section is shown in Figure 7.5(a) and the continuous network in

Figure 7.5(b).

Z1

Z2

(a)

Z1 Z1 Z1

Z2 Z2 Z2

(b)

Figure 7.5 (a) The elementary unit of a transmission line. (b) A transmission line formed by a
series of such units
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If we add an infinite series of such sections a wave travelling down the line will meet its

characteristic impedance Z0. Figure 7.6 shows that, adding an extra section to the beginning

of the line does not change Z0. The impedance in Figure 7.6 is

Z ¼ Z1 þ
1

Z2

þ 1

Z0

� ��1

or

Z ¼ Z1 þ
Z2Z0

Z2 þ Z0

¼ Z0

so the characteristic impedance is

Z0 ¼ Z1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

1

4
þ Z1Z2

r

Note that Z1=2 is half the value of the first impedance in the line so if we measure the

impedance from a point half way along this impedance we have

Z0 ¼ Z2
1

4
þ Z1Z2

� �1=2

We shall, however, use the larger value of Z0 in what follows.

In Figure 7.7 we now consider the currents and voltages at the far end of the transmission

line. Any Vn since it is across Z0 is given by Vn ¼ InZ0

Moreover

Vn � Vnþ1 ¼ In Z1 ¼ Vn

Z1

Z0

Z0Z0Z2

Z1a

b

Figure 7.6 A infinite series of elemenetary units presents a characteristic impedance Z0 to a
wave travelling down the transmission line. Adding an extra unit at the input terminal leaves Z0

unchanged
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So

Vnþ1

Vn

¼ 1 � Z1

Z0

¼ Z0 � Z1

Z0

a result which is the same for all sections of the line.

We define a propagation factor

� ¼ Vnþ1

Vn

¼ Z0 � Z1

Z0

which, with

Z0 ¼ Z1

2
þ Z2

1

4
þ Z1Z2

� �1=2

gives

� ¼

ffiffiffi
Z

p
0 �

Z1

2

� �
ffiffiffi
Z

p
0 þ

Z1

2

� �

¼1 þ Z1

2Z2

� 1 þ Z1

2Z2

� �2

�1

" #1=2

In all practical cases Z1=Z2 is real since

1. there is either negligible resistance so that Z1 and Z2 are imaginary

or

2. the impedances are purely resistive.

Vn + 1Vn Z0Z2

Z1
In In + 1

Figure 7.7 The propagation constant � ¼ Vnþ1=Vn ¼ Z0 � 1=Z0 for all sections of the transmission
line
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So, given (1) or (2) we see that if

(a) 1 þ Z1

2Z2

� �2

¼ 1 þ Z1

Z2

1 þ Z1

4Z2

� �� 	
� 1 then � is real; and

(b) 1 þ Z1

2Z2

� �2

< 1 then � is complex:

For � real we have Z1=4Z2 � 0 or 
 �1.

If Z1=4Z2 � 0, then 0 < � < 1, the currents in successive sections decrease

progressively and since a is real and positive there is no phase change from one section

to another.

If Z1=4Z2 
 �1, then � 
 0, and there is again a progressive decrease in current

amplitudes along the network but here a is negative and there is a � phase change for each

successive section.

When a is complex we have

�1 <
Z1

4Z2

< 0

and

� ¼ 1 þ Z1

2Z2

� i 1 � 1 þ Z1

2Z2

� �2
" #1=2

Note that j�j ¼ 1 so we can write

� ¼ cos� � i sin � ¼ e�i�

where

cos � ¼ 1 þ Z1

2Z2

The current amplitude remains constant along the transmission line but the phase is

retarded by � with each section. If Z1 and Z2 are purely resistive � is fixed and the

attenuation is constant for all voltage inputs.

If Z1 is an inductance with Z2 a capacitance (or vice versa) the division between � real

and � complex occurs at certain frequencies governed by their relative magnitudes.

If Z1 ¼ i!L and Z2 ¼ 1=i!C for an input voltage V ¼ V0ei!t then j�j ¼ 1 when

0 
 !2LC 
 4.

So the line behaves as a low pass filter with a cut-off frequency !c ¼ 2=
ffiffiffi
L

p
C Above this

frequency there is a progressive decrease in amplitude with a phase change of � in each

section, Figure 7.8a.

If the positions of Z1 and Z2 are now interchanged so that Z1 ¼ 1=i!C is now a

capacitance and Z2 is now an inductance with Z2 ¼ i!L the transmisson line becomes a
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high pass filter with zero attenuation for 0 
 1=!2LC 
 4 that is for all frequencies above

!C ¼ ð1=2
ffiffiffi
L

p
CÞ Figure 7.8b.

(Problem 7.12)

Effect of Resistance in a Transmission Line

The discussion so far has concentrated on a transmission line having only inductance and

capacitance, i.e. wattless components which consume no power. In practice, of course, no

IαI

I

w c =  
LC

2

(a)

IαI

I

w c =  
LC

1
2

(b)

Figure 7.8 (a) When Z1 ¼ i!L and Z2 ¼ ði!LÞ�1 the transmission line acts as a low-pass filter. (b)
Reversing the positions of Z1 and Z2 changes the transmission line into a high-pass filter
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such line exists: there is always some resistance in the wires which will be responsible for

energy losses. We shall take this resistance into account by supposing that the transmission

line has a series resistance R0� per unit length and a short circuiting or shunting resistance

between the wires, which we express as a shunt conductance (inverse of resistance) written

as G0, where G0 has the dimensions of siemens per metre. Our model of the short element

of length dx of the transmission line now appears in Figure 7.9, with a resistance R0 dx in

series with L0 dx and the conductance G0 dx shunting the capacitance C0 dx. Current will

now leak across the transmission line because the dielectric is not perfect. We have seen

that the time-dependence of the voltage and current variations along a transmission line

may be written

V ¼ V0 e i!t and I ¼ I0 e i!t

so that

L0

@I

@t
¼ i!L0I and C0

@V

@t
¼ i!C0V

The voltage and current changes across the line element length dx are now given by

@V

@x
¼ �L0

@I

@t
� R0I ¼ �ðR0 þ i!L0ÞI ð7:1aÞ

@I

@x
¼ �C0

@V

@t
� G0V ¼ �ðG0 þ i!C0ÞV ð7:2aÞ

since (G0 dx)V is the current shunted across the condenser. Inserting @=@x of equation

(7.1a) into equation (7.2a) gives

@ 2V

@x2
¼ �ðR0 þ i!L0Þ

@I

@x
¼ ðR0 þ i!L0ÞðG0 þ i!C0ÞV ¼ � 2V

where � 2 ¼ ðR0 þ i!L0ÞðG0 þ i!C0Þ, so that � is a complex quantity which may be

written

� ¼ �þ ik

V

I L0dx R0dx

C0dx G0dx ∂V

∂x
dxV +

∂I

∂x
dxI +

Figure 7.9 Real transmission line element includes a series resistance R0 � per unit length and a
shunt conductance G0 S per unit length
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Inserting @=@x of equation (7.2a) into equation (7.1a) gives

@ 2I

@x2
¼ �ðG0 þ i!C0Þ

@V

@x
¼ ðR0 þ i!L0ÞðG0 þ i!C0ÞI ¼ � 2I

an equation similar to that for V.

The equation

@ 2V

@x2
� � 2V ¼ 0 ð7:5Þ

has solutions for the x-dependence of V of the form

V ¼ A e��x or V ¼ B eþ�x

where A and B are constants.

We know already that the time-dependence of V is of the form ei!t, so that the complete

solution for V may be written

V ¼ ðA e��x þ B e�xÞ ei!t

or, since � ¼ �þ ik,

V ¼ ðA e��x e�ikx þ B e�x eþikxÞ ei!t

¼ A e��x eið!t�kxÞ þ B e�x e ið!tþkxÞ

The behaviour of V is shown in Figure 7.10—a wave travelling to the right with an

amplitude decaying exponentially with distance because of the term e��x and a wave

travelling to the left with an amplitude decaying exponentially with distance because of the

term e�x.

In the expression � ¼ �þ ik, � is called the propagation constant, � is called the

attenuation or absorption coefficient and k is the wave number.

Ae
i(ωt − kx)

Be
i(ωt + kx)

reflected
wave

incident
wave

x

eαxe−αx

Figure 7.10 Voltage and current waves in both directions along a transmission line with resistance.
The effect of the dissipation term is shown by the exponentially decaying wave in each direction
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The behaviour of the current wave I is exactly similar and since power is the product VI,

the power loss with distance varies as ðe��xÞ2
; that is, as e�2�x.

We would expect this behaviour from our discussion of damped simple harmonic

oscillations. When the transmission line properties are purely inductive (inertial) and

capacitative (elastic), a pure wave equation with a sine or cosine solution will follow. The

introduction of a resistive or loss element produces an exponential decay with distance

along the transmission line in exactly the same way as an oscillator is damped with time.

Such a loss mechanism, resistive, viscous, frictional or diffusive, will always result in

energy loss from the propagating wave. These are all examples of random collision

processes which operate in only one direction in the sense that they are thermodynamically

irreversible. At the end of this chapter we shall discuss their effects in more detail.

Characteristic Impedance of a Transmission Line with
Resistance

In a lossless line we saw that the ratio Vþ=Iþ ¼ Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=C0

p
¼ Z0 �, a purely resistive

term. In what way does the introduction of the resistance into the line affect the

characteristic impedance?

The solution to the equation @ 2I=@x2 ¼ � 2I may be written (for the x-dependence of I) as

I ¼ ðA 0 e��x þ B 0 e�xÞ

so that equation (7.2a)

@I

@x
¼ �ðG0 þ i!C0ÞV

gives

��ðA 0 e��x � B 0 e�xÞ ¼ �ðG0 þ i!C0ÞV
or ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðR0 þ i!L0ÞðG0 þ i!C0Þ
p

G0 þ i!C0

ðA 0 e��x � B 0 e�xÞ ¼ V ¼ Vþ þ V�

But, except for the ei!t term,

A 0 e��x ¼ Iþ

the current wave in the positive x-direction, so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ i!L0

G0 þ i!C0

r
Iþ ¼ Vþ

or

Vþ
Iþ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ i!L0

G0 þ i!C0

r
¼ Z 0

0
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for a transmission line with resistance. Similarly B 0 e�x ¼ I� and

V�
I�

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ i!L0

G0 þ i!C0

r
¼ �Z 0

0

The presence of the resistance term in the complex characteristic impedance means that

power will be lost through Joule dissipation and that energy will be absorbed from the wave

system.

We shall discuss this aspect in some detail in the next chapter on electromagnetic waves,

but for the moment we shall examine absorption from a different (although equivalent)

viewpoint.

(Problems 7.13, 7.14)

The Diffusion Equation and Energy Absorption in Waves

On p. 23 of Chapter 1 we discussed quite briefly the effect of random processes. We shall

now look at this in more detail. The wave equation

@ 2�

@x2
¼ 1

c2

@ 2�

@t 2

is only one of a family of equations which have a double differential with respect to space

on the left hand side.

In three dimensions the left hand side would be of the form

@ 2�

@x2
þ @ 2�

@y2
þ @ 2�

@z2

which, in vector language, is called the divergence of the gradient or div grad and is written

r2�.

Five members of this family of equations may be written (in one dimension) as

1. Laplace’s Equation

@ 2�

@x2
¼ 0 ðfor �ðxÞ onlyÞ

2. Poisson’s Equation

@ 2�

@x2
¼ constant ðfor �ðxÞ onlyÞ

3. Helmholtz Equation

@ 2�

@x2
¼ constant � �
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4. Diffusion Equation

@ 2�

@x2
¼ þve constant � @�

@t

5. Wave Equation

@ 2�

@x2
¼ þve constant � @ 2�

@t 2

Laplace’s and Poisson’s equations occur very often in electrostatic field theory and are

used to find the values of the electric field and potential at any point. We have already met

the Helmholtz equation in this chapter as equation (7.5), where the constant was positive

(written � 2) and we have seen its behaviour when the constant is negative, for it is then

equivalent to the equation for standing waves (p. 124). The constant in the wave equation is

of course 1/c2 where c is the wave velocity. Where the wave equation has an ‘acceleration’

or @ 2�=@t 2 term on the right hand side, the diffusion equation has a ‘velocity’ or @�=@t term.

All equations, however, have the same term @ 2�=@x2 on the left hand side, and we must

ask: ‘What is its physical significance?’

We know that the values of the scalar � will depend upon the point in space at which it is

measured. Suppose we choose some point at which � has the value �0 and surround this

point by a small cube of side l, over the volume of which � may take other values. If the

average value of � over the small cube is written ���, then the difference between the average
��� and the value at the centre of the cube �0 is given by

���� �0 ¼ constant � @ 2�

@x2
þ @ 2�

@y2
þ @ 2�

@z2

� �
0

This statement is proved in the appendix at the end of this chapter and is readily understood

by those familiar with triple integration. The left hand side of any of these equations

therefore measures the value

�� �0

In Laplace’s equation the difference is zero, so that � has a constant value over the

volume considered. Poisson’s equation tells us that the difference is constant and

Helmholtz equation states that the value of � at any point in the volume is proportional to

this difference. The first two equations are ‘steady state’, i.e. they do not vary with time.

The Helmholtz equation states that if the constant is positive the behaviour of � with

space grows or decays exponentially, e.g. � 2 is positive in equation (7.5), but if the constant

is negative, � will vary sinusoidally or cosinusoidally with space as the displacement varies

with time in simple harmonic motion and the equation becomes the time independent wave

equation for standing waves. This equation says nothing about the time behaviour of �,

which will depend only upon the function � itself.

Both the diffusion and wave equations are time-derivative dependent. The diffusion

equation states that the ‘velocity’ or change of � with time at a point in the volume is

proportional to the difference ���� �0, whereas the wave equation states that the

‘acceleration’ @ 2�=@t 2 depends on this difference.
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The wave equation recalls the simple harmonic oscillator, where the difference from the

centre ðx ¼ 0Þ was a measure of the force or acceleration term; both the oscillator and the

wave equation have time varying sine and cosine solutions with maximum velocity @�=@t

at the zero displacement from equilibrium; that is, where the difference ���� �0 ¼ 0.

The diffusion equation, however, describes a different kind of behaviour. It describes a

non-equilibrium situation which is moving towards equilibrium at a rate governed by its

distance from equilibrium, so that it reaches equilibrium in a time which is theoretically

infinite. Readers will have already met this situation in Newton’s Law of Cooling, where a

hot body at temperatue T0 stands in a room of lower temperature �TT . The rate at which the

body cools, i.e. the value of @T=@t, depends on �TT � T0; a cooling graph of this experiment

is given in Figure 7.11. The greatest rate of cooling occurs when the temperature difference

is greatest and the process slows down as the system approaches equilibrium. Here, of

course, �TT � T0 and @T=@t are both negative.

All non-equilibrium processes of this kind are unidirectional in the sense that they are

thermodynamically irreversible. They involve the transport of mass in diffusion, the

transport of momentum in friction or viscosity and the transport of energy in conductivity.

All such processes involve the loss of useful energy and the generation of entropy.

They are all processes which are governed by random collisions, and we found in the

first chapter, where we added vectors of constant length and random phase, that the average

distance travelled by particles involved in these processes was proportional, not to the time,

but to the square root of the time.

Rewriting the diffusion equation as

@ 2�

@x2
¼ 1

d

@�

@t

Newton′s Cooling Curve
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Figure 7.11 Newton’s cooling curve shows that the rate of cooling of a hot body @T=@t depends on
the temperature difference between the body and its surrounding, this difference being directly
measured by @ 2T=@x 2
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we see that the dimensions of the constant d, called the diffusivity, are given by

�

length2
¼ 1

d

�

time

so that d has the dimensions of length2=time. The interpretation of this as the square of

a characteristic length varying with the square root of time has already been made in

Chapter 1.

In a viscous process d is given by �=�, where � is the coefficient of viscosity and � is the

density. In thermal conductivity d ¼ K=�Cp, where K is the coefficient of thermal

conductivity, � is the density and Cp is the specific heat at constant pressure.

A magnetic field which is non-uniformly distributed in a conductor has a diffusivity

d ¼ ð��Þ�1
, where � is the permeability and � is the conductivity.

Brownian motion is one of the best known examples of random collision processes. The

distance x travelled in time t by a particle suffering multiple random collisions is given by

Einstein’s diffusivity relation

d ¼ x2

t
¼ 2RT

6��N

The gas law, pV ¼ RT , gives RT as the energy of a mole of such particles at temperature

T; a mole contains N particles, where N is Avogadro’s number and RT=N ¼ kT , the average

energy of the individual particles, where k is Boltzmann’s constant.

The process is governed, therefore, by the ratio of the energy of the particles to the

coefficient of viscosity, which measures the frictional force. The higher the temperature,

the greater is the energy, the less the effect of the frictional force and the greater the

average distance travelled.

Wave Equation with Diffusion Effects

In natural systems we can rarely find pure waves which propagate free from the energy-loss

mechanisms we have been discussing, but if these losses are not too serious we can

describe the total propagation in space and time by a combination of the wave and diffusion

equations.

If we try to solve the combined equation

@ 2�

@x2
¼ 1

c2

@ 2�

@t 2
þ 1

d

@�

@t

we shall not obtain a pure sine or cosine solution.

Let us try the solution

� ¼ �m eið!t��xÞ

where �m is the maximum amplitude. This gives

i2� 2 ¼ i 2 !
2

c2
þ i

!

d
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or

� 2 ¼ !2

c2
� i

!

d

giving a complex value for �. But !2=c2 ¼ k 2, where k is the wave number, and if we put

� ¼ k � i� we obtain

� 2 ¼ k 2 � 2ik�� �2 � k 2 � i 2 k� if �� k

The solution for � then becomes

� ¼ �m eið!t��xÞ ¼ �m e��x eið!t�kxÞ

i.e. a sine or cosine oscillation of maximum amplitude �m which decays exponentially with

distance. The physical significance of the condition �� k ¼ 2�=� is that many

wavelengths � are contained in the distance 1=� before the amplitude decays to �m e�1

at x ¼ 1=�. Diffusion mechanisms will cause attenuation or energy loss from the wave; the

energy in a wave is proportional to the square of its amplitude and therefore decays as

e�2�x.

(Problems 7.15, 7.16, 7.17)

Appendix

Physical interpretation of

@ 2�

@x2
þ @ 2�

@y2
þ @ 2�

@ 2
2

� r2�

At a certain point O of the scalar field, � ¼ �0. Constructing a cube around the point O

having sides of length l gives for the average value over the cube volume

���l3 ¼
ðððþl=2

�l=2

� dx dy dz

Expanding � about the point O by a Taylor series gives

� ¼ �0 þ
@�

@x

� �
0

x þ @�

@y

� �
0

y þ @�

@z

� �
0

z

þ 1

2

@ 2�

@x2

� �
0

x2 þ @ 2�

@y2

� �
0

y2 þ @ 2�

@z2

� �
0

z2

� 	

þ @ 2�

@x@y

� �
0

xy þ @ 2�

@y@z

� �
0

yz þ @ 2�

@z@x

� �
0

zx þ � � �

Integrating from �l=2 to þl=2 removes all the functions of the form

@�

@x

� �
0

x and
@ 2�

@x@y

� �
0

xy
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whose integrals are zero, leaving, since

ðððþl=2

�l=2

x2 dx dy dz ¼ l5

12

���l3 ¼ �0l3 þ l5

24

@ 2�

@x2
þ @ 2�

@y2
þ @ 2�

@z2

� �
0

i.e.

���� �0 ¼ l2

24
ðr2�Þ0

where l is a constant.

Problem 7.1
The figure shows the mesh representation of a transmission line of inductance L 0 per unit length and

capacitance C0 per unit length. Use equations of the form

Vr
 

−
 

1

qr−1 qr+1

Vr
 

+
 

1

Ir−1

Vr

qr
Ir

C0dxC0dx

L0dx L0dx

C0dx

I r�1 � I r ¼
d

dt
q r ¼ C 0 dx

d

dt
V r

and

L0 dx
d

dt
Ir ¼ Vr � V rþ1

together with the method of the final section of Chapter 4 to show that the voltage and current wave

equations are

@ 2V

@x2
¼ L 0C 0

@ 2V

@t 2

and

@ 2I

@x2
¼ L0C 0

@ 2I

@t 2
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Problem 7.2
Show that the characteristic impedance for a pair of Lecher wires of radius r and separation d in a

medium of permeability � and permittivity " is given by

Z0 ¼ 1

�

ffiffiffi
�

"

r
log e

d

r

Problem 7.3
In a short-circuited lossless transmission line integrate the magnetic (inductive) energy 1

2
L 0I 2 and

the electric (potential) energy 1
2

C 0V 2 over the last quarter wavelength (0 to ��=4) to show that they

are equal.

Problem 7.4
Show, in Problem 7.3, that the sum of the instantaneous values of the two energies over the last

quarter wavelength is equal to the maximum value of either.

Problem 7.5
Show that the impedance of a real transmission line seen from a position x on the line is given by

Z x ¼ Z 0

A e��x � B eþ�x

A e��x þ B eþ�x

where � is the propagation constant and A and B are the current amplitudes at x ¼ 0 of the waves

travelling in the positive and negative x-directions respectively. If the line has a length l and is

terminated by a load ZL, show that

Z L ¼ Z0

A e��l � B e �l

A e��l þ B e �l

Problem 7.6
Show that the input impedance of the line of Problem 7.5; that is, the impedance of the line at x ¼ 0,

is given by

Zi ¼ Z 0

Z 0 sinh �l þ Z L cosh �l

Z 0 cosh �l þ Z L sinh �l

� �

ðNote : 2 cosh �l ¼ e�l þ e��l

2 sinh �l ¼ e�l � e��lÞ

Problem 7.7
If the transmission line of Problem 7.6 is short-circuited, show that its input impedance is given by

Z sc ¼ Z0 tanh �l

and when it is open-circuited the input impedance is

Z0c ¼ Z 0 coth �l

By taking the product of these quantities, suggest a method for measuring the characteristic
impedance of the line.
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Problem 7.8
Show that the input impedance of a short-circuited loss-free line of lenght l is given by

Z i ¼ i

ffiffiffiffiffiffi
L 0

C 0

r
tan

2�l

�

and by sketching the variation of the ratio Zi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L 0=C0

p
with l, show that for l just greater than

ð2n þ 1Þ�=4, Zi is capacitative, and for l just greater than n�=2 it is inductive. (This provides a

positive or negative reactance to match another line.)

Problem 7.9
Show that a line of characteristic impedance Z 0 may be matched to a load Z L by a loss-free quarter

wavelength line of characteristic impedance Z m if Z 2
m ¼ Z 0Z L.

(Hint—calculate the input impedance at the Z 0Z m junction.)

Problem 7.10
Show that a short-circuited quarter wavelength loss-free line has an infinite impedance and that if it

is bridged across another transmission line it will not affect the fundamental wavelength but will

short-circuit any undesirable second harmonic.

Problem 7.11
Show that a loss-free line of characteristic impedance Z 0 and length n�=2 may be used to couple two

high frequency circuits without affecting other impedances.

Problem 7.12
A transmission line has Z1 ¼ i!L and Z2 ¼ ði!CÞ�1

. If, for a range of frequencies !, the phase shift

per section � is very small show that � ¼ k the wave number and that the phase velocity is

independent of the frequency.

Problem 7.13
In a transmission line with losses where R0=!L 0 and G 0=!C 0 are both small quantities expand the

expression for the propagation constant

� ¼ ½ðR0 þ i!L 0ÞðG0 þ i!C 0Þ� 1=2

to show that the attenuation constant

� ¼ R0

2

ffiffiffiffiffiffi
C0

L 0

r
þ G 0

2

ffiffiffiffiffiffi
L 0

C0

r

and the wave number

k ¼ !
ffiffiffiffiffiffiffiffiffiffiffi
L 0C 0

p
¼ !

v

Show that for G 0 ¼ 0 the Q value of such a line is given by k=2�.

194 Waves on Transmission Lines



Problem 7.14
Expand the expression for the characteristic impedance of the transmission line of Problem 7.13 in

terms of the characteristic impedance of a lossless line to show that if

R0

L0

¼ G0

C 0

the impedance remains real because the phase effects introduced by the series and shunt losses are

equal but opposite.

Problem 7.15
The wave description of an electron of total energy E in a potential well of depth V over the region

0 < x < l is given by Schrödinger’s time independent wave equation

@ 2 

@x2
þ 8�2m

h2
ðE � VÞ ¼ 0

where m is the electron mass and h is Planck’s constant. (Note that V ¼ 0 within the well.)

l

V E

e
xγ

e x−γ

Show that for E > V (inside the potential well) the solution for  is a standing wave solution but for

E < V (outside the region 0 < x < l) the x dependence of  is e��x, where

� ¼ 2�

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV � EÞ

p
Problem 7.16
A localized magnetic field H in an electrically conducting medium of permeability � and

conductivity � will diffuse through the medium in the x-direction at a rate given by

@H

@t
¼ 1

��

@ 2H

@x2

Show that the time of decay of the field is given approximately by L 2��, where L is the extent of
the medium, and show that for a copper sphere of radius 1 m this time is less than 100s.

� ðcopperÞ ¼ 1 � 26 � 10�6 H m�1

� ðcopperÞ ¼ 5 � 8 � 107 S m�1

(If the earth’s core were molten iron its field would freely decay in approximately 15�10 3 years. In

the sun the local field would take 1010 years to decay. When � is very high the local field will change

only by being carried away by the movement of the medium—such a field is said to be ‘frozen’ into

the medium—the field lines are stretched and exert a restoring force against the motion.)
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Problem 7.17
A point x0 at the centre of a large slab of material of thermal coductivity k, specific heat C and

density � has an infinitely high temperature T at a time t 0. If the heat diffuses through the medium at

a rate given by

@T

@t
¼ k

�C

@ 2T

@x2
¼ d

@ 2T

@x2

show that the heat flow along the x-aixs is given by

f ð�; tÞ ¼ rffiffiffi
�

p e�ðr�Þ 2

;

where

� ¼ ðx � x 0Þ and r ¼ 1

2
ffiffiffiffi
dt

p

by inserting this solution in the differential equation. The solution is a Guassian function; its

behaviour with x and t in this problem is shown in Fig. 10.12. At ðx0, t 0) the function is the Dirac

delta function. The Guassian curves decay in height and widen with time as the heat spreads through

the medium, the total heat, i.e. the area under the Gaussian curve, remaining constant.

Summary of Important Results
Lossless Transmission Line
Inductance per unit length¼ L0 or �
Capacitance per unit length¼C0 or "
Wave Equation

@ 2V

@x2
¼ 1

v 2

@ 2V

@t 2
ðvoltageÞ

@ 2I

@x2
¼ 1

v 2

@ 2I

@t 2
ðcurrentÞ

Phase Velocity

v 2 ¼ 1

L0C0

or
1

�"

Characteristic Impedance

Z0 ¼ V

I
¼

ffiffiffiffiffiffi
L0

C0

r
or

ffiffiffi
�

"

r
ðfor right-going waveÞ

ð�Z0 for left-going waveÞ
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Transmission Line with Losses

Resistane R0 per unit length

Shunt conductance G0 per unit length

Wave equation takes form

ei!t @ 2V

@x2
� � 2V

� �
¼ 0 ðsame for IÞ

where � ¼ �þ ik is the propagation constant

� ¼ attenuation coefficient

k ¼ wave number

giving

V ¼ A e��x eið!t�kxÞ þ B e�x eið!tþkxÞ

Characteristic Impedance

Z 0
0 ¼ V

I
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ i!L0

G0 þ i!C0

r
ðright-going waveÞ

ð�Z 0
0 for left-going waveÞ

Wave Attenuation

Energy absorption in a medium described by diffusion equation

@ 2�

@x2
¼ 1

d

@�

@t

Add to wave equation to account for attenuation giving

@ 2�

@x2
¼ 1

c2

@ 2�

@t 2
þ 1

d

@�

@t

with exponentially decaying solution

� ¼ �m e��x eið!t�kxÞ
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8

Electromagnetic Waves

Earlier chapters have shown that the velocity of waves through a medium is determined by

the inertia and the elasticity of the medium. These two properties are capable of storing

wave energy in the medium, and in the absence of energy dissipation they also determine

the impedance presented by the medium to the waves. In addition, when there is no loss

mechanism a pure wave equation with a sine or cosine solution will always be obtained, but

this equation will be modified by any resistive or loss term to give an oscillatory solution

which decays with time or distance.

These physical processes describe exactly the propagation of electromagnetic waves

through a medium. The magnetic inertia of the medium, as in the case of the transmission

line, is provided by the inductive property of the medium, i.e. the permeability �, which has

the units of henries per metre. The elasticity or capacitive property of the medium is

provided by the permittivity ", with units of farads per metre. The storage of magnetic

energy arises through the permeability �; the potential or electric field energy is stored

through the permittivity ".
If the material is defined as a dielectric, only � and " are effective and a pure wave

equation for both the magnetic field vector H and the electric field vector E will result. If

the medium is a conductor, having conductivity � (the inverse of resistivity) with

dimensions of siemens per metre or (ohms m)�1, in addition to � and ", then some of the

wave energy will be dissipated and absorption will take place.

In this chapter we will consider first the propagation of electromagnetic waves in a

medium characterized by � and " only, and then treat the general case of a medium having

�, " and � properties.

Maxwell’s Equations

Electromagnetic waves arise whenever an electric charge changes its velocity. Electrons

moving from a higher to a lower energy level in an atom will radiate a wave of a particular

frequency and wavelength. A very hot ionized gas consisting of charged particles will

radiate waves over a continuous spectrum as the paths of individual particles are curved in
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mutual collisions. This radiation is called ‘Bremsstrahlung’. The radiation of electro-

magnetic waves from an aerial is due to the oscillatory motion of charges in an alternating

current flowing in the aerial.

Figure 8.1 shows the frequency spectrum of electromagnetic waves. All of these waves

exhibit the same physical characteristics.

It is quite remarkable that the whole of electromagnetic theory can be described by the

four vector relations in Maxwell’s equations. In examining these relations in detail we shall

see that two are steady state; that is, independent of time, and that two are time-varying.

The two time-varying equations are mathematically sufficient to produce separate wave

equations for the electric and magnetic field vectors, E and H, but the steady state equations

help to identify the wave nature as transverse.

The first time-varying equation relates the time variation of the magnetic induction,

�H ¼ B, with the space variation of E; that is

@

@t
ð�HÞ is connected with

@E

@z
ðsayÞ

This is nothing but a form of Lenz’s or Faraday’s Law, as we shall see.

The second time-varying equation states that the time variation of "E defines the space

variation of H, that is

@

@t
ð"EÞ is connected with

@H

@z
ðsayÞ

Again we shall see that this is really a statement of Ampere’s Law.

These equations show that the variations of E in time and space affect those of H and

vice versa. E and H cannot be considered as isolated quantities but are interdependent.

The product "E has dimensions

farads

metre
� volts

metre
¼ charge

area

This charge per unit area is called the displacement charge D ¼ "E.

Physically it appears in a dielectric when an applied electric field polarizes the

constituent atoms or molecules and charge moves across any plane in the dielectric which
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Figure 8.1 Wavelengths and frequencies in the electromagnetic spectrum
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is normal to the applied field direction. If the applied field is varying or alternating with

time we see that the dimensions of

@D

@t
¼ @

@t
ð"EÞ ¼ charge

time � area

current per unit area. This current is called the displacement current. It is comparatively

simple to visualize this current in a dielectric where physical charges may move—it is not

easy to associate a displacement current with free space in the absence of a material but it may

always be expressed as Id ¼ "ð@�E=@tÞ, where �E is the electric field flux through a surface.

Consider what happens in the electric circuit of Figure 8.2 when the switch is closed and

the battery begins to charge the condenser C to a potential V. A current I obeying Ohm’s

Law (V ¼ IR) will flow through the connecting leads as long as the condenser is charging

and a compass needle or other magnetic field detector placed near the leads will show the

presence of the magnetic field associated with that current. But suppose a magnetic field

detector (shielded from all outside effects) is placed in the region between the condenser

plates where no ohmic or conduction current is flowing. Would it detect a magnetic field?

The answer is yes; all the magnetic field effects from a current exist in this region as long

as the condenser is charging, that is, as long as the potential difference and the electric field

between the condenser plates are changing.

It was Maxwell’s major contribution to electromagnetic theory to assert that the

existence of a time-changing electric field in free space gave rise to a displacement current.

The same result follows from considering the conservation of charge. The flow of charge

into any small volume in space must equal that flowing out. If the volume includes the top

plate of the condenser the ohmic current through the leads produces the flow into the

volume, while the displacement current represents the flow out.

In future, therefore, two different kinds of current will have to be considered:

1. The familar conduction current obeying Ohm’s Law (V ¼ IR) and

2. The displacement current of density @D=@t.

Battery

Switch
closed

Magnetic
field?

R

C

I

Figure 8.2 In this circuit, when the switch is closed the conduction current charges the condenser.
Throughout charging the quantity "E in the volume of the condenser is changing and the
displacement current per unit area @=@t ("E) is associated with the magnetic field present between
the condenser plates
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In a medium of permeability � and permittivity ", but where the conductivity � ¼ 0, the

displacement current will be the only current flowing. In this case a pure wave equation for

E and H will follow and there will be no energy loss or attenuation.

When � 6¼ 0 a resistive element allows the conduction current to flow, energy loss will

follow, a diffusion term is added to the wave equation and the wave amplitude will

attenuate exponentially with distance. We shall see that the relative magnitude of these two

currents is frequency-dependent and that their ratio governs whether the medium behaves

as a conductor or as a dielectric.

Electromagnetic Waves in a Medium having Finite Permeability
l and Permittivity e but with Conductivity r ¼ 0

We shall consider a system of plane waves and choose the plane xy as that region over

which the wave properties are constant. These properties will not vary with respect to x and

y and all derivatives @=@x and @=@y will be zero.

The first time-varying equation of Maxwell is written in vector notation as

curl E ¼ r� E ¼ � @B

@t
¼ ��@H

@t

This represents three component equations:

�� @
@t

Hx ¼
@

@y
Ez �

@

@z
Ey

�� @
@t

Hy ¼
@

@z
Ex �

@

@x
Ez

�� @
@t

Hz ¼
@

@x
Ey �

@

@y
Ex

9>>>>>>>=
>>>>>>>;

ð8:1Þ

where the subscripts represent the component directions. Ex, Ey and Ez are, respectively, the

magnitudes of ExEy and Ez. Similarly, Hx, Hy and Hz are the magnitudes of HxHy and Hz.

The dimensions of these equations may be written

� �H

time
¼ E

length

and multiplying each side by (length)2 gives

� �H

time
� area ¼ E � length

i.e.

total magnetic flux

time
¼ volts

This is dimensionally of the form of Lenz’s or Faraday’s Law.
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The second time-varying equation of Maxwell is written in vector notation as

curl H ¼ r� H ¼ @D

@t
¼ "

@E

@t

This represents three component equations:

"
@

@t
Ex ¼

@

@y
Hz �

@

@z
Hy

"
@

@t
Ey ¼

@

@z
Hx �

@

@x
Hz

"
@

@t
Ez ¼

@

@x
Hy �

@

@y
Hx

9>>>>>>>=
>>>>>>>;

ð8:2Þ

The dimensions of these equations may be written

current I

area
¼ H

length

and multiplying both sides by a length gives

current

length
¼ I

length
¼ H

which is dimensionally of the form of Ampere’s Law (i.e. the circular magnetic field at

radius r due to the current I flowing in a straight wire is given by H ¼ I=2�r). Maxwell’s

first steady state equation may be written

div D ¼ r � D ¼ "
@Ex

@x
þ @Ey

@y
þ @Ez

@z

� �
¼ 	 ð8:3Þ

where " is constant and 	 is the charge density. This states that over a small volume element

dx dy dz of charge density 	 the change of displacement depends upon the value of 	.

When 	 ¼ 0 the equation becomes

"
@Ex

@x
þ @Ey

@y
þ @Ez

@z

� �
¼ 0 ð8:3aÞ

so that if the displacement D ¼ "E is graphically represented by flux lines which must

begin and end on electric charges, the number of flux lines entering the volume element dx

dy dz must equal the number leaving it.

The second steady state equation is written

div B ¼ r � B ¼ �
@Hx

@x
þ @Hy

@y
þ @Hz

@z

� �
¼ 0 ð8:4Þ
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Again this states that an equal number of magnetic induction lines enter and leave the

volume dx dy dz. This is a physical consequence of the non-existence of isolated magnetic

poles, i.e. a single north pole or south pole.

Whereas the charge density 	 in equation (8.3) can be positive, i.e. a source of flux lines

(or displacement), or negative, i.e. a sink of flux lines (or displacement), no separate source

or sink of magnetic induction can exist in isolation, every source being matched by a sink

of equal strength.

The Wave Equation for Electromagnetic Waves

Since, with these plane waves, all derivatives with respect to x and y are zero. equations

(8.1) and (8.4) give

��@Hz

@t
¼ 0 and

@Hz

@z
¼ 0

therefore, Hz is constant in space and time and because we are considering only the

oscillatory nature of H a constant Hz can have no effect on the wave motion. We can

therefore put Hz ¼ 0. A similar consideration of equations (8.2) and (8.3a) leads to the

result that Ez ¼ 0.

The absence of variation in Hz and Ez means that the oscillations or variations in H and

E occur in directions perpendicular to the z-direction. We shall see that this leads to the

conclusion that electromagnetic waves are transverse waves.

In addition to having plane waves we shall simplify our picture by considering only

plane-polarized waves.

We can choose the electric field vibration to be in either the x or y direction. Let us

consider Ex only, with Ey ¼ 0. In this case equations (8.1) give

��@Hy

@t
¼ @Ex

@z
ð8:1aÞ

and equations (8.2) give

"
@Ex

@t
¼ � @Hy

@z
ð8:2aÞ

Using the fact that

@ 2

@z@t
¼ @ 2

@t@z

it follows by taking @=@t of equation (8.1a) and @=@z of equation (8.2a) that

@ 2

@z2
Hy ¼ �"

@ 2

@t 2
Hy (the wave equation for HyÞ
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Similarly, by taking @=@t of (8.2a) and @=@z of (8.1a), we obtain

@ 2

@z2
Ex ¼ �"

@ 2

@t 2
Ex (the wave equation for ExÞ

Thus, the vectors Ex and Hy both obey the same wave equation, propagating in the

z-direction with the same velocity v 2 ¼ 1=�". In free space the velocity is that of light, that

is, c2 ¼ 1=�0"0, where �0 is the permeability of free space and "0 is the permittivity of

free space.

The solutions to these wave equations may be written, for plane waves, as

Ex ¼ E0 sin
2�



ðvt � zÞ

Hy ¼ H0 sin
2�



ðvt � zÞ

where E0 and H0 are the maximum amplitude values of E and H. Note that the sine (or

cosine) solutions means that no attenuation occurs: only displacement currents are involved

and there are no conductive or ohmic currents.

We can represent the electromagnetic wave (Ex, Hy) travelling in the z-direction in

Figure 8.3, and recall that because Ez and Hz are constant (or zero) the electromagnetic

wave is a transverse wave.

The direction of propagation of the waves will always be in the E�H direction; in this

case, E�H has magnitude, ExHy and is in the z-direction.

This product has the dimensions

voltage � current

length � length
¼ electrical power

area

measured in units of watts per square metre.

Hy
H 0

H 0

(E × H)Z

E 0

E 0

Ex

(Vt  – Z )Ex = E 0 Sin 2π
λ

(Vt  – Z )Hx = H 0 Sin 2π
λ

Figure 8.3 In a plane-polarized electromagnetic wave the electric field vector Ex and magnetic
field vector Hy are perpendicular to each other and vary sinusoidally. In a non-conducting medium
they are in phase. The vector product, E�H, gives the direction of energy flow
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The vector product, E�H gives the direction of energy flow. The energy flow per second

across unit area is given by the Poynting vector:

1

2
E � H


(Problem 8.1)

Illustration of Poynting Vector

We can illustrate the flow of electromagnetic energy in terms of the Poynting vector by

considering the simple circuit of Figure 8.4, where the parallel plate condenser of area A

and separation d, containing a dielectric of permittivity ", is being charged to a voltage V.

Throughout the charging process current flows, and the electric and magnetic field

vectors show that the Poynting vector is always directed into the volume Ad occupied by

the dielectric.

The capacitance C of the condenser is "A=d and the total energy of the condenser at

potential V is 1
2

CV 2 joules, which is stored as electrostatic energy. But V ¼ Ed, where E is

the final value of the electric field, so that the total energy

1

2
CV 2 ¼ 1

2

"A

d

� �
E 2d 2 ¼ 1

2
ð"E 2ÞAd

where Ad is the volume of the condenser.

The electrostatic energy per unit volume stored in the condenser is therefore 1
2
"E 2 and

results from the flow of electromagnetic energy during charging.

H E

I

E × H

Area A

Plate
separation d

Dielectric
permittivity e

E × H directed to
condenser axis

Figure 8.4 During charging the vector E�H is directed into the condenser volume. At the end of
the charging the energy is totally electrostatic and equals the product of the condenser volume, Ad,
and the electrostatic energy per unit volume, 1

2 "E
2
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Impedance of a Dielectric to Electromagnetic Waves

If we put the solutions

Ex ¼ E0 sin
2�



ðvt � zÞ

and

Hy ¼ H0 sin
2�



ðvt � zÞ

in equation (8.1a) where

��@Hy

@t
¼ @Ex

@z

then

��vHy ¼ �Ex; and since v 2 ¼ 1

�"ffiffiffi
�

p
Hy ¼

ffiffiffi
"

p
Ex

that is

Ex

Hy

¼
ffiffiffi
�

"

r
¼ E0

H0

which has the dimensions of ohms.

The value
ffiffiffiffiffiffiffiffi
�="

p
therefore represents the characteristic impedance of the medium to

electromagnetic waves (compare this with the equivalent result V=I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=C0

p
¼ Z0 for

the transmission line of the previous chapter).

In free space

Ex

Hy

¼
ffiffiffiffiffiffi
�0

"0

r
¼ 376:7�

so that free space presents an impedance of 376.7� to electromagnetic waves travelling

through it.

It follows from

Ex

Hy

¼
ffiffiffi
�

"

r
that

E 2
x

H 2
y

¼ �

"

and therefore

"E 2
x ¼ �H 2

y

Both of these quantities have the dimensions of energy per unit volume, for instance "E 2
x

has dimensions

farads

metre
� volts2

metres2
¼ joules

metres3
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as we saw in the illustration of the Poynting vector. Thus, for a dielectric the electrostatic

energy 1
2
"E 2

x per unit volume in an electromagnetic wave equals the magnetic energy per

unit volume 1
2
�H 2

y and the total energy is the sum 1
2
"E 2

x þ 1
2
�H 2

y .

This gives the instantaneous value of the energy per unit volume and we know that, in

the wave,

Ex ¼ E0 sin ð2�=
Þðvt � zÞ

and

Hy ¼ H0 sin ð2�=
Þðvt � zÞ

so that the time average value of the energy per unit volume is

1
2
"�EE 2

x þ 1
2
��HH 2

y ¼ 1
4
"E 2

0 þ 1
4
�H 2

0

¼ 1
2
"E 2

0 J m�3

Now the amount of energy in an electromagnetic wave which crosses unit area in unit

time is called the intensity, I, of the wave and is evidently (1
2
"E 2

0Þv where v is the velocity

of the wave.

This gives the time averaged value of the Poynting vector and, for an electromagnetic

wave in free space we have

I ¼ 1
2

c"0E 2
0 ¼ 1

2
c�0H 2

0 W m�2

(Problems 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11)

Electromagnetic Waves in a Medium of Properties l, e and r
(where r 6¼ 0)

From a physical point of view the electric vector in electromagnetic waves plays a much more

significant role than the magnetic vector, e.g. most optical effects are associated with the

electric vector. We shall therefore concentrate our discussion on the electric field behaviour.

In a medium of conductivity � ¼ 0 we have obtained the wave equation

@ 2Ex

@z2
¼ �"

@ 2Ex

@t 2

where the right hand term, rewritten

�
@

@t

@

@t
ð"ExÞ


 �

shows that we are considering a term

�
@

@t

displacement current

area


 �
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When � 6¼ 0 we must also consider the conduction currents which flow. These currents are

given by Ohm’s Law as I ¼ V=R, and we define the current density; that is, the current per

unit area, as

J ¼ I

Area
¼ 1

R � Length
� V

Length
¼ �E

where � is the conductivity 1/ðR � LengthÞ and E is the electric field. J ¼ �E is another

form of Ohm’s Law.

With both displacement and conduction currents flowing, Maxwell’s second time-

varying equation reads, in vector form,

r� H ¼ @

@t
D þ J ð8:5Þ

each term on the right hand side having dimensions of current per unit area. The presence

of the conduction current modifies the wave equation by adding a second term of the same

form to its righthand side, namely

�
@

@t

current

area

� 

which is �

@

@t
ðJÞ ¼ �

@

@t
ð�EÞ

The final equation is therefore given by

@ 2

@z2
Ex ¼ �"

@ 2

@t 2
Ex þ ��

@

@t
Ex ð8:6Þ

and this equation may be derived formally by writing the component equation of (8.5) as

"
@Ex

@t
þ �Ex ¼ � @Hy

@z
ð8:5aÞ

together with

��@Hy

@t
¼ @Ex

@z
ð8:1aÞ

and taking @=@t of (8.5a) and @=@z of (8.1a). We see immediately that the presence of the

resistive or dissipation term, which allows conduction currents to flow, will add a diffusion

term of the type discussed in the last chapter to the pure wave equation. The product

ð��Þ�1
is called the magnetic diffusivity, and has the dimensions L2T �1, as we expect of

all diffusion coefficients.

We are now going to look for the behaviour of Ex in this new equation, with the

assumption that its time-variation is simple harmonic, so that Ex ¼ E0 e i!t. Using this

value in equation (8.6) gives

@ 2Ex

@z2
� ði!��� !2�"ÞEx ¼ 0
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which is in the form of equation (7.5), written

@ 2Ex

@z2
� � 2Ex ¼ 0

where � 2 ¼ i!��� !2�".
We saw in Chapter 7 that this produced a solution with the term e��z or eþ�z, but we

concentrate on the Ex oscillation in the positive z-direction by writing

Ex ¼ E0 e i!t e��z

In order to assign a suitable value to � we must go back to equation (8.6) and consider the

relative magnitudes of the two right hand side terms. If the medium is a dielectric, only

displacement currents will flow. When the medium is a conductor, the ohmic currents of

the second term on the right hand side will be dominant. The ratio of the magnitudes of the

conduction current density to the displacement current density is the ratio of the two right

hand side terms. This ratio is

J

@D=@t
¼ �Ex

@=@tð"ExÞ
¼ �Ex

@=@tð"E0 e i!tÞ ¼
�Ex

i!"Ex

¼ �

i!"

We see immediately from the presence of i that the phase of the displacement current is

90� ahead of that of the ohmic or conduction current. It is also 90� ahead of the electric

field Ex so the displacement current dissipates no power.

For a conductor, where J 
 @D=@t, we have �
 !", and � 2 ¼ i�ð!�Þ � !"ð!�Þ
becomes

� 2 � i�!�

to a high order of accuracy.

Now

ffiffi
i

p
¼ 1 þ iffiffiffi

2
p

so that

� ¼ ð1 þ iÞ !��

2

� 
1=2

and

Ex ¼ E0 e i!t e��z

¼ E0 e�ð!��=2Þ 1=2
z ei½!t�ð!��=2Þ 1=2

z�
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a progressive wave in the positive z-direction with an amplitude decaying with the factor

e�ð!��=2Þ1=2
z.

Note that the product !�� has dimensions L�2.

(Problem 8.12)

Skin Depth

After travelling a distance

� ¼ 2

!��

� �1=2

in the conductor the electric field vector has decayed to a value Ex ¼ E0 e�1; this distance

is called the skin depth (Figure 8.5).

For copper, with � � �0 and � ¼ 5:8 � 107 S m�1 at a frequency of 60 Hz, � � 9 mm;

at 1 MHz, � � 6:6 � 10�5 m and at 30 000 MHz (radar wavelength of 1 cm),

� � 3:8 � 10�7 m.

Thus, high frequency electromagnetic waves propagate only a very small distance in a

conductor. The electric field is confined to a very small region at the surface; significant

currents will flow only at the surface and the resistance of the conductor therefore increases

with frequency. We see also why a conductor can act to ‘shield’ a region from electro-

magnetic waves.

Electromagnetic Wave Velocity in a Conductor and Anomalous
Dispersion

The phase velocity of the wave v is given by

v ¼ !

k
¼ !

ð!��=2Þ1=2
¼ !� ¼ 2!

��

� �1=2

¼ �
c

Free space Conductor

λc = 2 p δ

Ex

Z

λc

2
wms

1
2(        )δ =

Figure 8.5 Electromagnetic waves in a dielectric strike the plane surface of a conductor, and the
electric field vector E 0 is damped to a value E 0 e�1 in a distance of ð2=!��Þ 1=2, the ‘skin depth’. This
explains the electrical shielding properties of a conductor. 
 c is the wavelength in the conductor
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When � is small, v is small, and the refractive index c=v of a conductor can be very large.

We shall see later that this can explain the high optical reflectivities of good conductors.

The velocity v ¼ !� ¼ 2���, so that 
 c in the conductor is 2�� and can be very small.

Since v is a function of the frequency an electrical conductor is a dispersive medium to

electromagnetic waves. Moreover, as the table below shows us, @v=@
 is negative, so that

the conductor is anomalously dispersive and the group velocity is greater than the wave

velocity. Since c2=v 2 ¼ �"=�0"0 ¼ � r" r, where the subscript r defines non-dimensional

relative values; that is, �=�0 ¼ � r, "="0 ¼ " r, then for � r � 1

" rv
2 ¼ c2

and

@

@

" r ¼ � 2

v
" r

@v

@


which confirms our statement in the chapter on group velocity that for @" r=@
 positive a

medium is anomalously dispersive. We see too that c2=v 2 ¼ " r ¼ n2, where n is the

refractive index, so that the curve in Figure 3.9 showing the reactive behaviour of the

oscillator impedance at displacement resonance is also showing the behaviour of n. This

relative value of the permittivity is, of course, familiarly known as the dielectric constant

when the frequency is low. This identity is lost at higher frequencies because the

permittivity is frequency-dependent.

Note that 
 c ¼ 2�� is very small, and that when an electromagnetic wave strikes a

conducting surface the electric field vector will drop to about 1% of its surface value in a

distance equal to 3
4

 c ¼ 4:6 �. Effectively, therefore, the electromagnetic wave travels less

than one wavelength into the conductor.

(Problems 8.13, 8.14, 8.15)

When is a Medium a Conductor or a Dielectric?

We have already seen that in any medium having �" and � properties the magnitude of the

ratio of the conduction current density to the displacement current density

J

@D=@t
¼ �

!"

a non-dimensional quantity.

Refractive

� v conductor ¼ !� index

Frequency 
 free space (m) (m/s) (c=v conductor)

60 5000 km 9�10�3 3.2 9.5�10 7

10 6 300 m 6.6�10�5 4.1�10 2 7.3�10 5

3�10 10 10�2 m 3.9�10�7 7.1�10 4 4.2�10 3
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We may therefore represent the medium by the simple circuit in Figure 8.6 where the

total current is divided between the two branches, a capacitative branch of reactance 1/!"
(ohms-metres) and a resistive branch of conductance � (siemens/metre). If � is large the

resistivity is small, and most of the current flows through the � branch and is conductive. If

the capacitative reactance 1/!" is so small that it takes most of the current, this current is

the displacement current and the medium behaves as a dielectric.

Quite arbitrarily we say that if

J

@D=@t
¼ �

!"
> 100

then conduction currents dominate and the medium is a conductor. If

@D=@t

J
¼ !"

�
> 100

then displacement currents dominate and the material behaves as a dielectric. Between

these values exist a range of quasi-conductors; some of the semi-conductors fall into this

category.

The ratio �=!" is, however, frequency dependent, and a conductor at one frequency may

be a dielectric at another.

For copper, which has � ¼ 5:8 � 107 S m�1 and " � "0¼ 9 � 10�12 F m�1,

�

!"
� 1018

frequency

total
J

conduction
current s E

displacement
current w e E

1
Reactance

w e
1
R

Conductivity

s ∝

Figure 8.6 A simple circuit showing the response of a conducting medium to an electromagnetic
wave. The total current density J is divided by the parallel circuit in the ratio �=!" (the ratio of the
conduction current density to the displacement current density). A large conductance � (small
resistance) gives a large conduction current while a small capacitative reactance 1/!" allows a large
displacement current to flow. For a conductor �=!"� 100; for a dielectric !"=�� 100. Note the
frequency dependence of this ratio. At ! � 1020 rad/s copper is a dielectric to X-rays
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so up to a frequency of 1016 Hz (the frequency of ultraviolet light) �=!" > 100, and

copper is a conductor. At a frequency of 1020 Hz, however (the frequency of X-rays),

!"=� > 100, and copper behaves as a dielectric. This explains why X-rays travel distances

equivalent to many wavelengths in copper.

Typically, an insulator has � � 10�15 S m�1 and " � 10�11F m�1, which gives

!"

�
� 104!

so the conduction current is negligible at all frequencies.

Why will an Electromagnetic Wave not Propagate into a
Conductor?

To answer this question we need only consider the simple circuit where a condenser C

discharges through a resistance R. The voltage equation gives

q

C
þ IR ¼ 0

and since I ¼ dq=dt, we have

dq

dt
¼ � q

RC
or q ¼ q0 e�t=RC

where q0 is the initial charge.

We see that an electric field will exist between the plates of the condenser only for a time

t � RC and will disappear when the charge has had time to distribute itself uniformly

throughout the circuit. An electric field can only exist in the presence of a non-uniform

charge distribution.

If we take a slab of any medium and place a charge of density q at a point within the slab,

the medium will behave as an RC circuit and the equation

q ¼ q0 e�t=RC

becomes

q ¼ q0 e��=!" ! q0 e��t=" " � C

� � 1=R

� �

The charge will distribute itself uniformly in a time t � "=�, and the electric field will be

maintained for that time only. The time "=� is called the relaxation time of the medium

(RC time of the electrical circuit) and it is a measure of the maximum time for which an

electric field can be maintained before the charge distribution becomes uniform.

Any electric field of a frequency �, where 1=� ¼ t > "=�, will not be maintained; only a

high frequency field where 1=� ¼ t < "=� will establish itself.
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Impedance of a Conducting Medium to Electromagnetic Waves

The impedance of a lossless medium is a real quantity. For the transmission line of Chapter

7 the characteristic impedance

Z0 ¼ Vþ
Iþ

¼
ffiffiffiffiffiffi
L0

C0

r
� ;

for an electromagnetic wave in a dielectric

Z ¼ Ex

Hy

¼
ffiffiffi
�

"

r
�

with Ex and Hy in phase.

We saw in the case of the transmission line that when the loss mechanisms of a series

resistance R0 and a shunt conductance G0 were introduced the impedance became the

complex quantity

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ i!L0

G0 þ i!C0

r

We now ask what will be the impedance of a conducting medium of properties �, " and � to

electromagnetic waves? If the ratio of Ex to Hy is a complex quantity, it implies that a

phase difference exists between the two field vectors.

We have already seen that in a conductor

Ex ¼ E0 e i!t e��z

where � ¼ ð1 þ iÞ ð!��=2Þ1=2
, and we shall now write Hy ¼ H0 e ið!t��Þ e��z, suggesting

that Hy lags Ex by a phase angle �. This gives the impedance of the conductor as

Z c ¼
Ex

Hy

¼ E0

H0

e i�

Equation (8.1a) gives

@Ex

@z
¼ ��@Hy

@t

so that

��Ex ¼ �i!�Hy

and

Zc ¼
Ex

Hy

¼ i!�

�
¼ ið!�Þ

ð1 þ iÞð!��=2Þ1=2
¼ ið1 � iÞ

ð1 þ iÞð1 � iÞ
2!�

�

� �1=2

¼ ð1 þ iÞ
2

2!�

�

� �1=2

¼ 1 þ iffiffiffi
2

p !�

�

� 
1=2

¼ !�

�

� 
1=2 1ffiffiffi
2

p þ i
1ffiffiffi
2

p
� �

¼ !�

�

� 
1=2

e i�
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a vector of magnitude ð!�=�Þ1=2
and phase angle � ¼ 45�. Thus the magnitude

Zc ¼
E0

H0

¼ !�

�

� 
1=2

and Hy lags Ex by 45�.
We can also express Zc by

Zc ¼ R þ iX ¼ !�

2�

� 
1=2

þ i
!�

2�

� 
1=2

and also write it

Zc ¼
1 þ iffiffiffi

2
p !�

�

� 
1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

"0

"0

"

�

�0

!"

�

r
ei�

of magnitude

jZcj ¼ 376:6�

ffiffiffiffiffi
� r

" r

r ffiffiffiffiffiffi
!"

�

r

At a wavelength 
 ¼ 10�1 m, i.e. at a frequency � ¼ 3000 MHz, the value of !"=� for

copper is 2.9�10�9 and � r � " r � 1. This gives a magnitude Zc ¼ 0:02� at this

frequency; for � ¼ 1, Zc ¼ 0, and the electric field vector Ex vanishes, so we can say that

when Zc is small or zero the conductor behaves as a short circuit to the electric field. This

sets up large conduction currents and the magnetic energy is increased.

In a dielectric, the impedance

Z ¼ Ex

Hy

¼
ffiffiffi
�

"

r

led to the equivalence of the electric and magnetic field energy densities; that is,
1
2
�H 2

y ¼ 1
2
"E 2

x . In a conductor, the magnitude of the impedance

Zc ¼
Ex

Hy

����
���� ¼ !�

�

� 
1=2

so that the ratio of the magnetic to the electric field energy density in the wave is

1
2
�H 2

y

1
2
"E 2

x

¼ �

"

�

!�
¼ �

!"

We already know that this ratio is very large for a conductor for it is the ratio of

conduction to displacement currents, so that in a conductor the magnetic field energy

dominates the electric field energy and increases as the electric field energy decreases.
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Reflection and Transmission of Electromagnetic Waves at a
Boundary

Normal Incidence

An infinite plane boundary separates two media of impedances Z1 and Z2 (real or complex)

in Figure 8.7.

The electromagnetic wave normal to the boundary has the components shown where

subscripts i, r and t denote incident, reflected and transmitted, respectively. Note that the

vector direction (E r�H r) must be opposite to that of (E i�H i) to satisfy the energy flow

condition of the Poynting vector.

The boundary conditions, from electromagnetic theory, are that the components of the

field vectors E and H tangential or parallel to the boundary are continuous across the

boundary.

Thus

E i þ E r ¼ E t

and

H i þ H r ¼ H t

where

E i

H i

¼ Z1;
E r

H r

¼ �Z1 and
E t

H t

¼ Z2

Incident

External reflection

Transmitted
Internal reflection

Z 2 < Z 1

Z 1 < Z 2

Z 1 Z 2

E r

E t

E r

E i

H i

H r

H r H t

Figure 8.7 Reflection and transmission of an electromagnetic wave incident normally on a plane
between media of impedances Z1 and Z2. The Poynting vector of the reflected wave (E � H) r shows
that either E or H may be reversed in phase, depending on the relative magnitudes of Z 1 and Z2
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From these relations it is easy to show that the amplitude reflection coefficient

R ¼ E r

E i

¼ Z2 � Z1

Z2 þ Z1

and the amplitude transmission coefficient

T ¼ E t

E i

¼ 2Z2

Z2 þ Z1

in agreement with the reflection and transmission coefficients we have found for the

acoustic pressure p (Chapter 6) and voltage V (Chapter 7). If the wave is travelling in air

and strikes a perfect conductor of Z2 ¼ 0 at normal incidence then

E r

E i

¼ Z2 � Z1

Z2 þ Z1

¼ �1

giving complete reflection and

E t

E i

¼ 2Z2

Z2 þ Z1

¼ 0

Thus, good conductors are very good reflectors of electromagnetic waves, e.g. lightwaves

are well reflected from metal surfaces. (See Summary on p. 550.)

Oblique Incidence and Fresnel’s Equations for Dielectrics

When the incident wave is oblique and not normal to the infinite boundary of Figure 8.7 we

may still use the boundary conditions of the preceding section for these apply to the

tangential components of E and H at the boundary and remain valid.

In Figure 8.8(a) H is perpendicular to the plane of the paper with tangential components

H i, Hr and H t but the tangential components of E become

E i cos �; E r cos � and E t cos �; respectively:

In Figure 8.8(b) E is perpendicular to the plane of the paper with tangential components

E i, E r and E t but the tangential components of H become H i cos �, H r cos � and H t cos �.

Using these components in the expressions for the reflextion and transmission

coefficients we have, for Figure 8.8(a)

E r cos �

E i cos �
¼ E t cos �=H t � E i cos �=H i

E t cos �=H t þ E i cos �=H i

so

Rk ¼
E r

E i

¼ Z2 cos �� Z1 cos �

Z2 cos �þ Z1 cos �

where Rk is the reflection coefficient amplitude when E lies in the plane of incidence.
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For the transmission coefficient in Figure 8.8(a)

E t cos �

E i cos �
¼ 2E t cos �=H t

E i cos �=H i þ E t cos �=H t

so

Tk ¼
E t

E i

¼ 2Z2 cos �

Z1 cos �þ Z2 cos �

A similar procedure for Figure 8.8(b) where E is perpendicular to the plane of incidence

yields

R? ¼ Z2 cos �� Z1 cos �

Z2 cos �þ Z1 cos �

and

T? ¼ 2Z2 cos �

Z2 cos �þ Z1 cos �

Now the relation between the refractive index n of the dielectric and its impedance Z is

given by

n ¼ c

v
¼

ffiffiffiffiffiffiffiffiffiffi
�"

�0"0

r
¼ ffiffiffiffiffi

" r

p ¼ Zðfree spaceÞ
Z ðdielectricÞ

E r

E t

q f

q

Z 1 Z 2

E i

H r

H t

q f

q

Z 1 Z 2

H i

(a) (b)

Figure 8.8 Incident, reflected and transmitted components of a plane polarized electromagnetic
wave at oblique incidence to the plane boundary separating media of impedances Z 1 and Z 2. The
electric vector lies in the plane of incidence in (a) and is perpendicular to the plane of incidence in (b)
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where
�

�0

¼ � r � 1:

Hence we have

Z1

Z2

¼ n2

n1

¼ sin �

sin �

from Snell’s Law and we may write the reflection and transmission amplitude coef-

ficients as

Rk ¼
tan ð�� �Þ
tan ð�þ �Þ ; Tk ¼

4 sin � cos �

sin 2�þ sin 2�

R? ¼ sin ð�� �Þ
sin ð�þ �Þ ; T? ¼ 2 sin � cos �

sin ð�þ �Þ

In this form the expressions for the coefficients are known as Fresnel’s Equations.

They are plotted in Figure 8.9 for n2=n1 ¼ 1:5 and they contain several significant

features.

When � is very small and incidence approaches the normal we have �! 0 and �! 0

so that

sin ð�� �Þ � tan ð�� �Þ � ð�� �Þ
and

Rk � R? � ð�� �Þ
ð�þ �Þ �

1

n2

� 1

n1

1

n2

þ 1

n1

¼ n1 � n2

n1 þ n2

Thus, the reflected intensity

R2
�!0 ¼ I r

I i

¼ n1 � n2

n1 þ n2

� �2

� 0:4 at an air-glass interface.

We note also that when tan ð�þ �Þ ¼ 1 and �þ � ¼ 90� then Rk ¼ 0.

In this case only R? is finite and the reflected light is completely plane polarized with the

electric vector perpendicular to the plane of incidence. This condition defines the value of

the Brewster or polarizing angle �B for, when � and � are complementary cos �B ¼ sin � so

n1 sin �B ¼ n2 sin � ¼ n2 cos �B

and

tan �B ¼ n2=n1

which, for air to glass defines �B ¼ 56�.
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A typical modern laboratory use of the Brewster angle is the production of linearly

polarized light from a He-Ne laser. If the window at the end of the laser tube is tilted so that

the angle of incidence for the emerging light is �B and Rk ¼ 0, then the light with its

electric vector parallel to the plane of incidence is totally transmitted while some of the

light with transverse polarization (R?) is reflected back into the laser off-axis. If the light

makes multiple transits along the length of the tube before it emerges the transmitted beam

is strongly polarized in one plane.

More general but less precise uses involve the partial polarization of light reflected from

wet road and other shiny surfaces where refractive indices are in the range n ¼ 1:3 � 1:6.

Polarized windscreens and spectacles are effective in reducing the glare from such

reflections.

1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

R⊥

T⊥

T| |

R | |

Brewster
angle

20° 40° 60° 90°q B

Figure 8.9 Amplitude coefficient R and T of reflection and transmission for n 2=n1 ¼ 1:5. Rk and T k
refer to the case when the electric field vector E lies in the plane of incidence. R? and T? apply when
E is perpendicular to the plane of incidence. The Brewster angle �B defines �þ � ¼ 90� when Rk ¼ 0
and the reflected light is polarized with the E vector perpendicular to the plane of incidence. Rk
changes sign (phase) at �B. When � < �B, tan (�� �) is negative for n2=n1 ¼ 1:5. When
�þ �� 90�, tan (�þ �) is also negative
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Reflection from a Conductor (Normal Incidence)

For Z2 a conductor and Z1 free space, the refractive index

n ¼ Z1

Z2

¼ �

�þ i�

is complex, where

� ¼
ffiffiffiffiffiffi
�0

"0

r

and

� ¼ !�

2�

� 
1=2

A complex refractive index must always be interpreted in terms of absorption because a

complex impedance is determined by a complex propagation constant, e.g. here Z2 ¼
i!�=�, so that

n ¼ Z1

Z2

¼
ffiffiffiffiffiffi
�0

"0

r
1

i!�
ð1 þ iÞ !��

2

� 
1=2

¼ ð1 � iÞ �

2!"0

� �1=2

where

ð��0Þ1=2

�
� 1

The ratio E r=E i is therefore complex (there is a phase difference between the incident and

reflected vectors) with a value

E r

E i

¼ Z2 � Z1

Z2 þ Z1

¼ �þ i�� �

�þ i�þ �
¼ 1 � �=�þ i

1 þ �=�þ i

where �=�
 1.

Since E r=E i is complex, the value of the reflected intensity I r ¼ ðE r=E iÞ2
is found

by taking the ratio the squares of the moduli of the numerator and the denominator, so

that

I r ¼
jE rj2

jE ij2
¼ jZ2 � Z1j2

jZ2 þ Z1j2
¼ ð1 � �=�Þ2 þ 1

ð1 þ �=�Þ2 þ 1

¼ 1 � 4�=�

2 þ 2�=�þ ð�=�Þ2
! 1 � 4�

�
ðfor �=�
 1Þ
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so that

I r ¼ 1 � 4
!�

2�

� 
1=2 "0

�0

� �1=2

� 1 � 2

ffiffiffiffiffiffiffiffiffiffi
2!"0

�

r

For copper � ¼ 6 � 107ðohm m�1Þ and ð2!"0=�Þ1=2 � 0:01 at infra-red frequencies. The

emission from an electric heater at 103K has a peak at 
 � 2:5 � 10�6m. A metal reflector

behind the heater filament reflects � 97% of these infra-red rays with 3% entering the

metal to be lost as Joule heating between the metal surface and the skin depth. (see

Problem 8.20)

(Problems 8.16, 8.17, 8.18, 8.19, 8.20, 8.21, 8.22, 8.23, 8.24)

Electromagnetic Waves in a Plasma

We saw in Problem 1.4 that when an electron in an atom or, quantum mechanically the

charge centre of an electron cloud, moves a small distance from its equilibrium position,

the charge separation creates an electric field which acts as a linear restoring force and the

resulting motion is simple harmonic with an angular frequency !0. For a hydrogen atom

!0 � 4:5 � 1016 rad s�1

When a steady electric field is applied to a dielectric, the resulting charge separation

between an electron and the rest of its atom induces a polarization field of magnitude

P ¼ n eex

"0

where P defines the dipole moment per unit volume. Here, ne is the electron number

density, x is the displacement from equilibrium and "0 is the permittivity of free space.

The value of P per unit electric field is called the susceptibility

� ¼ n eex

"0E

and the permittivity of the dielectric is given by

" ¼ "0ð1 þ �Þ

The relative permittivity or dielectric constant

" r ¼
"

"0

¼ ð1 þ �Þ ¼ 1 þ n eex

"0E

� �
ð8:7Þ

A steady electric field E defines a static susceptibility. An alternating electric field E defines

a dynamic susceptibility in which case the relative permittivity.

" r ¼ n2

where n is the refractive index of the medium.
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There may be resistive or damping effects to the electric field within the medium and it is

here that our discussion of the forced damped oscillator on p. 66 becomes significant (see

Figure 3.9).

If the electric field is that of an electromagnetic wave of angular frequency ! we have

E ¼ E0e i!t and the value of x in equatin (8.7) is that given by equation (3.2) on p. 67

representing curve (a) in Figure 3.9 where F0 is now the force Ee acting on each electron.

Equation (8.7) now becomes

" r ¼ 1 þ � ¼ 1 þ n ee2m eð!2
0 � !2Þ

"0½m2
eð!2

0 � !2Þ2 þ !2r 2�

where m e is the electron mass, !0 is its harmonic frequency within the atom, ! is the

electromagnetic wave frequency and r is the damping constant.

This is the solution given to problem 3.10.

Note that for

!� !0

" r � 1 þ n ee2

"0m e!2
0

ð8:8Þ

and for

!
 !0

" r � 1 � n ee2

"0m e!2

ð8:9Þ

The factor n ee2="0m e in the second term of " r has a particular significance if the material

is not a solid but an ionized gas called a plasma. Such a gas consists of ions and electrons of

equal number densities n i ¼ n e with charges of opposite signs �e and masses m i and m e

where m i 
 m e. Relative displacements between ions and electrons set up a restoring

electric field which returns the electrons to equilibrium. The relatively heavy ions are

considered as stationary. The result in Figure 8.10 shows a sheet of negative charge �n eex

–nex

ni = nl

Plasma

+nex

nexE = ε0

Figure 8.10 In an ionized gas with equal number densities of ions and electrons (n i ¼ n e) and
m i 
 m e, relative displacements between ions and electrons form thin sheaths of charge � nex,
which generate an electric field E ¼ nex=" 0 acting on each electron. The motion of each electron is
simple harmonic with an electron plasma frequency !p where !2

p ¼ n ee
2= " 0m e rad s�1
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per unit area on one side of the plasma slab with the stationary ions producing a sheet of

positive charge þneex on the other side (where n i ¼ ne).

This charge separation generates an electric field E in the plasma of magnitude

E ¼ n eex

"0

which produces an electric force �n ee2x="0 acting on each electron in the direction of its

equilibrium position.

The equation of motion of each electron is therefore

m e€xx þ
n ee2x

"0

¼ 0

and the electron motion is simple harmonic with an angular frequency !p where

!2
p ¼ nee2

"0m e

The angular frequency !p is called the electron plasma frequency and plays a significant

role in the propagation of electromagnetic waves in the plasma.

In the expression for the refractive index

" r ¼ n2 � 1 þ
!2

p

!2
0

ð8:8Þ

n is real for all values of ! and waves of that frequency will propagate. However, when

" r ¼ n2 � 1 �
!2

p

!2
ð8:9Þ

waves will propagate only when ! > !p

When !2
p=!

2 > 1

n2 ¼ c2

v 2
¼ c2k 2

!2
¼ 1 �

!2
p

!2

is negative and the wave number k is considered to be complex with

k ¼ k0 � i�:

In this case, electromagnetic waves incident on the plasma will be attenuated within the

plasma, or if � is large enough, will be reflected at the plasma surface.

The electric field of the wave E ¼ E0 e ið!t�kzÞ becomes E ¼ E0e��z eið!t�k zÞ and is

reduced to E0e�1 when z ¼ 1=� ¼ � the penetration depth. When �
 k0, the penetration
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is extremely small and

k 2 ! ��2 ¼ 1 � !p

!2

� 
!2

c2

so that

�2 ¼
!2

p

c2
1 � !2

!2
p

 !

and

� ¼ 1

�
¼ c

!p

1 � !2

!2
p

 !�1=2

When

!� !p; � � c=!p

P – Compressed plasma
B – Azumuthal including lines
l – Axial current

B
P

l

l

Figure 8.11 The pinch effect. A plasma is formed when a large electrical current I is discharged
along the axis of a cylindrical tube of gas. The azimuthal magnetic field lines compress the plasma
and when the conductivity of the plasma is very high the penetration of the field lines into the
plasma is very small
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On a laboratory scale number densities of the order ne � 10�6 –10�10 m�3 are produced

with electron plasma frequencies in the range !p � 6 � 1010 –6 � 1012 rad s�1, several

orders below that of visible light.

For these values of !p, electromagnetic waves have a penetration depth

� � c

!p

� 5 � 10�3-- 5 � 10�5 m

The analysis above provides an experimental method of measuring the electron number

density of a plasma using electromagnetic waves as a probe. The angular frequency of the

transmitted wave is varied until propagation no longer occurs and a reflected wave is

detected.

The rejection of magnetic fields by a plasma is exploited in laboratory experiments on

controlled thermonuclear fusion. In these a strong magnetic induction B is used as the

confining mechanism to keep the plasma from the walls of its containing vessel. The

magnetic energy per unit volume is given by B2=2� and this has the dimensions of a

pressure which opposes and often exceeds that of the hot ionized gas.

The well-known ‘pinch effect’, Figure 8.11, results when a large current is discharged

along the axis of gas contained in a cylindrical tube. The current ionizes the gas and its

azimuthal field compresses the plasma in the radial direction towards the axis, increasing

its temperature even further. Typical magnitudes in such an experiment are T � 108 K and

n e � 1021 m�3. This corresponds to a pressure of � 14 atmospheres which requires a

discharge current � 103R A where R m is the radius of the cylinder.

Electromagnetic Waves in the Ionosphere

The simple expression

n2 ¼ 1 �
!2

p

!2
ð8:9Þ

for the index of refraction of a plasma is modified by the presence of an external static

magnetic field. This situation exists in the ionosphere which consists of bands of low

density ionized gas approximately 300 km above the earth and located within the earth’s

dipole field of magnetic induction B0.

A charged particle of velocity v in such a field experiences an electric field E ¼ v � B0

and when v is in the plane perpendicular to B0 it rotates around the field line with an

angular frequency ! ¼ eB0=m, where e is the particle charge and m is its mass. This is most

easily seen by considering the force mv 2=r in a circular orbit balancing the electric force

"E ¼ e � v � B0.

From mv 2=r ¼ evB0

we have

v

r
¼ eB0

m
¼ 2�

v

2�r

� 

¼ 2�f ¼ !B

where f is the frequency of precession or the number of orbits per second made by the

particle.
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Figure 8.12 shows the direction of motion for positive and negative charges around a

magnetic field line which points upwards out of the paper.

We consider the simplest case of electromagnetic wave propagation along the direction

B0 and assume that

� The amplitude of electron motion is small.

� The value of n e is low enough to neglect collisional damping.

� The magnetic induction B0 
 the magnetic induction of the electromagnetic wave.

If we consider the electric field to be that of a circularly polarized transverse

electromagnetic wave, then we may write E ¼ Eðr1 þ ir2Þ, where r1 and r2 are

orthogonal (mutually perpendicular) unit vectors and B0 is along the r3 direction.

The equation of motion for an electron of velocity v is given by

m
dv

dt
¼ E ei!t þ ev � B0

If we take the steady state electron velocity to be of the form

v ¼ vðr1 þ ir2Þ ei!t

we find that

v ¼ �ie

mð!� !BÞ
E

satisfies the equation of motion

This means that the electron precessing around B0 with an angular frequency !B is

driven by a rotating electric field of effective frequency !� !B depending on the sign of

the circular polarization.

Due to the electronic motion there is a current density in the plasma given by

J ¼ n eev ¼ �in ee2

mð!� !BÞ
E:

L i L e

+ –

B (upwards)

Figure 8.12 Charged particles of velocity v perpendicular to a magnetic field line B are bound to
the field line and orbit around it due to the Lorentz force eðv � BÞ. The radius L of the orbit, the
Larmor radius, is given by L ¼ mv=eB and the orbital Larmor frequency is !B ¼ eB=m rad s�1
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In Maxwell’s equation

r� H ¼ @

@t
D þ J ð8:5Þ

we may write, in the absence of J, D ¼ "0E but the presence of J will modify this and the

right hand side of equation (8.5) becomes

@

@t
D þ J ¼ @

@t
"0E e i!t � in ee2

mð!� !BÞ
E

¼ i!"0E � in ee2

m"0ð!� !BÞ
"0E

¼ i!"0 1 �
!2

p

!ð!� !BÞ

 !
E ¼ i!"E

giving

"

"0

¼ " r ¼ n2
� ¼ 1 �

!2
p

!ð!� !BÞ

 !

We see that the ionosphere is birefringent with two different values of the refractive

index, nþ for the right handed circularly polarized wave and n� for the left handed incident

polarization. These waves propagate at different velocities and their reception by the

ionosphere will depend on their polarization. In its lower D layer the ionosphere has an

electron number density n e � 109 m�3 with !p � 106 rad s�1 and for the upper F2 layer,

n e � 1012 m�3 with !p � 107 rad s�1. Taking the value of the earth’s magnetic field as

3 � 10�5 T; that is (0.3 G) gives an electron precession frequency !B � 6 � 106 rad s�1.

Figure 8.13 shows the behaviour of n2
þ and n2

� versus !=!B give for the fixed value of

!p=!B ¼ 2. Other values of !p=!B give curves of a similar shape. In the wide frequency

intervals where n2
þ and n2

� have opposite signs (positive or negative), one state of the

circular polarization cannot propagate in the plasma and will be reflected when it strikes

the ionosphere. The other wave will be partially transmitted. So, when a linearly polarized

wave with !�!B in Figure 8.14 is incident on the ionosphere, the reflected wave will be

elliptically polarized. The electron number densities in the ionosphere are measured by

varying the frequency ! of the transmitted electromagnetic waves until reflection occurs.

This method is similar to that used on the laboratory plasmas of the previous section.

However, the value of n e varies in an ionospheric layer. It is found to increase with height

until it reaches a maximum, only to fall off rapidly with a further increase in height. The

height for a particular value of n e is measured by timing the interval between the trans-

mitted and reflected wave.

The analysis above explains the main features of radio reception which are:

� Very high frequencies (VHF) are received over relatively short distances only.

� Medium wave (MW) reception is possible over longer distances and improves at night.

� Short wave (SW) reception is possible over very long distances.

Electromagnetic Waves in the Ionosphere 229



Very high frequencies are greater than !p for both the D and F2 layers; the waves

propagate through both layers without reflection (Figure 8.15). The D layer has a plasma

frequency �300 kHz; that is, a wavelength of � 1 km and medium waves with 200 <

 < 600 km are attenuated within it. However, the electron number density in the D

layer, sustained by ionizing radiation during the day, drops very sharply after sunset and

the medium waves are transmitted to the higher F2 layer where they are reflected

and received over longer distances. The D layer is transparent to short waves, 10 <

 < 80 m, but these are reflected by the layer F2 allowing long-distance radio reception

around the earth.
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Figure 8.13 The ionospheric plasma is birefringent to electromagnetic waves with different values
of the refractive index nþ for right handed circularly polarized waves and n� for left handed
circularly polarized waves. These values depend upon the ratio of the plasma frequency ! p to the
Larmor frequency !B. Graphs of n2

þ and n2
� are shown for a fixed value !p=!B ¼ 2 with a horizontal

axis !=!B, where ! is the frequency of the propagating e.m. wave
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Figure 8.14 (a) The number density n e of a plasma (in this case the ionosphere) may be measured
by a probing electromagnetic wave, the frequency of which is varied until reflection occurs. The time
of the wave from transmission to reception is a measure of the height at which reflection occurs. The
variation of number density n e with height h in an ionospheric layer is shown in (b)

VHF = Very high frequency
HW = Medium waves
SW = Short waves

T – Transmitter
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Figure 8.15 Electron number densities in the ionosphere layers D and F2 govern the pattern of
radio reception. Very high frequencies (VHF) penetrate both layers and are received only over short
distances Medium waves (MW) are reflected at the D layer during the daytime but are received over
longer distances at night when n e of the D layer drops and medium waves proceed to the F2 layer
before reflection. Short waves (SW) penetrate the D layer to be reflected at the F2 layer and are
received over very long distances
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Problem 8.1
The solutions to the e.m. wave equations are given in Figure 8.3 as

Ex ¼ E 0 sin
2�



ðvt � zÞ

and

H y ¼ H 0 sin
2�



ðvt � zÞ

Use equations (8.1a) and (8.2a) to prove that they have the same wavelength and phase as shown in

figure.

Problem 8.2
Show that the concept of B2=2� (magnetic energy per unit volume) as a magnetic pressure accounts

for the fact that two parallel wires carrying currents in the same direction are forced together and that

reversing one current will force them apart. (Consider a point midway between the two wires.) Show

that it also explains the motion of a conductor carrying a current which is situated in a steady

externally applied magnetic field.

Problem 8.3
At a distance r from a charge e on a particle of mass m the electric field value is E ¼ e=4�" 0r 2.

Show by integrating the electrostatic energy density over the spherical volume of radius a to infinity

and equating it to the value mc2 that the ‘classical’ radius of the electron is given by

a ¼ 1:41 � 10�15 m

Problem 8.4
The rate of generation of heat in a long cylindrical wire carrying a current I is I 2R, where R is the

resistance of the wire. Show that this joule heating can be described in terms of the flow of energy

into the wire from surrounding space and is equal to the product of the Poynting vector and the

surface area of the wire.

Problem 8.5
Show that when a current is increasing in a long uniformly wound solenoid of coil radius r the total

inward energy flow rate over a length l (the Poynting vector times the surface area 2�rl) gives the

time rate of change of the magnetic energy stored in that length of the solenoid.

Problem 8.6
The plane polarized electromagnetic wave (E x, Hy) of this chapter travels in free space. Show that its

Poynting vector (energy flow in watts per squaremetre) is given by

S ¼ ExH y ¼ cð1
2
" 0E 2

x þ 1
2
� 0H 2

y Þ ¼ c" 0E 2
x
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where c is the velocity of light. The intensity in such a wave is given by

I ¼ S av ¼ c" 0E 2 ¼ 1
2

c" 0E 2
max

Show that

S ¼ 1:327 � 10�3 E 2
max

Emax ¼ 27:45 S
1=2

V m�1

H max ¼ 7:3 � 10�2 S
1=2

A m�1

Problem 8.7
A light pulse from a ruby laser consists of a linearly polarized wave train of constant amplitude

lasting for 10�4 s and carrying energy of 0.3 J. The diameter of the circular cross section of the

beam is 5�10�3 m. Use the results of Problem 8.6 to calculate the energy density in the beam to

show that the root mean square value of the electric field in the wave is

2:4 � 10 5 V m�1

Problem 8.8
One square metre of the earth’s surface is illuminated by the sun at normal incidence by an energy

flux of 1.35 kW. Show that the amplitude of the electric field at the earth’s surface is 1010 V m�1

and that the associated magnetic field in the wave has an amplitude of 2.7 A m�1 (See Problem 8.6).

The electric field energy density 1
2
"E 2 has the dimensions of a pressure. Calculate the radiation

pressure of sunlight upon the earth.

Problem 8.9
If the total power lost by the sun is equal to the power received per unit area of the earth’s surface

multiplied by the surface area of a sphere of radius equal to the earth sun distance (15�10 7 km),

show that the mass per second converted to radiant energy and lost by the sun is 4:2 � 109 kg. (See

Problem 8.6.)

Problem 8.10
A radio station radiates an average power of 105 W uniformly over a hemisphere concentric with the

station. Find the magnitude of the Poynting vector and the amplitude of the electric and magnetic

fields of the plane electromagnetic wave at a point 10 km from the station. (See Problem 8.6)

Problem 8.11
A plane polarized electromagnetic wave propagates along a transmission line consisting of two

parallel strips of a perfect conductor containing a medium of permeability � and permittivity ". A

section of one cubic metre in the figure shows the appropriate field vectors. The electric field Ex

generates equal but opposite surface charges on the conductors of magnitude "Ex C m2. The motion

of these surface charges in the direction of wave propagation gives rise to a surface current (as in the

discussion associated with Figure 7.1). Show that the magnitude of this current is Hy and that the

characteristic impedance of the transmission line is

Ex

H y

¼
ffiffiffi
�

"

r
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1m

1m

1m

z

Hy

Ex

Problem 8.12
Show that equation (8.6) is dimensionally of the form (per unit area)

V ¼ L
d I

d t

where V is a voltage, L is an inductance and I is a current.

Problem 8.13
Show that when a group of electromagnetic waves of nearly equal frequencies propagates in a

conducting medium the group velocity is twice the wave velocity.

Problem 8.14
A medium has a conductivity � ¼ 10�1 S m�1 and a relative permittivity " r ¼ 50, which is constant

with frequency. If the relative permeability � r ¼ 1, is the medium a conductor or a dielectric at a

frequency of (a) 50 kHz, and (b) 104 MHz?

½" 0 ¼ ð36�� 10 9Þ�1
F m�1; �0 ¼ 4�� 10�7 H m�1�

Answer: (a) �=!" ¼ 720 (conductor)

ðbÞ �=!" ¼ 3:6 � 10�3 (dielectric):

Problem 8.15
The electrical properties of the Atlantic Ocean are given by

" r ¼ 81; � r ¼ 1; � ¼ 4:3 S m�1

Show that it is a conductor up to a frequency of about 10 MHz. What is the longest electromagnetic

wavelength you would expect to propagate under water?
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Problem 8.16
Show that when a plane electromagnetic wave travelling in air is reflected normally from a plane

conducting surface the transmitted magnetic field value Ht � 2H i, and that a magnetic standing

wave exists in air with a very large standing wave ratio. If the wave is travelling in a conductor and is

reflected normally from a plane conductor–air interface, show that Et � 2Ei. Show that these two

cases are respectively analogous to a short-circuited and an open-circuited transmission line.

Problem 8.17
Show that in a conductor the average value of the Poynting vector is given by

S av ¼ 1
2

E0H0 cos 45 �

¼ 1
2

H 2
0 � ðreal part of Z cÞW m2

where E0 and H0 are the peak field values. A plane 1000 MHz wave travelling in air with E0 ¼
1 V m�1 is incident normally on a large copper sheet. Show firstly that the real part of the conductor

impedance is 8.2�10�3� and then (remembering from Problem 8.16 that H0 doubles in the

conductor) show that the average power absorbed by the copper per square metre is 1.6�10�7 W.

Problem 8.18
For a good conductor " r ¼ � r ¼ 1. Show that when an electromagnetic wave is reflected normally

from such a conducting surface its fractional loss of energy (1–reflection coefficient I r) is

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8!"=�

p
. Note that the ratio of the displacement current density to the conduction current density

is therefore a direct measure of the reflectivity of the surface.

Problem 8.19
Using the value of the Poynting vector in the conductor from Problem 8.17, show that the ratio of

this value to the value of the Poynting vector in air is �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8!"=�

p
, as expected from Problem 8.18.

Problem 8.20
The electromagnetic wave of Problems 8.18 and 8.19 has electric and magnetic field magnitudes in

the conductor given by

Ex ¼ A e�kz e ið!t�kzÞ

and

H y ¼ A
�

!�

� �1=2

e�kz e ið!t�kzÞ e�i�=4

where k ¼ ð!��=2Þ 1=2
.

Show that the average value of the Poynting vector in the conductor is given by

S av ¼ 1
2

A2 �

2!�

� � 1=2

e�2kz ðW m2Þ

This is the power absorbed per unit area by the conductor. We know, however, that the wave
propagates only a distance of the order of the skin depth, so that this power is rapidly transformed.
The rate at which it changes with distance is given by @S av=@z, which gives the energy transformed
per unit volume in unit time. Show that this quantity is equal to the conductivity � times the square
of the mean value of the electric field vector E, that is, the joule heating from currents flowing in the
surface of the conductor down to a depth of the order of the skin depth.
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Problem 8.21
Show that when light travelling in free space is normally incident on the surface of a dielectric of

refractive index n the reflected intensity

I r ¼
E r

E i

� � 2

¼ 1 � n

1 þ n

� �2

and the transmitted intensity

I t ¼
Z iE

2
t

Z tE
2
i

¼ 4n

ð1 þ nÞ 2

(Note I r þ I t ¼ 1.)

Problem 8.22
Show that if the medium of Problem 8.21 is glass (n ¼ 1:5) then I r ¼ 4% and I t ¼ 96%. If an

electromagnetic wave of 100 MHz is normally incident on water (" r ¼ 81) show that I r ¼ 65% and

I t ¼ 35%.

Problem 8.23
Light passes normally through a glass plate suffering only one air to glass and one glass to air

reflection. What is the loss of intensity?

Problem 8.24
A radiating antenna in simplified form is just a length x0 of wire in which an oscillating current is

maintained. The expression for the radiating power is that used on p. 47 for an oscillating electron

P ¼ dE

dt
¼ q2!4x 2

0

12�" 0c 3

where q is the electron charge and ! is the oscillation frequency. The current I in the antenna may be

written I0 ¼ !q. If P ¼ 1
2

RI 2
0 show that the radiation resistance of the antenna is given by

R ¼ 2�

3

ffiffiffiffiffiffi
� 0

" 0

r
x0




� 
 2

¼ 787
x0




� 
 2

�

where 
 is the radiated wavelength (an expression valid for 

 x0).
If the antenna is 30 m long and transmits at a frequency of 5�10 5 H with a root mean square

current of 20 A, show that its radiation resistance is 1:97� and that the power radiated is 400 W.
(Verify that 

 x0.)

Summary of Important Results

Dielectric; � and "ð� ¼ 0Þ
Wave equation

@ 2Ex

@z2
¼ �"

@ 2Ex

@t 2
v 2 ¼ 1

�"

� �
@ 2Hy

@z2
¼ �"

@ 2Hy

@t 2
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Impedance

Ex

Hy

¼
ffiffiffi
�

"

r
ð376:7� for free spaceÞ

Energy density 1
2
"E 2

x þ 1
2
�H 2

y

Mean energy flow ¼ Intensity ¼ S ¼ vðmean energy densityÞ
¼ vð1

2
"E 2

x þ 1
2
�H 2

y Þaverage

¼ v"E 2
x ¼ 1

2
v"E 2

xðmaxÞ

Conductor; � " and �

Add diffusion equation to wave equation for loss effects from �

@ 2E 2
x

@z2
¼ �"

@ 2E 2
x

@t 2
þ ��

@Ex

@t

giving

Ex ¼ E0 e�kz eið!t�kzÞ

where

k 2 ¼ !��=2

Skin Depth

� ¼ 1

k
giving Ex ¼ E0 e�1

Criterion for conductor/dielectric behaviour is ratio

conduction current

displacement current
¼ �

!"
(note frequency dependence)

Impedance Zc (conductor)

Z c ¼
1 þ iffiffiffi

2
p !�

�

� 
1=2

with magnitude Zc ¼ 376:6
ffiffiffiffiffiffiffiffiffiffiffiffi
� r=" r

p ffiffiffiffiffiffiffiffiffiffiffi
!"=�

p
ohms
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Reflection and Transmission Coefficients (normal incidence),

R ¼ E r

E i

¼ Z2 � Z1

Z2 þ Z1

ðE’s and Z’s may be complexÞ

T ¼ E t

E i

¼ 2Z2

Z2 þ Z1

Fresnel’s Equations (dielectrics)

Rk ¼
tan ð�� �Þ
tan ð�þ �Þ ; Tk ¼

4 sin� cos �

sin 2�þ sin 2�

R? ¼ sin ð�� �Þ
sin ð�þ �Þ ; T? ¼ 2 sin� cos �

sin ð�þ �Þ

Refractive Index

n ¼ c

v
¼ Z ðfree spaceÞ

Z ðdielectricÞ

Electromagnetic Waves in a Plasma
Low frequency waves propagate, but a high frequency wave E0 e i!t is attenuated or

reflected when ! < !p the plasma frequency, where !2
p ¼ n ee2="0m e. (n e is the electron

number density.)

The plasma has a refractive index n, where

n2 ¼ 1 � !2
p=!

2

when !p 
 !0, the wave amplitude E0 ! E0e�1 in a skin depth distance

� ¼ c

!p

1 � !2

!2
p

 !�1=2

� c

!p
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9

Waves in More than
One Dimension

Plane Wave Representation in Two and Three Dimensions

Figure 9.1 shows that in two dimensions waves of velocity c may be represented by lines of

constant phase propagating in a direction k which is normal to each line, where the

magnitude of k is the wave number k ¼ 2�=�.

The direction cosines of k are given by

l ¼ k1

k
; m ¼ k2

k
where k 2 ¼ k 2

1 þ k 2
2

and any point rðx; yÞ on the line of constant phase satisfies the equation

lx þ my ¼ p ¼ ct

where p is the perpendicular distance from the line to the origin. The displacements at all

points rðx; yÞ on a given line are in phase and the phase difference � between the origin and

a given line is

� ¼ 2�

�
(path difference) ¼ 2�

�
p ¼ k � r ¼ k1x þ k2y

¼ kp

Hence, the bracket ð!t � �Þ ¼ ð!t � kxÞ used in a one dimensional wave is replaced by

ð!t � k � rÞ in waves of more than one dimension, e.g. we shall use the exponential

expression

eið!t�k�rÞ

In three dimensions all points rðx; y; zÞ in a given wavefront will lie on planes of constant

phase satisfying the equation

lx þ my þ nz ¼ p ¼ ct
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where the vector k which is normal to the plane and in the direction of propagation has

direction cosines

l ¼ k1

k
; m ¼ k2

k
; n ¼ k3

k

(so that k 2 ¼ k 2
1 þ k 2

2 þ k 2
3Þ and the perpendicular distance p is given by

kp ¼ k � r ¼ k1x þ k2y þ k3z

Wave Equation in Two Dimensions

We shall consider waves propagating on a stretched plane membrane of negligible

thickness having a mass � per unit area and stretched under a uniform tension T. This

means that if a line of unit length is drawn in the surface of the membrane, then the

material on one side of this line exerts a force T (per unit length) on the material on the

other side in a direction perpendicular to that of the line.

If the equilibrium position of the membrane is the xy plane the vibration displacements

perpendicular to this plane will be given by z where z depends on the position x, y. In

Figure 9.2a where the small rectangular element ABCD of sides �x and �y is vibrating,

forces T�x and T�y are shown acting on the sides in directions which tend to restore the

element to its equilibrium position.

In deriving the equation for waves on a string we saw that the tension T along a curved

element of string of length dx produced a force perpendicular to x of

T
@ 2y

@x2
dx

y k2

k2k1

k

k

l =

m =

k ⋅ r = k1x  + k2y = kp

x

p
lx + my = p = ct

r ( x  ⋅ y )
λ
2

k1

k Crest
Trough

Figure 9.1 Crests and troughs of a two-dimensional plane wave propagating in a general direction
k (direction cosines l and m). The wave is specified by lx þ my ¼ p ¼ ct, where p is its perpendicular
distance from the origin, travelled in a time t at a velocity c
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where y was the perpendicular displacement. Here in Figure 9.2b by exactly similar

arguments we see that a force T�y acting on a membrane element of length �x produces a

force

T�y
@ 2z

@x2
�x;

where z is the perpendicular displacement, whilst another force T�x acting on a membrane

element of length �y produces a force

T�x
@ 2z

@y2
�y

The sum of these restoring forces which act in the z-direction is equal to the mass of the

element � �x �y times its perpendicular acceleration in the z-direction, so that

T
@ 2z

@x2
�x �y þ T

@ 2z

@y2
�x �y ¼ � �x �y

@ 2y

@t 2

giving the wave equation in two dimensions as

@ 2z

@x2
þ @ 2z

@y2
¼ �

T

@ 2z

@t 2
¼ 1

c2

@ 2z

@t 2

where

c2 ¼ T

�

The displacement of waves propagating on this membrane will be given by

z ¼ A e ið!t�k�rÞ ¼ A e i½!t�ðk 1xþk 2yÞ�

where

k 2 ¼ k 2
1 þ k 2

2

y

T  δ x
T  δ x

T  δ x

δ x
δ y

T  δ x

T  δ y

T  δ y

T  δ y

T  δ yz

x
(a) (b)

Figure 9.2 Rectangular element of a uniform membrane vibrating in the z-direction subject to one
restoring force, T�x, along its sides of length �y and another, T�y, along its sides of length �x
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The reader should verify that this expression for z is indeed a solution to the two-

dimensional wave equation when ! ¼ ck.

(Problem 9.1)

Wave Guides

Reflection of a 2D Wave at Rigid Boundaries

Let us first consider a 2D wave propagating in a vector direction kðk1; k2Þ in the xy plane

along a membrane of width b stretched under a tension T between two long rigid rods

which present an infinite impedance to the wave.

We see from Figure 9.3 that upon reflection from the line y ¼ b the component k1

remains unaffected whilst k2 is reversed to �k2. Reflection at y ¼ 0 leaves k1 unaffected

whilst �k2 is reversed to its original value k2. The wave system on the membrane will

therefore be given by the superposition of the incident and reflected waves; that is, by

z ¼ A1 e i½!t�ðk 1xþk 2yÞ� þ A2 e i½!t�ðk 1x�k 2yÞ�

subject to the boundary conditions that

z ¼ 0 at y ¼ 0 and y ¼ b

the positions of the frame of infinite impedance.

The condition z ¼ 0 at y ¼ 0 requires

A2 ¼ �A1

and z ¼ 0 at y ¼ b gives

sin k2b ¼ 0

infinite
impedance

infinite
impedance

y = 0

y = b

k1

k1

k1

k2

k2

−k2

k

k

k

x

Figure 9.3 Propagation of a two-dimensional wave along a stretched membrane with infinite
impedances at y ¼ 0 and y ¼ b giving reversal of k 2 at each reflection
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or

k2 ¼ n�

b

(Problem 9.2)

With these values of A2 and k2 the displacement of the wave system is given by the real

part of z, i.e.

z ¼ þ 2A1 sin k2y sin ð!t � k1xÞ

which represents a wave travelling along the x direction with a phase velocity

v p ¼ !

k1

¼ k

k1

� �
v

where v, the velocity on an infinitely wide membrane, is given by

v ¼ !

k
which is < v p

because

k 2 ¼ k 2
1 þ k 2

2

Now

k 2 ¼ k 2
1 þ

n2�2

b2

so

k1 ¼ k 2 � n2�2

b2

� �1=2

¼ !2

v 2
� n2�2

b2

� �1=2

and the group velocity for the wave in the x direction

v g ¼ @!

@k1

¼ k1

!
v 2 ¼ k1

k

� �
v

giving the product

v pv g ¼ v 2

Since k1 must be real for the wave to propagate we have, from

k 2
1 ¼ k 2 � n2�2

b2

the condition that

k 2 ¼ !2

v 2
	 n2�2

b2
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that is

!	 n�v

b

or

�	 nv

2b
;

where n defines the mode number in the y direction. Thus, only waves of certain

frequencies � are allowed to propagate along the membrane which acts as a wave guide.

There is a cut-off frequency n�v=b for each mode of number n and the wave guide acts as

a frequency filter (recall the discussion on similar behaviour in wave propagation on the

loaded string in Chapter 4). The presence of the sin k2y term in the expression for the

displacement z shows that the amplitude varies across the transverse y direction as shown in

Figure 9.4 for the mode values n ¼ 1; 2; 3. Thus, along any direction in which the waves

meet rigid boundaries a standing wave system will be set up analogous to that on a string of

fixed length and we shall discuss the implication of this in the section on normal modes and

the method of separation of variables.

Wave guides are used for all wave systems, particularly in those with acoustical and

electromagnetic applications. Fibre optics is based on wave guide principles, but the major

use of wave guides has been with electromagnetic waves in telecommunications. Here the

reflecting surfaces are the sides of a copper tube of circular or rectangular cross section.

Note that in this case the free space velocity becomes the velocity of light

c ¼ !

k
< v p

the phase velocity, but the relation v pv g ¼ c2 ensures that energy in the wave always

travels with a group velocity v g < c.

n = 2n = 1

y = 0

y = b

n = 3 x

Figure 9.4 Variation of amplitude with y-direction for two-dimensional wave propagating along the
membrane of Figure 9.3. Normal modes (n ¼ 1; 2 and 3 shown) are set up along any axis bounded by
infinite impedances
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(Problems 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11)

Normal Modes and the Method of Separation of Variables

We have just seen that when waves propagate in more than one dimension a standing wave

system will be set up along any axis which is bounded by infinite impedances.

In Chapter 5 we found that standing waves could exist on a string of fixed length l where

the displacement was of the form

y ¼ A
sin

cos

�
kx

sin

cos

�
!nt;

where A is constant and where
sin

cos

�
means that either solution may be used to

fit the boundary conditions in space and time. When the string is fixed at both ends, the

condition y ¼ 0 at x ¼ 0 removes the cos kx solution, and y ¼ 0 at x ¼ l requires knl ¼ n�
or kn ¼ n�=l ¼ 2�=�n, giving l ¼ n�n=2. Since the wave velocity c ¼ �n�n, this permits

frequencies !n ¼ 2��n ¼ �nc=l, defined as normal modes of vibration or eigenfrequen-

cies.

We can obtain this solution in a way which allows us to extend the method to waves in

more than one dimension. We have seen that the wave equation

@ 2�

@x2
¼ 1

c2

@ 2�

@t 2

has a solution which is the product of two terms, one a function of x only and the other a

function of t only.

Let us write � ¼ XðxÞTðtÞ and apply the method known as separation of variables.

The wave equation then becomes

@ 2X

@x2
� T ¼ 1

c2
X
@ 2T

@t 2

or

XxxT ¼ 1

c2
XTtt

where the double subscript refers to double differentiation with respect to the variables.

Dividing by � ¼ XðxÞTðtÞ we have

Xxx

X
¼ 1

c2

Ttt

T

where the left-hand side depends on x only and the right-hand side depends on t only.

However, both x and t are independent variables and the equality between both sides can

only be true when both sides are independent of x and t and are equal to a constant, which

we shall take, for convenience, as �k 2. Thus

Xxx

X
¼ �k 2; giving Xxx þ k 2X ¼ 0
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and

1

c2

Ttt

T
¼ �k 2; giving Ttt þ c2k 2T ¼ 0

XðxÞ is therefore of the form e
ikx and TðtÞ is of the form e
ickt, so that � ¼ A e
ikx e
ickt,

where A is constant, and we choose a particular solution in a form already familiar to us by

writing

� ¼ A eiðckt�kxÞ

¼ A eið!t�kxÞ ;

where ! ¼ ck, or we can write

� ¼ A
sin

cos

�
kx

sin

cos

�
ckt

as above.

Two-Dimensional Case

In extending this method to waves in two dimensions we consider the wave equation in

the form

@ 2�

@x2
þ @ 2�

@y2
¼ 1

c2

@ 2�

@t 2

and we write � ¼ XðxÞYðyÞTðtÞ, where YðyÞ is a function of y only.

Differentiating twice and dividing by � ¼ XY T gives

Xxx

X
þ Yyy

Y
¼ 1

c2

Ttt

T

where the left-hand side depends on x and y only and the right-hand side depends on t only.

Since x, y and t are independent variables each side must be equal to a constant, �k 2 say.

This means that the left-hand side terms in x and y differ by only a constant for all x and y,

so that each term is itself equal to a constant. Thus we can write

Xxx

X
¼ �k 2

1;
Yyy

Y
¼ �k 2

2

and

1

c2

Ttt

T
¼ �ðk 2

1 þ k 2
2Þ ¼ �k 2
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giving

Xxx þ k 2
1X ¼ 0

Yyy þ k 2
2Y ¼ 0

Ttt þ c2k 2T ¼ 0

or

� ¼ A e
ik 1x e
ik 2y e
ickt

where k 2 ¼ k 2
1 þ k 2

2. Typically we may write

� ¼ A
sin

cos

�
k1x

sin

cos

�
k2y

sin

cos

�
ckt:

Three-Dimensional Case

The three-dimensional treatment is merely a further extension. The wave equation is

@ 2�

@x2
þ @ 2�

@y2
þ @ 2�

@z2
¼ 1

c2

@ 2�

@t 2

with a solution

� ¼ XðxÞYðyÞZðzÞTðtÞ
yielding

� ¼ A
sin

cos

�
k1x

sin

cos

�
k2y

sin

cos

�
k3z

sin

cos

�
ckt;

where k 2
1 þ k 2

2 þ k 2
3 ¼ k 2.

Using vector notation we may write

� ¼ A eið!t�k�rÞ; where k � r ¼ k1x þ k2y þ k3z

Normal Modes in Two Dimensions on a Rectangular Membrane

Suppose waves proceed in a general direction k on the rectangular membrane of sides a

and b shown in Figure 9.5. Each dotted wave line is separated by a distance �=2 and a

standing wave system will exist whenever a ¼ n1AA 0 and b ¼ n2BB 0, where n1 and n2 are

integers.

But

AA 0 ¼ �

2 cos

¼ �

2

k

k1

¼ �

2

2�

�

1

k1

¼ �

k1
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so that

a ¼ n1�

k1

and k1 ¼ n1�

a
:

Similarly

k2 ¼ n2�

b

Hence

k 2 ¼ k 2
1 þ k 2

2 ¼ 4�2

�2
¼ �2 n2

1

a2
þ n2

2

b2

� �

or

2

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1

a2
þ n2

2

b2

r

defining the frequency of the n1th mode on the x-axis and the n2th mode on the y-axis, that

is, the ðn1n2Þ normal mode, as

� ¼ c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1

a2
þ n2

2

b2

r
; where c2 ¼ T

�

If k is not normal to the direction of either a or b we can write the general solution for

the waves as

z ¼ A
sin

cos

�
k1x

sin

cos

�
k2y

sin

cos

�
ckt:

with the boundary conditions z ¼ 0 at x ¼ 0 and a; z ¼ 0 at y ¼ 0 and b.

k

β
α

λ
2

B

B′

B′B
b 

 =
 n

2 
B

B
′ =

 n
2λ

 / 2
 c

os
b

a  = n2 AA′ = n1λ / 2 cos a

Figure 9.5 Normal modes on a rectangular membrane in a direction k satisfying boundary
conditions of zero displacement at the edges of length a ¼ n1�=2 cos
 and b ¼ n 2�= 2 cos�
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The condition z ¼ 0 at x ¼ y ¼ 0 requires a sin k1x sin k2y term, and the condition z ¼ 0

at x ¼ a defines k1 ¼ n1�=a. The condition z ¼ 0 at y ¼ b gives k2 ¼ n2�=b, so that

z ¼ A sin
n1�x

a
sin

n2�y

b
sin ckt

The fundamental vibration is given by n1 ¼ 1; n2 ¼ 1, so that

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a2
þ 1

b2

� �
T

4�

s

In the general mode ðn1n2Þ zero displacement or nodal lines occur at

x ¼ 0;
a

n1

;
2a

n1

; . . . a

and

y ¼ 0;
b

n2

;
2b

n2

; . . . b

Some of these normal modes are shown in Figure 9.6, where the shaded and plain areas

have opposite displacements as shown.

(3,2)

(1,1)

(2,1)

(3,3) (2,4)

(1,1) (2,1) (3,1)

(3,1)

Figure 9.6 Some normal modes on a rectangular membrane with shaded and clear sections having
opposite sinusoidal displacements as indicated
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The complete solution for a general displacement would be the sum of individual normal

modes, as with the simpler case of waves on a string (see the chapter on Fourier Series)

where boundary conditions of space and time would have to be met. Several modes of

different values ðn1n2Þ may have the same frequency, e.g. in a square membrane the modes

(4,7) (7,4) (1,8) and (8,1) all have equal frequencies. If the membrane is rectangular and

a ¼ 3b, modes (3,3) and (9,1) have equal frequencies.

These modes are then said to be degenerate, a term used in describing equal energy

levels for electrons in an atom which are described by different quantum numbers.

Normal Modes in Three Dimensions

In three dimensions a normal mode is described by the numbers n1; n2; n3, with a

frequency

� ¼ c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1

l2
1

þ n2
2

l2
2

þ n2
3

l2
3

s
; ð9:1Þ

where l1; l2 and l3 are the lengths of the sides of the rectangular enclosure. If we now form a

rectangular lattice with the x-, y- and z-axes marked off in units of

c

2l1

;
c

2l2

and
c

2l3

respectively (Figure 9.7), we can consider a vector of components n1 units in the

x-direction, n2 units in the y-direction and n3 units in the z-direction to have a length

� ¼ c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1

l2
1

þ n2
2

l2
2

þ n2
3

l2
3

s

n1c

2l1

c
2l3

c
2l1

c
2l2

,
n2c

2l2
,

n3c

2l3

n1

l1

n2

l2

c
2

n3

l3
+ +

Vector length gives
allowed frequency

υ =

1/22 2 2

222

Figure 9.7 Lattice of rectangular cells in frequency space. The length of the vector joining the
origin to any cell corner is the value of the frequency of an allowed normal mode. The vector
direction gives the propagation direction of that particular mode
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Each frequency may thus be represented by a line joining the origin to a point

cn1=2l1; cn2=2l2; cn3=2l3 in the rectangular lattice.

The length of the line gives the magnitude of the frequency, and the vector direction

gives the direction of the standing waves.

Each point will be at the corner of a rectangular unit cell of sides c=2l1; c=2l2 and c=2l3

with a volume c3=8l1l2l3. There are as many cells as points (i.e. as frequencies) since each

cell has eight points at its corners and each point serves as a corner to eight cells.

A very important question now arises: how many normal modes (stationary states in

quantum mechanics) can exist in the frequency range � to � þ d�?

The answer to this question is the total number of all those positive integers n1; n2; n3 for

which, from equation (9.1),

� 2 <
c2

4

n2
1

l2
1

þ n2
2

l2
2

þ n2
3

l2
3

� �
< ð� þ d�Þ2

This total is the number of possible points ðn1; n2; n3Þ lying in the positive octant

between two concentric spheres of radii � and � þ d�. The other octants will merely repeat

the positive octant values because the n’s appear as squared quantities.

Hence the total number of possible points or cells will be

1

8

(volume of spherical shell)

volume of cell

¼ 4��2 d�

8
� 8l1l2l3

c3

¼ 4�l1l2l3 �
� 2 d�

c3

so that the number of possible normal modes in the frequency range � to � þ d� per unit

volume of the enclosure

¼ 4�� 2 d�

c3

Note that this result, per unit volume of the enclosure, is independent of any particular

system; we shall consider two very important applications.

Frequency Distribution of Energy Radiated from a Hot Body.
Planck’s Law

The electromagnetic energy radiated from a hot body at temperature T in the small

frequency interval � to � þ d� may be written E� d�. If this quantity is measured

experimentally over a wide range of � a curve T1 in Figure 9.8 will result. The general

shape of the curve is independent of the temperature, but as T is increased the maximum of

the curve increases and shifts towards a higher frequency.

The early attempts to describe the shape of this curve were based on two results we have

already used.

Frequency Distribution of Energy Radiated from a Hot Body. 251



In the chapter on coupled oscillations we associated normal modes with ‘degrees of

freedom’, the number of ways in which a system could take up energy. In kinetic theory,

assigning an energy 1
2

kT to each degree of freedom of a monatomic gas at temperature T

leads to the gas law pV ¼ RT ¼ NkT where N is Avogadro’s number, k is Boltzmann’s

constant and R is the gas constant.

If we assume that each frequency radiated from a hot body is associated with the normal

mode of an oscillator with two degrees of freedom and two transverse planes of

polarization, the energy radiated per frequency interval d� may be considered as the

product of the number of normal modes or oscillators in the interval d� and an energy

contribution of kT from each oscillator for each plane of polarization. This gives

E� d� ¼ 4�� 2 d� 2kT

c3
¼ 8�� 2kT d�

c3

a result known as the Rayleigh–Jeans Law.

This, however, gives the energy density proportional to � 2 which, as the solid curve in

Figure 9.8 shows, becomes infinite at very high frequencies, a physically absurd result

known as the ultraviolet catastrophe.

The correct solution to the problem was a major advance in physics. Planck had

introduced the quantum theory, which predicted that the average energy value kT should be

replaced by the factor h�=ðeh�=kT � 1Þ, where h is Planck’s constant (the unit of action) as

shown in Problem 9.12. The experimental curve is thus accurately described by Planck’s

Radiation Law

E� d� ¼ 8�� 2

c3

h�

eh�=kT � 1
d�

ν λ

T1

T2

T2

ννE   d
Black body radiation curves
following Planck's Law (T2 > T1)

Rayleigh-
Jeans

Figure 9.8 Planck’s black body radiation curve plotted for two different temperatures T2 > T 1,
together with the curve of the classical Rayleigh--0.6-Jeans explanation leading to the ‘ultra-violet
catastrophe’
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(Problem 9.12)

Debye Theory of Specific Heats

The success of the modern theory of the specific heats of solids owes much to the work of

Debye, who considered the thermal vibrations of atoms in a solid lattice in terms of a vast

complex of standing waves over a great range of frequencies. This picture corresponds in

three dimensions to the problem of atoms spaced along a one dimensional line (Chapter 5).

In the specific heat theory each atom was allowed two transverse vibrations (perpendicular

planes of polarization) and one longitudinal vibration.

The number of possible modes or oscillations per unit volume in the frequency interval �
to � þ d� is then given by

dn ¼ 4�� 2 d�
2

c3
T

þ 1

c3
L

� �
ð9:2Þ

where cT and cL are respectively the transverse and longitudinal wave velocities.

Problem 9.12 shows that each mode has an average energy (from Planck’s Law) of
�"" ¼ h�=ðeh�=kT � 1Þ and the total energy in the frequency range � to � þ d� for a gram

atom of the solid of volume VA is then

VA�"" dn ¼ 4�VA

2

c3
T

þ 1

c3
L

� �
h� 3

eh�=kT � 1
d�

The total energy per gram atom over all permitted frequencies is then

EA ¼
ð

VA�"" dn ¼ 4�VA

2

c3
T

þ 1

c3
L

� � ð �m

0

h� 3

eh�=kT � 1
d�

where �m is the maximum frequency of the oscillations.

There are N atoms per gram atom of the solid (N is Avogadro’s number) and each atom

has three allowed oscillation modes, so an approximation to �m is found by writing the

integral of equation (9.2) for a gram atom asð
dn ¼ 3N ¼ 4�VA

2

c3
T

þ 1

c3
L

� � ð �m

0

� 2 d� ¼ 4�VA

3

2

c3
T

þ 1

c3
L

� �
� 3

m

The values of cT and cL can be calculated from the elastic constants of the solid (see

Chapter 6 on longitudinal waves) and �m can then be found.

The values of EA thus becomes

EA ¼ 9N

� 3
m

ð �m

0

h�

eh�=kT � 1
� 2 d�

and the variation of EA with the temperature T is the molar specific heat of the substance at

constant volume. The specific heat of aluminium calculated by this method is compared

with experimental results in Figure 9.9.
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(Problems 9.13, 9.14, 9.15, 9.16, 9.17, 9.18, 9.19)

Reflection and Transmission of a Three-Dimensional Wave at a
Plane Boundary

To illustrate such an event we choose a physical system of great significance, the passage of

a light wave from air to glass. More generally, Figure 9.10 shows a plane polarized

electromagnetic wave E i incident at an angle � to the normal of the plane boundary z ¼ 0

separating two dielectrics of impedance Z1 and Z2, giving reflected and transmitted rays E r

and E t, respectively. The boundary condition requires that the tangential electric field Ex is

continuous at z ¼ 0. The propagation direction k i of E i lies wholly in the plane of the

paper ðy ¼ 0Þ but no assumptions are made about the directions of the reflected and

transmitted waves (nor about the planes of oscillation of their electric field vectors).

We write

E i ¼ A i e ið!t�k i�rÞ ¼ A i e i½!t�k iðx sin �þz cos �Þ�

E r ¼ A r e ið!t�k r�rÞ ¼ A r e i½!t�ðk r1xþk r2yþk r3zÞ�

and

E t ¼ A t e ið!t�k t�rÞ ¼ A t e i½!t�ðk t1xþk t2yþk t3zÞ�

where k rðk r1; k r2; k r3Þ and k tðk t1; k t2; k t3Þ are respectively the reflected and transmitted

propagation vectors.

Since Ex is continuous at z ¼ 0 for all x; y; t we have

A i e i½!t�k iðx sin �Þ� þ A r e i½!t�ðk r1xþk r2yÞ�

¼ A t e i½!t�ðk t1xþk t2yÞ�

100 200 300 400

Temperature (K)

Specific heat of aluminium

o - Experimental points

Solid curve-

Debye Theory

1

2

3

4

5

6

C
v 

(c
al

s 
m

ol
e−1

 d
eg

−i
)

Figure 9.9 Debye theory of specific heat of solids. Experimental values versus theoretical curve for
aluminium
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an identity which is only possible if the indices of all three terms are identical; that is

!t � k ix sin � � !t � k r1x þ k r2y

� !t � k t1x þ k t2y

Equating the coefficients of x in this identity gives

k i sin � ¼ k r1 ¼ k t1

whilst equal coefficients of y give

0 ¼ k r2 ¼ k t2

The relation

k r2 ¼ k t2 ¼ 0

shows that the reflected and transmitted rays have no component in the y direction and lie

wholly in the xz plane of incidence; that is, incident reflected and transmitted (refracted)

rays are coplanar.

θ

φθ′

Et

Erkr

Z1

ki

Ei

k t

z

x Z 2

ΣEx = 0 at z = 0

Figure 9.10 Plane-polarized electromagnetic wave propagating in the plane of the paper is
represented by vector E i and is reflected as vector E r and transmitted as vector E t at a plane interface
between media of impedances Z 1 and Z2. No assumptions are made about the planes of propagation
of E r and E t. From the boundary condition that the electric field component Ex is continuous at the
plane z ¼ 0 it follows that (1) vectors E i E r and E t propagate in the same plane; (2) � ¼ � 0 (angle of
incidence¼ angle of reflection); (3) Snell’s law ðsin �= sin�Þ ¼ n 2=n1, where n is the refractive
index
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Now the magnitude

k i ¼ k r ¼
2�

�1

since both incident and reflected waves are travelling in medium Z1. Hence

k i sin � ¼ k r1

gives

k i sin � ¼ k r sin � 0

that is

� ¼ � 0

so the angle of incidence equals the angle of reflection.

The magnitude

k t ¼
2�

�2

so that

k i sin � ¼ k t1 ¼ k t sin�

gives

2�

�1

sin � ¼ 2�

�2

sin�

or

sin �

sin�
¼ �1

�2

¼ n2

n1

Refractive Index (medium 2)

Refractive Index (medium 1)

� 	

a relationship between the angles of incidence and refraction which is well known as

Snell’s Law.

Total Internal Reflection and Evanescent Waves

On p. 254 we discussed the propagation of an electromagnetic wave across the boundary

between air and a dielectric (glass, say). We now consider the reverse process where a wave

in the dielectric crosses the interface into air.

Snell’s Law still holds so we have, in Figure 9.11,

n1 sin � ¼ n2 sin�

where

n1 > n2 and n2=n1 ¼ nr < 1

Thus

sin � ¼ ðn2=n1Þ sin� ¼ nr sin�
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with � > �. Eventually a critical angle of incidence � c is reached where � ¼ 90
 and

sin � ¼ n r; for � > � c, sin � > n r. For glass to air n r ¼ 1
1:5 and � c ¼ 42
.

It is evident that for �	 � c no electromagnetic energy is transmitted into the rarer

medium and the incident wave is said to suffer total internal reflection.

In the reflection coefficients R jj and R? on p. 218 we may replace cos� by

ð1 � sin2 �Þ1=2 ¼ ½1 � ðsin �=n rÞ2�1=2

n2

n1

n1 > n2

n2

n1

n2

n1

n2

n1

xx

z z

z

x x

z

φ

φ

φ 

θ

= 90°

i θc> θ i θr=θr

θr

θr

θ i

θ i

θc=θ i θc=

(a) (b)

(c) (d)

Figure 9.11 When light propagates from a dense to a rare medium ðn1 > n 2Þ Snell’s Law defines
� ¼ � c as that angle of incidence for which � ¼ 90
 and the refracted ray is tangential to the plane
boundary. Total internal reflection can take place but the boundary conditions still require a
transmitted wave known as the evanescent or surface wave. It propagates in the x direction but its
amplitude decays exponentially with z
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and rewrite

R jj ¼
ðn2

r � sin2 �Þ1=2 � n2
r cos �

ðn2
r � sin2 �Þ1=2 þ n2

r cos �

and

R? ¼ cos �� ðn2
r � sin2 �Þ1=2

cos �þ ðn2
r � sin2 �Þ1=2

Now for � > � c, sin � > n r and the bracketed quantities in R jj and R? are negative so

that R jj and R? are complex quantities; that is ðE rÞ jj and ðE rÞ? have a phase relation which

depends on �.
It is easily checked that the product of R and R� is unity so we have R jjR

�
jj ¼ R?R�

? ¼ 1.

This means, for both the examples of Figure 8.8, that the incident and reflected intensities

I i and I r ¼ 1. The transmitted intensity I t ¼ 0 so that no energy is carried across the

boundary.

However, if there is no transmitted wave we cannot satisfy the boundary condition

E i þ E r ¼ E t on p. 254, using only incident and reflected waves. We must therefore assert

that a transmitted wave does exist but that it cannot on the average carry energy across the

boundary.

We now examine the implications of this assertion, using Figure 9.10 above, and we

keep the notation of p. 254. This gives a transmitted electric field vector

E t ¼ A t e i½!t�ðk t1xþk t2yþk t3zÞ�

¼ A t e i½!t�k tðx sin�þz cos�Þ�

because y ¼ 0 in the xz plane, k t1 ¼ k t sin� and k t3 ¼ k t cos�. Now

cos� ¼1 � sin2 � ¼ 1 � sin2 �=n2
r

; k t cos� ¼ 
k tð1 � sin2 �=n2
r Þ

1=2

which for � > � c gives sin � > nr so that

k t cos� ¼ �ik t

sin2 �

n2
r

� 1

� �1=2

¼ �i�

We also have

k t sin� ¼ k t sin �=n r

so

E t ¼ A t e��z eið!t�k rx sin �=n rÞ
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The alternative factor eþ�z defines an exponential growth of A t which is physically

untenable and we are left with a wave whose amplitude decays exponentially as it

penetrates the less dense medium. The disturbance travels in the x direction along the

interface and is known as a surface or evanescent wave.

It is possible to show from the expressions for R jj and R? on p. 258 that except at

� ¼ 90
 the incident and the reflected electric field components for ðEÞ jj in one case and

ðEÞ? in the other, do not differ in phase by � rad and cannot therefore cancel each other

out. The continuity of the tangential component of E at the boundary therefore leaves a

component parallel to the interface which propagates as the surface wave. This effect has

been observed at optical frequencies.

Moreover, if only a very thin air gap exists between two glass blocks it is possible for

energy to flow across the gap allowing the wave to propagate in the second glass block.

This process is called frustrated total internal reflection and has its quantum mechanical

analogue in the tunnelling effect discussed on p. 431.

Problem 9.1
Show that

z ¼ A e if!t�ðk 1xþk 2yÞg

where k 2 ¼ ! 2=c2 ¼ k 2
1 þ k 2

2 is a solution of the two-dimensional wave equation

@ 2z

@x2
þ @ 2z

@y 2
¼ 1

c2

@ 2z

@t 2

Problem 9.2
Show that if the displacement of the waves on the membrane of width b of Figure 9.3 is given by the

superposition

z ¼ A1 e i½!t�ðk 1xþk 2yÞ� þ A 2 e i½!t�ðk 1x�k 2yÞ�

with the boundary conditions

z ¼ 0 at y ¼ 0 and y ¼ b

then the real part of z is

z ¼ þ2 A1 sin k 2 y sin ð!t � k 1xÞ
where

k2 ¼ n�

b

Problem 9.3
An electromagnetic wave loses negligible energy when reflected from a highly conducting surface.

With repeated reflections it may travel along a transmission line or wave guide consisting of two

parallel, infinitely conducting planes (separation a). If the wave
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θa

x = 0
plane conductor

y

k (kx ky) k (−kx ky)

Ez only

x = a
plane conductor

z

x

is plane polarized, so that only Ez exists, then the propagating direction k lies wholly in the xy plane.

The boundary conditions require that the total tangential electric field Ez is zero at the conducting

surfaces x ¼ 0 and x ¼ a. Show that the first boundary condition allows Ez to be written Ez ¼
E0ðe ik xx � e�ik xxÞ e iðk yy�!tÞ, where k x ¼ k cos � and k y ¼ k sin � and the second boundary condition

requires kx ¼ n�=a.
If �0 ¼ 2�c=!, � c ¼ 2�=k x and �g ¼ 2�=ky are the wavelengths propagating in the x and y

directions respectively show that

1

� 2
c

þ 1

�2
g

¼ 1

�2
0

We see that for n ¼ 1, kx ¼ �=a and � c ¼ 2a, and that as ! decreases and �0 increases, ky ¼ k sin �
becomes imaginary and the wave is damped. Thus, n ¼ 2ðkx ¼ 2�=aÞ gives � c ¼ a, the ‘critical

wavelength’, i.e. the longest wavelength propagated by a waveguide of separation a. Such cut-off

wavelengths and frequencies are a feature of wave propagation in periodic structures, transmission

lines and wave-guides.

Problem 9.4
Show, from equations (8.1) and (8.2), that the magnetic field in the plane-polarized electromagnetic

wave of Problem 9.3 has components in both x- and y-directions. [When an electromagnetic wave

propagating in a waveguide has only transverse electric field vectors and no electric field in the

direction of propagation it is called a transverse electric (TE) wave. Similarly a transverse magnetic

(TM) wave may exist. The plane-polarized wave of Problem 9.3 is a transverse electric wave; the

corresponding transverse magnetic wave would have Hz;Ex and Ey components. The values of n in

Problem 9.3 satisfying the boundary conditions are written as subscripts to define the exact mode of

propagation, e.g. TE10.]

Problem 9.5
Use the value of the inductance and capacitance of a pair of plane parallel conductors of separation a

and width b to show that the characteristic impedance of such a waveguide is given by

Z 0 ¼ a

b

ffiffiffi
�

"

r
�

where � and " are respectively the permeability and permittivity of the medium between the

conductors.
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Problem 9.6
Consider either the Poynting vector or the energy per unit volume of an electromagnetic wave to

show that the power transmitted by a single positive travelling wave in the waveguide of Problem 9.5

is 1
2

abE 2
0

ffiffiffiffiffiffiffiffi
"=�

p
:

Problem 9.7
An electromagnetic wave (E, H) propagates in the x-direction down a perfectly conducting hollow

tube of arbitrary cross section. The tangential component of E at the conducting walls must be zero

at all times.
Show that the solution E ¼ Eðy; zÞ n cos ð!t � kxxÞ substituted in the wave equation yields

@ 2Eðy; zÞ
@y2

þ @ 2Eðy; zÞ
@z 2

¼ �k 2Eðy; zÞ;

where k 2 ¼ !2=c 2 � k 2
x and k x is the wave number appropriate to the x-direction, n is the unit vector

in any direction in the ðy; zÞ plane.

Problem 9.8
If the waveguide of Problem 9.7 is of rectangular cross-section of width a in the y-direction and

height b in the z-direction, show that the boundary conditions Ex ¼ 0 at y ¼ 0 and a and at z ¼ 0 and

b in the wave equation of Problem 9.7 gives

Ex ¼ A sin
m�y

a
sin

n�z

b
cos ð!t � kxxÞ;

where

k 2 ¼ � 2 m2

a2
þ n2

b2

� �

Problem 9.9
Show, from Problems 9.7 and 9.8, that the lowest possible value of ! (the cut-off frequency) for k x to

be real is given by m ¼ n ¼ 1.

Problem 9.10
Prove that the product of the phase and group velocity !=kx; @!=@kx of the wave of Problems 9.7–

9.9 is c 2, where c is the velocity of light.

Problem 9.11
Consider now the extension of Problem 9.2 where the waves are reflected at the rigid edges of the

rectangular membrane of sides length a and b as shown in the diagram. The final displacement is the

result of the superposition

z ¼A1 e i½!t�ðk 1xþk 2yÞ�

þ A2 e i½!t�ðk 1x�k 2yÞ�

þ A3 e i½!t�ð�k 1x�k 2yÞ�

þ A4 e i½!t�ð�k 1xþk 2yÞ�

with the boundary conditions

z ¼ 0 at x ¼ 0 and x ¼ a
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and

z ¼ 0 at y ¼ 0 and y ¼ b

−k2

−k1

−k2

−k1

k2

y b

a

x

k2

k1

k1

Show that this leads to a displacement

z ¼ �4 A1 sin k1x sin k 2y cos!t

(the real part of z), where

k 1 ¼ n1�

a
and k2 ¼ n2�

b

Problem 9.12
In deriving the result that the average energy of an oscillator at frequency � and temperature T is

given by

�"" ¼ h�

e ðh�=kTÞ � 1

Planck assumed that a large number N of oscillators had energies 0; h�; 2h� . . . nh� distributed

according to Boltzmann’s Law

N n ¼ N 0 e�nh�=kT

where the number of oscillators N n with energy nh� decreases exponentially with increasing n.
Use the geometric progression series

N ¼
X

n

N n ¼ N 0ð1 þ e�h�=kT þ e�2h�=kT . . .Þ

to show that

N ¼ N0

1 � e�h�=kT

If the total energy of the oscillators in the nth energy state is given by

En ¼ Nnnh�
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prove that the total energy over all the n energy states is given by

E ¼
X

n

En ¼ N0

h� e�h�=kT

ð1 � e�h�=kTÞ 2

Hence show that the average energy per oscillator

�"" ¼ E

N
¼ h�

eh�=kT � 1

and expand the denominator to show that for h� � kT, that is low frequencies and long wavelengths.

Planck’s Law becomes the classical expression of Rayleigh–Jeans.

Problem 9.13
The wave representation of a particle, e.g. an electron, in a rectangular potential well throughout

which V ¼ 0 is given by Schrödinger’s time-independent equation

@ 2�

@x2
þ @ 2�

@y 2
þ @ 2�

@z 2
¼ � 8�2m

h2
E�;

where E is the particle energy, m is the mass and h is Planck’s constant. The boundary conditions to

be satisfied are  ¼ 0 at x ¼ y ¼ z ¼ 0 and at x ¼ Lx; y ¼ Ly; z ¼ L z, where L x, L y and L z are the

dimensions of the well.

Show that

� ¼ A sin
l�x

L x

sin
r�y

L y

sin
n�z

L z

is a solution of Schrödinger’s equation, giving

E ¼ h2

8m

l2

L 2
x

þ r 2

L2
y

þ n2

L 2
z

 !

When the potential well is cubical of side L,

E ¼ h2

8mL2
ðl2 þ r 2 þ n2Þ

and the lowest value of the quantized energy is given by

E ¼ E0 for l ¼ 1; r ¼ n ¼ 0

Show that the next energy levels are 3E0; 6E0 (three-fold degenerate), 9E0 (three-fold
degenerate), 11E0 (three-fold degenerate), 12E0 and 14E0 (six-fold degenerate).

Problem 9.14
Show that at low energy levels (long wavelengths) h� � kT , Planck’s radiation law is equivalent to

the Rayleigh–Jeans expression.

Problem 9.15
Planck’s radiation law, expressed in terms of energy per unit range of wavelength instead of

frequency, becomes

E� ¼
8�ch

�5ðech=�kT � 1Þ
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Use the variable x ¼ ch=�k T to show that the total energy per unit volume at temperature T 


absolute is given by ð1

0

E� d� ¼ aT 4 J m�3

where

a ¼ 8� 5k 4

15c3h3

(The constant ca=4 ¼ �, Stefan’s Constant in the Stefan-Boltzmann Law.) Note thatð1

0

x3 dx

ex � 1
¼ �4

15

Problem 9.16
Show that the wavelength �m at which E� in Problem 9.15 is a maximum is given by the solution of

1 � x

5

� �
ex ¼ 1; where x ¼ ch

�kT

The solution is ch=�mkT ¼ 4:965.

Problem 9.17
Given that ch=�m ¼ 5 kT in Problem 9.16, show that if the sun’s temperature is about 6000 K, then

�m � 4:7 � 10�7 m, the green region of the visible spectrum where the human eye is most sensitive

(evolution ?).

Problem 9.18
The tungsten filament of an electric light bulb has a temperature of � 2000 K. Show that in this case

�m � 14 � 10�7 m, well into the infrared. Such a lamp is therefore a good heat source but an

inefficient light source.

Problem 9.19
A free electron (travelling in a region of zero potential) has an energy

E ¼ p2

2m
¼ �h2

2m

� �
k 2 ¼ EðkÞ

where the wavelength

� ¼ h=p ¼ 2�=k

In a weak periodic potential; for example, in a solid which is a good electrical conductor,
E ¼ ð�h2=2m�Þ k 2, where m� is called the effective mass. (For valence electrons m � � m:Þ

Represented as waves, the electrons in a cubic potential well ðV ¼ 0Þ of side L have allowed wave
numbers k, where

k 2 ¼ k 2
x þ k 2

y þ k 2
z and k i ¼

n i�

L

(see Problem 9.13). For each value of k there are two allowed states (each defining the spin state of

the single occupying electron–Pauli’s principle). Use the arguments in Chapter 9 to show that the
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total number of states in k space between the values k and k þ dk is given by

PðkÞ ¼ 2
L

�

� �3
4�k 2 dk

8

Use the expression E ¼ ð�h2=2m �Þ k 2 to convert this into the number of states SðEÞ dE in the energy

interval dE to give

SðEÞ ¼ A

2� 2

2m

�h2

� �3=2 ffiffiffiffi
E

p

where A ¼ L 3.
If there are N electrons in the N lowest energy states consistent with Pauli’s principle, show that

the integral ð E f

0

SðEÞ dE ¼ N

gives the Fermi energy level

E f ¼
�h2

2m�
3� 2N

A

� �2=3

where E f is the kinetic energy of the most energetic electron when the solid is in its ground state.

Summary of Important Results

Wave Equation in Two Dimensions

@ 2z

@x2
þ @ 2z

@y2
¼ 1

c2

@ 2z

@t 2

Lines of constant phase lx þ my ¼ ct propagate in direction kðk1; k2Þ where l ¼
k1=k;m ¼ k2=k; k 2 ¼ k 2

1 þ k 2
2 and c2 ¼ !2=k 2. Solution is

z ¼ A e ið!t�k�rÞ for rðx; yÞ

where k � r ¼ k1x þ k2y.

Wave Equation in Three Dimensions

@ 2�

@x2
þ @ 2�

@y2
þ @ 2�

@z2
¼ 1

c2

@ 2�

@t 2

Planes of constant phase lx þ my þ nz ¼ ct propagate in a direction

kðk1; k2; k3Þ; where l ¼ k1=k; m ¼ k2=k; n ¼ k3=k

k 2 ¼ k 2
1 þ k 2

2 þ k 2
3 and c2 ¼ !2=k 2:
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Solution is

� ¼ A eið!t�k�rÞ for rðx; y; zÞ:

Wave Guides

Reflection from walls y ¼ 0; y ¼ b in a two-dimensional wave guide for a wave of

frequency ! and vector direction kðk1; k2Þ gives normal modes in the y direction with

k2 ¼ n�=b and propagation in the x direction with phase velocity

v p ¼ !

k1

>
!

k
¼ v

and group velocity

v g ¼ @!

@k1

such that v pv g ¼ v 2

Cut-off frequency

Only frequencies !	 n�v=b will propagate where n is mode number.

Normal Modes in Three Dimensions

Wave equation separates into three equations (one for each variable x, y, z) to give solution

¼ A
sin

cos
k1x

sin

cos
k2y

sin

cos
k3z

sin

cos
!t

(Boundary conditions determine final form of solution.)

For waves of velocity c, the number of normal modes per unit volume of an enclosure in

the frequency range � to � þ d�

¼ 4�� 2 d�

c3

Directly applicable to

� Planck’s Radiation Law

� Debye’s theory of specific heats of solids

� Fermi energy level (Problem 9.19)
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10

Fourier Methods

Fourier Series

In this chapter we are going to look in more detail at the implications of the principles of

superposition which we met at the beginning of the book when we added the two separate

solutions of the simple harmonic motion equation. Our discussion of monochromatic

waves has led to the idea of repetitive behaviour in a simple form. Now we consider more

complicated forms of repetition which arise from superposition.

Any function which repeats itself regularly over a given interval of space or time is

called a periodic function. This may be expressed by writing it as f ðxÞ ¼ f ðx � �Þ where �
is the interval or period.

The simplest examples of a periodic function are sines and cosines of fixed frequency

and wavelength, where � represents the period � , the wavelength � or the phase angle

2� rad, according to the form of x. Most periodic functions for example the square wave

system of Figure 10.1, although quite simple to visualize are more complicated to represent

mathematically. Fortunately this can be done for almost all periodic functions of interest in

physics using the method of Fourier Series, which states that any periodic function may be

represented by the series

f ðxÞ ¼ 1
2

a0 þ a1 cos x þ a2 cos 2x . . .þ an cos nx

þ b1 sin x þ b2 sin 2x . . .þ bn sin nx;
ð10:1Þ

that is, a constant 1
2

a0 plus sine and cosine terms of different amplitudes, having

frequencies which increase in discrete steps. Such a series must of course, satisfy certain

conditions, chiefly those of convergence. These convergence criteria are met for a function

with discontinuities which are not too severe and with first and second differential

coefficients which are well behaved. At such discontinuities, for instance in the square

wave where f ðxÞ ¼ �h at x ¼ 0;�2�, etc. the series represents the mean of the values of

the function just to the left and just to the right of the discontinuity.
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We may write the series in several equivalent forms:

f ðxÞ ¼ 1

2
a0 þ

X1
n¼1

ðan cos nx þ bn sin nxÞ

¼ 1

2
a0 þ

X1
n¼1

cn cos ðnx � �nÞ

where

c2
n ¼ a2

n þ b2
n

and

tan �n ¼ bn=an

or

f ðxÞ ¼
X1

n¼�1
dn einx

where

2dn ¼ an � ibnðn� 0Þ
and

2dn ¼ a�n þ ib�nðn < 0Þ

To find the values of the coefficients an and bn let us multiply both sides of equation

(10.1) by cos nx and integrate with respect to x over the period 0 to 2� (say).

Every term

ð 2�

0

cos mx cos nx dx ¼ 0 if m 6¼ n

� if m ¼ n

�

whilst every term ð 2�

0

sin mx cos nx dx ¼ 0 for all m and n:

2 pp 4 p– p x0
h

4h (sin x + sin 3x +pf (x ) = 1
3

sin 5x +1
5

sin 7x . . . )1
7

Figure 10.1 Square wave of height h and its Fourier sine series representation (odd function)
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Thus for m ¼ n,

an

ð 2�

0

cos2 nx dx ¼ �an

so that

an ¼ 1

�

ð 2�

0

f ðxÞ cos nx dx

Similarly, by multiplying both sides of equation (10.1) by sin nx and integrating from 0

to 2� we have, since ð 2�

0

sin mx sin nx dx ¼ 0 if m 6¼ n

� if m ¼ n

�

that

bn ¼ 1

�

ð 2�

0

f ðxÞ sin nx dx

Immediately we see that the constant ðn ¼ 0Þ, given by 1
2

a0 ¼ 1=2�
Ð 2�

0
f ðxÞ dx, is just

the average of the function over the interval 2�. It is, therefore, the steady or ‘d.c.’ level on

which the alternating sine and cosine components of the series are superimposed, and the

constant can be varied by moving the function with respect to the x-axis. When a periodic

function is symmetric about the x-axis its average value, that is, its steady or d.c. base level,
1
2

a0, is zero, as in the square wave system of Figure 10.1. If we raise the square waves so

that they stand as pulses of height 2h on the x-axis, the value of 1
2

a0 is h� (average value

over 2�). The values of an represent twice the average value of the product f ðxÞ cos nx over

the interval 2�; bn can be interpreted in a similar way.

We see also that the series representation of the function is the sum of cosine terms

which are even functions ½cos x ¼ cos ð�xÞ� and of sine terms which are odd functions

½sin x ¼ �sin ð�xÞ�. Now every function f ðxÞ ¼ 1
2
½ f ðxÞ þ f ð�xÞ� þ 1

2
½ f ðxÞ � f ð�xÞ�, in

which the first bracket is even and the second bracket is odd. Thus, the cosine part of a

Fourier series represents the even part of the function and the sine terms represent the odd

part of the function. Taking the argument one stage further, a function f ðxÞ which is an even

function is represented by a Fourier series having only cosine terms; if f ðxÞ is odd it will

have only sine terms in its Fourier representation. Whether a function is completely even or

completely odd can often be determined by the position of the y-axis. Our square wave of

Figure 10.1 is an odd function ½ f ðxÞ ¼ �f ð�xÞ�; it has no constant and is represented by

f ðxÞ ¼ 4h=�ðsin x þ 1=3 sin 3x þ1=5 sin 5x, etc. but if we now move the y-axis a half

period to the right as in Figure 10.2, then f ðxÞ ¼ f ð�xÞ, an even function, and the square

wave is represented by

f ðxÞ ¼ 4h

�
ðcos x � 1

3
cos 3x þ 1

5
cos 5x � 1

7
cos 7x þ � � �Þ
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If we take the first three or four terms of the series representing the square wave of

Figure 10.1 and add them together, the result is Figure 10.3. The fundamental, or first

harmonic, has the frequency of the square wave and the higher frequencies build up the

squareness of the wave. The highest frequencies are responsible for the sharpness of the

vertical sides of the waves; this type of square wave is commonly used to test the frequency

response of amplifiers. An amplifier with a square wave input effectively ‘Fourier analyses’

the input and responds to the individual frequency components. It then puts them together

again at its output, and if a perfect square wave emerges from the amplifier it proves that

the amplifier can handle the whole range of the frequency components equally well. Loss

of sharpness at the edges of the waves shows that the amplifier response is limited at the

higher frequency range.

x

2

h

p
2
–p

2
3p

2
–3p

4h (cos x – cos 3x +pf (x ) = 1
3

cos 5x –1
5

cos 7x . . . )1
7

Figure 10.2 The wave of Figure 10.1 is now symmetric about the y axis and becomes a cosine series
(even function)

h

4h sin x

sin 3x

p

sin 5x

addition of first
three terms

Figure 10.3 Addition of the first three terms of the Fourier series for the square wave of Figure 10.1
shows that the higher frequencies are responsible for sharpening the edges of the pulse
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Example of Fourier Series

Consider the square wave of height h in Figure 10.1. The value of the function is given by

f ðxÞ ¼ h for 0 < x < �

and

f ðxÞ ¼ �h for � < x < 2�

The coefficients of the series representation are given by

an ¼ 1

�
h

ð �
0

cos nx dx � h

ð 2�

�

cos nx dx

� �
¼ 0

because

ð �
0

cos nx dx ¼
ð 2�

�

cos nx dx ¼ 0

and

bn ¼ 1

�
h

ð �
0

sin nx dx � h

ð 2�

�

sin nx dx

� �

¼ h

n�
½½cos nx�0

� þ ½cos nx�2�
� �

¼ h

n�
½ð1 � cos n�Þ þ ð1 � cos n�Þ�

giving bn ¼ 0 for n even and bn ¼ 4h=n� for n odd. Thus, the Fourier series representation

of the square wave is given by

f ðxÞ ¼ 4h

�
sin x þ sin 3x

3
þ sin 5x

5
þ sin 7x

7
þ � � �

� �

Fourier Series for any Interval

Although we have discussed the Fourier representation in terms of a periodic function its

application is much more fundamental, for any section or interval of a well behaved

function may be chosen and expressed in terms of a Fourier series. This series will

accurately represent the function only within the chosen interval. If applied outside that

interval it will not follow the function but will periodically repeat the value of the function

within the chosen interval. If we represent this interval by a Fourier cosine series the

repetition will be that of an even function, if the representation is a Fourier sine series an

odd function repetition will follow.
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Suppose now that we are interested in the behaviour of a function over only one-half of

its full interval and have no interest in its representation outside this restricted region. In

Figure 10.4a the function f ðxÞ is shown over its full space interval �l=2 to þl=2, but f ðxÞ
can be represented completely in the interval 0 to þl=2 by either a cosine function (which

will repeat itself each half-interval as an even function) or it can be represented completely

by a sine function, in which case it will repeat itself each half-interval as an odd function.

Neither representation will match f ðxÞ outside the region 0 to þl=2, but in the half-interval

0 to þl=2 we can write

f ðxÞ ¼ feðxÞ ¼ foðxÞ

where the subscripts e and o are the even (cosine) or odd (sine) Fourier representations,

respectively.

The arguments of sines and cosines must, of course, be phase angles, and so far the

variables x has been measured in radians. Now, however, the interval is specified as a

distance and the variable becomes 2�x=l, so that each time x changes by l the phase angle

changes by 2�.

Thus

f eðxÞ ¼
a0

2
þ
X1
n¼1

an cos
2�nx

l

(a)

(b)

0

f (x )

f e(x )

f 0(x )

0

0

(c)

2
–l

2
–l

2
–l

x

x

x

2
l

2
l

2
l

Figure 10.4 A Fourier series may represent a function over a selected half-interval. The general
function in (a) is represented in the half-interval 0 < x < l=2 by f e, an even function cosine series in
(b), and by f o, an odd function sine series in (c). These representations are valid only in the specified
half-interval. Their behaviour outside that half-interval is purely repetitive and departs from the
original function
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where

an ¼ 1
1
2

interval

ð l=2

�l=2

f ðxÞ cos
2�nx

l
dx

¼ 2

l

ð 0

�l=2

feðxÞ cos
2�nx

l
dx þ

ð l=2

0

feðxÞ cos
2�nx

l
dx

" #

¼ 4

l

ð l=2

0

f ðxÞ cos
2�nx

l
dx

because

f ðxÞ ¼ feðxÞ from x ¼ 0 to l=2

and

f ðxÞ ¼ f ð�xÞ ¼ feðxÞ from x ¼ 0 to � l=2

Similarly we can represent f ðxÞ by the sine series

f ðxÞ ¼ foðxÞ ¼
X1
n¼1

bn sin
2�nx

l

in the range x ¼ 0 to l=2 with

bn ¼ 1
1
2

interval

ð l=2

�l=2

f ðxÞ sin
2�nx

l
dx

¼ 2

l

ð 0

�l=2

foðxÞ sin
2�nx

l
dx þ

ð l=2

0

foðxÞ sin
2�nx

l
dx

" #

In the second integral foðxÞ ¼ f ðxÞ in the interval 0 to l=2 whilst

ð 0

�l=2

foðxÞ sin
2�nx

l
dx ¼

ð 0

l=2

foð�xÞsin
2�nx

l
dx ¼ �

ð 0

l=2

foðxÞ sin
2�nx

l
dx

¼
ð l=2

0

foðxÞ sin
2�nx

l
dx ¼

ð l=2

0

f ðxÞ sin
2�nx

l
dx

Hence

bn ¼ 4

l

ð l=2

0

f ðxÞ sin
2�nx

l
dx
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If we follow the behaviour of feðxÞ and foðxÞ outside the half-interval 0 to l=2 (Fig-

ure 10.4a, b) we see that they no longer represent f ðxÞ.

Application of Fourier Sine Series to a Triangular Function

Figure 10.5 shows a function which we are going to describe by a sine series in the half-

interval 0 to �. The function is

f ðxÞ ¼ x 0 < x <
�

2

� �
and

f ðxÞ ¼ �� x
�

2
< x < �

� �

Writing f ðxÞ ¼
P

bn sin nx gives

bn ¼ 2

�

ð �=2

0

x sin nx dx þ 2

�

ð �
�=2

ð�� xÞ sin nx dx

¼ 4

n2�
sin

n�

2

When n is even sin n�=2 ¼ 0, so that only terms with odd values of n are present and

f ðxÞ ¼ 4

�

sin x

12
� sin 3x

32
þ sin 5x

52
� sin 7x

72
þ � � �

� �

Note that at x ¼ �=2, f ðxÞ ¼ �=2, giving

�2

8
¼ 1

12
þ 1

32
þ 1

52
þ ¼

X1
n¼0

1

ð2n þ 1Þ2

We shall use this result a little later.

0

I

x

f (x )

p

f (x ) = x ( 0 < x <     )
2
p

f (x ) = p –x (     < x < p )
2
p

2
p

2
–p–p

Figure 10.5 Function representing a plucked string and defined over a limited interval. When the
string vibrates all the permitted harmonics contribute to the initial configuration
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Note that the solid line in the interval 0 to �� in Figure 10.5 is the Fourier sine

representation for f ðxÞ repeated outside the interval 0 to � whilst the dotted line would

result if we had represented f ðxÞ in the interval 0 to � by an even cosine series.

(Problems 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9)

Application to the Energy in the Normal Modes of a Vibrating
String

If we take a string of length l with fixed ends and pluck its centre a distance d we have the

configuration of the half interval 0 to � of Figure 10.5 which we represented as a Fourier

sine series. Releasing the string will set up its normal mode or standing wave vibrations,

each of which we have shown on p. 126 to have the displacement

yn ¼ ðAn cos!nt þ Bn sin!ntÞ sin
!nx

c
ð5:10Þ

where !n ¼ n�c=l is the normal mode frequency.

The total displacement, which represents the shape of the plucked string at t ¼ 0 is given

by summing the normal modes

y ¼
X

yn ¼
X

ðAn cos!nt þ Bn sin!ntÞ sin
!nx

c

Note that this sum resembles a Fourier series where the fixed ends of the string, y ¼ 0 at

x ¼ 0 and x ¼ l allow only the sine terms in x in the series expansion. If the string remains

plucked at rest only the terms in x with appropriate coefficients are required to describe it,

but its vibrational motion after release has a time dependence which is expressed in each

harmonic coefficient as

An cos!nt þ Bn sin!nt

The significance of these coefficients emerges when we consider the initial or boundary

conditions in time.

Let us write the total displacement of the string at time t ¼ 0 as

y0ðxÞ ¼
X

ynðxÞ ¼
X

ðAn cos!nt þ Bn sin!ntÞ sin
!nx

c

¼
X

An sin
!nx

c
at t ¼ 0

Similarly we write the velocity of the string at time t ¼ 0 as

v 0ðxÞ ¼
@

@t
y0ðxÞ ¼

X
_yynðxÞ

¼
X

ð�!nAn sin!nt þ !nBn cos!ntÞ sin
!nx

c

¼
X

!nBn sin
!nx

c
at t ¼ 0

Both y0ðxÞ and v 0ðxÞ are thus expressed as Fourier sine series, but if the string is at rest at

t ¼ 0, then v 0ðxÞ ¼ 0 and all the Bn coefficients are zero, leaving only the An’s. If the
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displacement of the string y0ðxÞ ¼ 0 at time t ¼ 0 whilst the string is moving, then all the

An’s are zero and the Fourier coefficients are the !nBn’s.

We can solve for both An and !nBn in the usual way for if

y0ðxÞ ¼
X

An sin
!nx

c

and

v 0ðxÞ ¼
X

!nBn sin
!nx

c

for a string of length l then

An ¼ 2

l

ð l

0

y0ðxÞ sin
!nx

c
dx

and

!nBn ¼ 2

l

ð l

0

v 0ðxÞ sin
!nx

c
dx

If the plucked string of mass m (linear density �) is released from rest at

t ¼ 0 ðv 0ðxÞ ¼ 0Þ the energy in each of its normal modes of vibration, given on p. 134 as

En ¼ 1
4

m!2
nðA2

n þ B2
nÞ

is simply

En ¼ 1
4

m!2
nA2

n

because all Bn’s are zero.

The total vibrational energy of the released string will be the sum
P

En over all the

modes present in the vibration.

Let us now solve the problem of the plucked string released from rest. The configuration

of Figure 10.5 (string length l, centre plucked a distance d) is given by

y0ðxÞ ¼
2dx

l
0
 x
 l

2

¼ 2dðl � xÞ
l

l

2

 x
 l

so

An ¼ 2

l

ð l=2

0

2dx

l
sin

!nx

c
dx þ

ð l

l=2

2dðl � xÞ
l

sin
!nx

c
dx

" #

¼ 8d

n2�2
sin

n�

2
for !n ¼ n�c

l

� �

We see at once that An ¼ 0 for n even (when the sine term is zero) so that all even

harmonic modes are missing. The physical explanation for this is that the even harmonics

would require a node at the centre of the string which is always moving after release.
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The displacement of our plucked string is therefore given by the addition of all the

permitted (odd) modes as

y0ðxÞ ¼
X
n odd

ynðxÞ ¼
X
n odd

An sin
!nx

c

where

An ¼ 8d

n2�2
sin

n�

2

The energy of the nth mode of oscillation is

En ¼ 1

4
m!2

n A2
n ¼ 64d 2m!2

n

4ðn2�2Þ2

and the total vibrational energy of the string is given by

E ¼
X
n odd

En ¼ 16d 2m

�4

X
n odd

!2
n

n4
¼ 16d 2c2m

�2l2

X
n odd

1

n2

for

!n ¼ n�c

l

But we saw in the last section that

X
n odd

1

n2
¼ �2

8

so

E ¼
X

En ¼ 2mc2d 2

l2
¼ 2Td 2

l

where T ¼ �c2 is the constant tension in the string.

This vibrational energy, in the absence of dissipation, must be equal to the potential

energy of the plucked string before release and the reader should prove this by calculating

the work done in plucking the centre of the string a small distance d, where d � l.

To summarize, our plucked string can be represented as a sine series of Fourier

components, each giving an allowed normal mode of vibration when it is released. The

concept of normal modes allows the energies of each mode to be added to give the total

energy of vibration which must equal the potential energy of the plucked string before

release. The energy of the nth mode is proportional to n�2 and therefore decreases with

increasing frequency. Even modes are forbidden by the initial boundary conditions.
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The boundary conditions determine which modes are allowed. If the string were struck

by a hammer those harmonics having a node at the point of impact would be absent, as in

the case of the plucked string. Pianos are commonly designed with the hammer striking a

point one seventh of the way along the string, thus eliminating the seventh harmonic which

combines to produce discordant effects.

Fourier Series Analysis of a Rectangular Velocity Pulse on a
String

Let us now consider a problem similar to that of the last section except that now the

displacement y0ðxÞ of the string is zero at time t ¼ 0 whilst the velocity v 0ðxÞ is non-zero.

A string of length l, fixed at both ends, is struck by a mallet of width a about its centre

point. At the moment of impact the displacement

y0ðxÞ ¼ 0

but the velocity

v 0ðxÞ ¼
@y0ðxÞ
@t

¼ 0 for x � l

2

����
����� a

2

¼ v for x � l

2

����
���� < a

2

This situation is shown in Figure 10.6.

The Fourier series is given by

v 0ðxÞ ¼
X

n

_yyn ¼
X

n

!nBn sin
!nx

c

where

!nBn ¼ 2

l

ð l=2þa=2

þl=2�a=2

v sin
!nx

c
dx

¼ 4v

n�
sin

n�

2
sin

n�a

2l

V

a

l

x

Figure 10.6 Velocity distribution at time t ¼ 0 of a string length l, fixed at both ends and struck
about its centre point by a mallet of width a. Displacement y0ðxÞ ¼ 0; velocity v 0ðxÞ ¼ v for
jx � l=2j < a=2 and zero outside this region
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Again we see that !nBn ¼ 0 for n even ðsin n�=2 ¼ 0Þ because the centre point of the

string is never stationary, as is required in an even harmonic.

Thus

v 0ðxÞ ¼
X
n odd

4v

n�
sin

n�a

2l
sin

!nx

c

The energy per mode of oscillation

En ¼ 1
4

m!2
nðA2

n þ B2
nÞ

¼ 1
4

m!2
nB2

n ðAll An’s ¼ 0Þ

¼ 1
4

m
16v 2

n2�2
sin2 n�a

2l

¼ 4mv 2

n2�2
sin2 n�a

2l

Now

n ¼ !n

!1

¼ !nl

�c

for the fundamental frequency

!1 ¼ �c

l

So

En ¼ 4mv 2c2

l2!2
n

sin2 !na

2c

Again we see, since !n / n that the energy of the nth mode / n�2 and decreases with

increasing harmonic frequency. We may show this by rewriting

Enð!Þ ¼
mv 2a2

l2

sin2ð!na=2cÞ
ð!na=2cÞ2

¼ mv 2a2

l2

sin2�

�2

where

� ¼ !na=2c

and plotting this expression as an energy-frequency spectrum in Figure 10.7.
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The familiar curve of sin2�=�2 again appears as the envelope of the energy values for

each !n.

If the energy at !1 is E1 then E3 ¼ E1=9 and E5 ¼ E1=25 so the major portion of the

energy in the velocity pulse is to be found in the low frequencies. The first zero of the

envelope sin2�=�2 occurs when

� ¼ !a

2c
¼ �

so the width of the central frequency pulse containing most of the energy is given by

! � 2�c

a

This range of energy-bearing harmonics is known as the ‘spectral width’ of the pulse

written

�! � 2�c

a

The ‘spatial width’ a of the pulse may be written as �x so we have

�x�! � 2�c

w1 w3 w5 w7

wn

En(w)

E1

E1
9 E1

25 E1
49

(a)

w = 2p C
a

Figure 10.7 (a) Distribution of the energy in the harmonics !n of the string of Figure 10.6. The
spectrum Enð!Þ / sin2�=�2 where � ¼ !na=2c. Most of the energy in the string is contained in the
frequency range �! � 2�c=a, and for a ¼ �x (the spatial width of the pulse), �x=c ¼ �t and
�!� t � 2� (Bandwidth Theorem). Note that the values of Enð!Þ for !3; !5; !7, etc. are magnified
for clarity. (b) The true shape of the pulse

wn

En(w)

(b)
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Reducing the width �x of the mallet will increase the range of frequencies �! required

to take up the energy in the rectangular velocity pulse. Now c is the velocity of waves on

the string so a wave travels a distance �x along the string in a time

�t ¼ �x=c

which defines the duration of the pulse giving

�!�t � 2�

or

�
�t � 1

the Bandwidth Theorem we first met on p. 134.

Note that the harmonics have frequencies

!n ¼ n�c

l

so �c=l is the harmonic interval. When the length l of the string becomes very long and

l ! 1 so that the pulse is isolated and non-periodic, the harmonic interval becomes so

small that it becomes differential and the Fourier series summation becomes the Fourier

Integral discussed on p. 283.

The Spectrum of a Fourier Series

The Fourier series can always be represented as a frequency spectrum. In Figure 10.8 a the

relative amplitudes of the frequency components of the square wave of Figure 10.1 are

plotted, each sine term giving a single spectral line. In a similar manner, the distribution of

energy with frequency may be displayed for the plucked string of the earlier section. The

frequency of the r th mode of vibration is given by ! r ¼ r�c=l, and the energy in each

mode varies inversely with r 2, where r is odd. The spectrum of energy distribution is

therefore given by Figure 10.8 b.

Suppose now that the length of this string is halved but that the total energy remains

constant. The frequency of the fundamental is now increased to ! 0
r ¼ 2r�c=l and

the frequency interval between consecutive spectral lines is doubled (Figure 10.8 c). Again,

the smaller the region in which a given amount of energy is concentrated the wider the

frequency spectrum required to represent it.

Frequently, as in the next section, a Fourier series is expressed in its complex or

exponential form

f ðtÞ ¼
X1

n¼�1
dn ein!t
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4h (sin x + sin 3x +pf (x ) =

4h
p

1
3

sin 5x +1
5

sin 7x )1
7

Frequency
spectrum

h

l

x 5x 7x

0

3p

2p

(a)

(b)

(c)

2 0

9

p

E1 = 2E1′

E1′

w1′ 3w1′ 5w1′ 7w1′

0
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w1 =
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3w1 5w1 7w1

′

′

25
E1′

49
E1′

9
E1

E1
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p c
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p c
l

w1 =

wr = 2r p c
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2p c
l

(d)

Re(dn )

Im(dn )

(e)

–nw

+nw
frequency

Re(dn )

Im(dn )

–nw

+nw
frequency

cos nwt = 1
2

einwt + e–inwt sin nwt = 1
2i

einwt – e–inwt

Figure 10.8 (a) Fourier sine series of a square wave represented as a frequency spectrum; (b)
energy spectrum of a plucked string of length l; and (c) the energy spectrum of a plucked string of
length l=2 with the same total energy as (b), demonstrating the Bandwidth Theorem that the greater
the concentration of the energy in space or time the wider its frequency spectrum. Complex
exponential frequency spectrum of (d) cos!t and (e) sin!t
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where 2dn ¼ an � ibnðn� 0Þ and 2dn ¼ a�n þ ib�nðn < 0Þ.
Because

cos n!t ¼ 1
2
ðein!t þ e�in!tÞ

and

sin n!t ¼ 1

2i
ðe in!t � e�in!tÞ

a frequency spectrum in the complex plane produces two spectral lines for each frequency

component n!, one at þn! and the other at �n!. Figure 10.8 d shows the cosine

representation, which lies wholly in the real plane, and Figure 10.8 e shows the sine

representation, which is wholly imaginary. The amplitudes of the lines in the positive and

negative frequency ranges are, of course, complex conjugates, and the modulus of their

product gives the square of the true amplitude. The concept of a negative frequency is seen

to arise because the e�in!t term increases its phase in the opposite sense to that of the

positive term ein!t. The negative amplitude of the negative frequency in the sine repre-

sentation indicates that it is in antiphase with respect to that of the positive term.

Fourier Integral

At the beginning of this chapter we saw that one Fourier representation of the function

could be written

f ðxÞ ¼
X1

n¼�1
dn einx

where 2dn ¼ an � ibnðn� 0Þ and 2dn ¼ a�n þ ib�nðn < 0Þ.
If we use the time as a variable we may rewrite this as

f ðtÞ ¼
X1

n¼�1
dn ein!t

where, if T is the period,

dn ¼ 1

T

ð T=2

�T=2

f ðtÞ e�in!t d t

(for n ¼ �2;�1; 0; 1; 2, etc.).

If we write ! ¼ 2�
1, where 
1 is the fundamental frequency, we can write

f ðtÞ ¼
X1

n¼�1

ð T=2

�T=2

f ðt 0Þ e�i2�n
 1t 0 d t 0

" #
e i2�n
 1t � 1

T
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If we now let the period T approach infinity we are isolating a single pulse by saying that

it will not be repeated for an infinite period; the frequency 
1 ¼ 1=T ! 0, and 1=T

becomes infinitesimal and may be written d
.

Furthermore, n times 
1, when n becomes as large as we please and 1=T ¼ 
1 ! 0, may

be written as n
1 ¼ 
, and the sum over n now becomes an integral, since unit change in n

produces an infinitesimal change in n=T ¼ n
1.

Hence, for an infinite period, that is for a single non-periodic pulse, we may write

f ðtÞ ¼
ð1
�1

ð1
�1

f ðt 0Þ e�i2�
t 0 d t 0
� �

ei2�
t d


which is called the Fourier Integral.

We may express this as

f ðtÞ ¼
ð1
�1

Fð
Þ ei2�
t d


where

Fð
Þ ¼
ð1
�1

f ðt 0Þ e�i2�
t 0 d t 0

is called the Fourier Transform of f ðtÞ. We shall discuss the transform in more detail in a

later section of this chapter.

We see that when the period is finite and f ðtÞ is periodic, the expression

f ðtÞ ¼
X1

n¼�1
dn ein!t

tells us that the representation is in terms of an infinite number of different frequencies,

each frequency separated by a finite amount from its nearest neighbour, but when f ðtÞ is not

periodic and has an infinite period then

f ðtÞ ¼
ð1
�1

Fð
Þ ei2�
t d


and this expression is the integral (not the sum) of an infinite number of frequency

components of amplitude Fð
Þ d
 infinitely close together, since 
 varies continuously

instead of in discrete steps.

For a periodic function the amplitude of the Fourier series coefficient

dn ¼ 1

T

ð T=2

�T=2

f ðtÞ e�in!t d t
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whereas the corresponding amplitude in the Fourier integral is

Fð
Þ d
 ¼ 1

T

� � ð1
�1

f ðt 0Þ e�in!t 0 d t 0

This corroborates the statement we made when discussing the frequency spectrum that

the narrower or less extended the pulse the wider the range of frequency components

required to represent it. A truly monochromatic wave of one frequency and wavelength (or

wave number) requires a wave train of infinite length before it is properly defined.

No wave train of finite length can be defined in terms of one unique wavelength.

Since a monochromatic wave, infinitely long, of single frequency and constant amplitude

transmits no information, its amplitude must be modified by adding other frequencies (as

we have seen in Chapter 5) before the variation in amplitude can convey information.

These ideas are expressed in terms of the Bandwidth Theorem.

Fourier Transforms

We have just seen that the Fourier integral representing a non-periodic wave group can be

written

f ðtÞ ¼
ð1
�1

Fð
Þ ei2�
t d


where its Fourier transform

Fð
Þ ¼
ð1
�1

f ðt 0Þ e�i2�
t 0 d t 0

so that integration with respect to one variable produces a function of the other. Both

variables appear as a product in the index of an exponential, and this product must be non-

dimensional. Any pair of variables which satisfy this criterion forms a Fourier pair of

transforms, since from the symmetry of the expressions we see immediately that if

Fð
Þ is the Fourier transform of f ðtÞ

then

f ð�
Þ is the Fourier transform of FðtÞ

If we are given the distribution in time of a function we can immediately express it as a

spectrum of frequency, and vice versa. In the same way, a given distribution in space can be

expressed as a function of wave numbers (this merely involves a factor, 1=2�, in front of

the transform because k ¼ 2�=�).

A similar factor appears if ! is used instead of 
. If the function of f ðtÞ is even only the

cosine of the exponential is operative, and we have a Fourier cosine transform

f ðtÞ ¼
ð1

0

Fð
Þ cos 2�
t d
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and

Fð
Þ ¼
ð1

0

f ðtÞ cos 2�
t d t

If f ðtÞ is odd only the sine terms operate, and sine terms replace the cosines above. Note

that only positive frequencies appear. The Fourier transform of an even function is real and

even, whilst that of an odd function is imaginary and odd.

Examples of Fourier Transforms

The two examples of Fourier transforms chosen to illustrate the method are of great

physical significance. They are

1. The ‘slit’ function of Figure 10.9a,

2. The Gaussian function of Figure 10.11.

As shown, they are both even functions and their transforms are therefore real; the physical

significance of this is that all the frequency components have the same phase at zero time.

The Slit Function

This is a function having height h over the time range �d=2. Thus, f ðtÞ ¼ h for jtj < d=2

and zero for jtj > d=2, so that

Fð
Þ ¼
ð1
�1

f ðtÞ e�i2�
t d t ¼
ð d=2

�d=2

h e�i2�
t d t

¼ �h

i2�

½e�i2�
d=2 � eþi2�
d=2� ¼ hd

sin�

�

(a)

timet = 0

(b)

h hd

d
n1 = 1

d

n

n2 = 2
d

Figure 10.9 (a) Narrow slit function of extent d in time and of height h, and (b) its Fourier
transform
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where

� ¼ 2�
d

2

Again we see the Fourier transformation of a rectangular pulse in time to a sin�=� pattern

in frequency. The Fourier transform of the same pulse in space will give the same

distribution as a function of wavelength. Figure 10.9b shows that as the pulse width

decreases in time the separation between the zeros of the transform is increased. The

negative values in the spectrum of the transform indicate a phase reversal for the amplitude

of the corresponding frequency component.

The Fourier Transform Applied to Optical Diffraction from a
Single Slit

This topic belongs more properly to the next chapter where it will be treated by another

method, but here we derive the fundamental result as an example of the Fourier Transform.

The elegance of this method is seen in problems more complicated than the one-

dimensional example considered here. We shall see its extension to two dimensions in

Chapter 12 when we consider the diffraction patterns produced by rectangular and circular

apertures.

The amplitude of light passing through a single slit may be represented in space by the

rectangular pulse of Figure 10.9a where d is now the width of the slit. A plane wave of

monochromatic light, wavelength �, falling normally on a screen which contains the

narrow slit of width d � �, forms a secondary system of plane waves diffracted in all

directions with respect to the screen. When these diffracted waves are focused on to a

second screen the intensity distribution (square of the amplitude) may be determined in

terms of the aperture dimension d, the wavelength � and the angle of diffraction �.
In Figure 10.10 the light diffracted through an angle � is brought to focus at a point P on

the screen PP0. Finding the amplitude of the light at P is the simple problem of adding all

the small contributions in the diffracted wavefront taking account of all the phase

differences which arise with variation of path length from P to the points in the slit aperture

from which the contributions originate. The diffraction amplitude in k or wave number

space is the Fourier transform of the pulse, width d, in x space in Figure 10.9b. The

conjugate parameters 
 and t are exactly reciprocal but the product of x and k involves the term

2� which requires either a constant factor 1=2� in front of one of the transform integrals or

a common factor 1=
ffiffiffiffiffiffi
2�

p
in front of each. This factor is however absorbed into the constant

value of the maximum intensity and all other intensities are measured relative to it.

The constant pulse height now measures the amplitude h of the small wave sources

across the slit width d and the Fourier transform method is the addition by integration of

their contributions.

In Figure 10.10 we see that the path difference between the contribution at the centre of

the slit and that at a point x in the slit is given by x sin �, so that the phase difference is

� ¼ 2�

�
x sin � ¼ kx sin �
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The product kx sin � can, however be expressed in a form more suitable for extension to

two- and three-dimensional examples by writing it as k � x ¼ k lx, the scalar product of the

vector k, giving the wave propagation direction, and the vector x, l being the direction

cosine

l ¼ cos ð�=2 � �Þ
¼ sin �

of k with respect to the x-axis.

Adding all the small contributions across the slit to obtain the amplitude at P by the

Fourier transform method gives

FðkÞ ¼ 1

2�

ð
f ðxÞ e�i� dx

¼ 1

2�

ðþd=2

�d=2

h e�iklx dx

¼ h

�ikl

1

2�
ðe�ikld=2 � eþikld=2Þ

¼ �2ih

�ikl2�
sin

kld

2

¼ dh

2�

sin�

�

Source of
monochromatic
light

Condenser
lens

Slit of
width d Focusing

lens

d sinq

qd x
k

Plane of
diffraction
pattern

P

P0

Figure 10.10 A monochromatic plane wave normally incident on a narrow slit of width d is
diffracted an angle �, and the light in this direction is focused at a point P. The amplitude at P is the
superposition of all contributions with their appropriate phases with respect to the central point in
the slit. The contribution from a point x in the slit has phase � ¼ 2�x sin �=� with respect to the
central contribution. The phase difference from contributing points on opposite edges of the slit is
� ¼ 2�d sin �=� ¼ 2�
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where

� ¼ kld

2
¼ �

�
d sin �

The intensity I at P is given by the square of the amplitude; that is, by the product of FðkÞ
and its complex conjugate F �ðkÞ, so that

I ¼ d 2h2

4�2

sin2�

�2

where I0, the principal maximum intensity at � ¼ 0, (P0 in Figure 10.10) is now

I0 ¼ d 2h2

4�2

The Gaussian Curve

This curve often appears as the wave group description of a particle in wave mechanics.

The Fourier transform of a Guassian distribution is another Gaussian distribution.

In Figure 10.11a the Gaussian function of height h is symmetrically centred at

time t ¼ 0, and is given by f ðtÞ ¼ h e�t2=�2

, where the width parameter or standard

deviation � is that value of t at which the height of the curve has a value equal to e�1 of its

maximum.

Its transform is

Fð
Þ ¼
ð1
�1

h e�t =� 2

e�i2�
t d t

¼
ð1
�1

h e ð�t=� 2�i2�
tþ� 2
 2� 2Þ e�� 2
 2� 2

d t

¼ h e ð�� 2
 2� 2Þ
ð1
�1

e�ðt=�þi�
�Þ 2

d t

(a)

0 0t n

(b)

h

h

s

e

h s p
1
2

s p
1

Figure 10.11 (a) A Gaussian function Fourier transforms (b) into another Gaussian function
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The integral ð1
�1

e�x 2

dx ¼
ffiffiffi
�

p

and substituting, with x ¼ ðt=�þ i�
�Þ and d t ¼ � dx, gives

Fð
Þ ¼ h��1=2e��
2
2�2

another Gaussian distribution in frequency space (Figure 10.11b) with a new height h��1=2

and a new width parameter ð��Þ�1
.

As in the case of the slit and the diffraction pattern, we see again that a narrow pulse in

time (width �) leads to a wide frequency distribution [width ð��Þ�1
].

When the curve is normalized so that the area under it is unity, h takes the value ð��Þ1=2

because
1

ð��1=2Þ

ð1
�1

e�t 2=� 2

d t ¼ 1

Thus, the height of a normalized curve transforms into a pulse of unit height whereas a

pulse of unit height transforms to a pulse of width ð��Þ�1
.

If we consider a family of functions with progressively increasing h values and decreasing �
values, each satisfying the condition of unit area under their curves, we are led in the limit as the

height h ! 1 and the width �! 0 to an infinitely narrow pulse of finite area unity which

defines the Dirac delta ð�Þ function. The transform of such a function is the constant unity, and

Figures. 10.12a and b show the family of normalized Gaussian distributions and their transforms.

Figure 10.13 shows a number of common Fourier transform pairs.

1

2

3

4

234

(a)

(b)

δ function

δ function (1)

t

n

Figure 10.12 (a) A family of normalized Gaussian functions narrowed in the limit to Dirac’s delta
function; (b) the family of their Fourier transforms
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In wave mechanics the position x of a particle and its momentum px are conjugate

parameters and its Gaussian wave group representation may be Fourier transformed from x

to px space and vice versa. The Fourier Transform gives the amplitude of the wave function

but the probability of finding the particle at x or its having a given momentum px is

proportional to the square of the amplitude.
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Figure 10.13 Some common Fourier transform pairs
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The Dirac Delta Function, its Sifting Property and its Fourier
Transform

The Dirac � function is defined by

�ðxÞ ¼ 0 at x 6¼ 0

¼ 1 at x ¼ 0

and ð1
�1

�ðxÞdx ¼ 1

i.e., an infinitely narrow pulse centred on x ¼ 0. It is also known as the unit impulse

function.

A valuable characteristic is its sifting property, that isð1
�1

�ðx � x0Þf ðxÞdx ¼ f ðx0Þ

The Fourier Transform of �ðx � x0Þ ¼ e�ikx0 because by definition

Fð�ðx � x0ÞÞ ¼
ð1
�1

�ðx � x0Þe�ikxdx

so writing f ðxÞ ¼ e�ikx and applying the sifting property gives f ðx0Þ ¼ e�ikx0 . Note that

e�ikx0 ¼ eikx0 ¼ 1 for x0 ¼ 0.

From the form of the transform we see that if a function f ðxÞ is a sum of individual

functions then the Fourier Transform Fð f ðxÞÞ is the sum of their individual transforms.

Thus, if

f ðxÞ ¼
X

j

�ðx � xjÞ

then

Ff ðxÞ ¼
X

j

e�ikxj

Figure 10.14 shows two Dirac � functions situated at x ¼ � a
2

so that f ðxÞ ¼
�ðx � a

2
Þ þ �ðx þ a

2
Þ giving Fð f ðxÞÞ ¼ e

ika
2 þ e

�ika
2 ¼ 2 cos ka=2.

Convolution

Given two functions f ðxÞ and hðxÞ, their convolution, written

f ðxÞ � hðxÞ ¼
ð1
�1

f ðxÞhðxÞdx
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is the overlap area under the product of the two functions as one function scans across the

other. It the functions are two dimensional, f ðx; yÞ and hðx; yÞ, their convolution is the

volume overlap under their product.

To illustrate a one-dimensional convolution consider the rectangular pulse of length D in

Figure 10.15 convolved with an identical pulse. This is known as self-convolution. The

convolution will be the sum of the shaded areas such as that of Figure 10.15a as one pulse

slides over the other. We can see that the base length of the resulting convolved pulse will

be 2D and that it will be symmetric about its peak, that is, when the two pulses completely

overlap. If we consider the left-hand pulse as an infinite series of � functions, of which we

show a few, then Figure 10.15b shows that the integrated sum is an isosceles triangle of

base length 2D.

Another example is the convolution of a small triangular pulse with a rectangular pulse

length D, Figure 10.16. Again, we use the series of d functions to show the sum of the

components of the resulting convolution and its integrated form for an infinite series of d
functions. The length of the final pulse is again the sum of the lengths of the two pulses.

Such a pulse would result in the convolution of a rectangular pulse with an exponential

time function, for example, when a rectangular pulse is passed into an integrating network

formed by a series resistance and parallel condenser, Figure 10.17. Here, the exponential

time function of the network may be considered as fixed in time while the pulse performs

the scanning operation. Note in Figures 10.15, 10.16 and 10.17 that the component

contributions of the left hand pulses are summed in reverse order. This is explained in the

discussion following eq. 10.2.

A convolution f ðxÞ � hðxÞ is generally written in the form

gðx0Þ ¼
ð1
�1

f ðxÞhðx0 � xÞdx ð10:2Þ

This a particularly relevant form when we consider the Optical Transfer Function on page

391. There, x is an object space coordinate and x0 is an image space coordinate so the

convolution relates image to object. If the function hðx0 � xÞ is a localized pulse in

the object space and x0 lies within it on the object axis x then the pulse hðx0 � xÞ is reversed

− a 0
2

+ a
2

x

Figure 10.14 The Fourier transform of two Dirac � functions located at x ¼ �a=2 is 2 cos ka=2
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in image space (axis x0) so that its trailing edge becomes its leading edge. Figure 10.18(a)

shows the pulse on the object axis and Figure 10.18(b) shows the reversed pulse on the

image axis.

The product f ðxÞ hðx0 � xÞ exists only where the functions overlap and in Fig-

ure 10.18(b) gðx01Þ is the superposition of all the individual overlapping contributions that

D

D

D

D

D

D D D

(a)

2D

2D

Convolution

Components

(b)

Figure 10.15 (a) A convolution is the integral of all overlapping areas as one function scans
another. A rectangular pulse length D scans an identical pulse and the overlap area is shaded at one
point of the scanning. (b) The scanning pulse is represented by several Dirac d (impulse) functions
and the component overlap areas are summed. When the number of impulse functions is large the
sum of the components is integrated to become the triangular pulse
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exist at x01. The contribution to gðx01Þ at x01 by x1 and dx at x1 is f ðx1Þhðx01 � x1Þdx where

f ðx1Þ is a number which magnifies the pulse of Figure 10.18(b) to become the pulse of

Figure 10.18(c). Each value of x in the overlap region makes a contribution to gðx01Þ; x

values beyond the overlap make no contribution. The contributions begin when the leading

edge of hðx0 � xÞ reaches x01 and they cease when its trailing edge passes x01.

Note that by changing the variable x00 ¼ x0 � x in Equation (10.2).

f � h ¼ h � f

This result is also evident when we consider the Convolution Theorem in the next section.

Convolution

Components

Figure 10.16 The convolution of a triangular with a rectangular pulse using the method of Figure
10.15

t = 0 t = 0t = t1 t = t1

Figure 10.17 The convolution of Figure 10.16 is the same as that of a rectangular electrical pulse
passing through an integrating circuit formed by a series resistance and a parallel condenser
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x1
x′

f(x1) h (x′–x1)

x1′

(c)

x1

h(x′–x1)

x′
x1′

(b)

x′
x

f(x)

h(x′–x)

(a)

Figure 10.18 The function hðx0 � xÞ in the object space is reversed in the image space in Figure
10.18(b). (b) The convolution gðx01Þ is the superposition of all individual overlapping contributions to
f ðxÞhðx0 � xÞ that exist at x01. (c) The contribution made by f ðx1Þd x to gðx01Þ where f ðx1Þ is a number
which magnifies hðx01 � xÞ
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Returning to the convolution of the rectangular pulses in Figure 10.15 and taking the

left-hand pulse as f ðxÞ each impulse xi of the infinite series sweeps across the right-hand

pulse hðx0 � xÞ to give the triangular convolution gðx0Þ. If the left-hand pulse is now

hðx0 � xÞ sweeping across the right-hand pulse f ðxÞ with x0i as a fixed location in hðx0 � xÞ,
the series of overlaps, as x0i moves across f ðxÞ, gives the same triangular convolution.

The Convolution Theorem

The importance of the convolution process may be seen by considering the following.

When a signal, electrical or optical, passes through a system such as an amplifier or a

lens, the resulting output is a function of the original signal and the system response. We

have seen that a slit, in passing light from an optical source, may act as an angular filter,

restricting the amount of information it passes and superimposing its own transform on the

radiation passing through. An electrical filter can behave in a similar fashion.

Effectively there are two transformations, one into the intermediate system and one out

again.

A convolution reduces this to a single transformation. The transform of the intermediate

system is applied to the orginal function or signal and the resulting output is the integrated

product of each point operating on the transformed response.

The convolution theorem states that the Fourier transform of the convolution of two

functions is the product of the Fourier transforms of the individual functions, that is, if

gðx0Þ ¼ f ðxÞ � hðxÞ
then

FðgÞ ¼ Fðf � hÞ ¼ Fð f Þ � FðhÞ

The proof is straightforward.

The convolution gðx0Þ is a function of k, so its transform is

FðgÞ ¼ GðkÞ ¼
ð1
�1

gðx0Þe�ihx0dx0

¼
ð1
�1

� ð1
�1

f ðxÞhðx0 � xÞdx

�
e�ikx0dx0

¼
ð1
�1

� ð1
�1

hðx0 � xÞe�ikx0dx0
�

f ðxÞdx

Putting x0 � x ¼ y gives dy ¼ dx0 and e�ikx0 ¼ e�ikye�ikx and so

FðgÞ ¼ GðkÞ ¼
ð1
�1

f ðxÞe�ikxdx

ð1
�1

hðyÞe�ikydy

¼ Fð f Þ � FðhÞ ¼ FðhÞ � Fð f Þ

We can use this result to find the Fourier Transform of the resulting triangular pulse in

Figure 10.15(b). The slit may be seen as a rectangular pulse of width d and its Fourier
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Transform on page 288 gave its diffraction pattern as / sin�=� where � ¼ kld=2. Each of

the pulses in Figure 10.15(b) contributes a Fourier Transform / sin�=� where

� ¼ klD

2

so the Fourier Transform of the isosceles triangular pulse is / sin2�=�2.

Note that the analysis above is equally true if the arguments of the two functions are

exchanged under the convolution process so that we have f ðx0 � xÞ and hðxÞ. We use this in

the discussion on the Optical Transfer Function on page 393.

(Problems 10.10, 10.11, 10.12, 10.13, 10.14, 10.15, 10.16, 10.17, 10.18, 10.19)

Problem 10.1
After inspection of the two wave forms in the diagram what can you say about the values of the

constant, absence or presence of sine terms, cosine terms, odd or even harmonics, and range of

harmonics required in their Fourier series representation? (Do not use any mathematics.)

T

T

t

2 T

2 T

– T–2 T

t

t

t

Problem 10.2
Show that if a periodic waveform is such that each half-cycle is identical except in sign with the

previous one, its Fourier spectrum contains no even order frequency components. Examine the result

physically.

Problem 10.3
A half-wave rectifier removes the negative half-cycles of a pure sinusoidal wave y ¼ h sin x. Show

that the Fourier series is given by

y ¼ h

�
1 þ �

1 � 2
sin x � 2

1 � 3
cos 2x � 2

3 � 5
cos 4x � 2

5 � 7
cos 6x . . .

� �
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Problem 10.4
A full-wave rectifier merely inverts the negative half-cycle in Problem 10.3. Show that this doubles

the output and removes the undesirable modulating ripple of the first harmonic.

Problem 10.5
Show that f ðxÞ ¼ x2 may be represented in the interval �� by

f ðxÞ ¼ 2

3
� 2 þ

X
ð�1Þ n 4

n 2
cos nx

Problem 10.6
Use the square wave sine series of unit height f ðxÞ ¼ 4=�ðsin x þ 1

3
sin 3x þ 1

5
sin 5xÞ to show that

1 � 1
3
þ 1

5
� 1

7
¼ �=4

Problem 10.7
An infinite train of pulses of unit height, with pulse duration 2� and a period between pulses of T, is

expressed as

f ðtÞ ¼ 0 for � 1
2

T < t < ��
¼ 1 for � � < t < �

¼ 0 for � < t < 1
2

T

and

f ðt þ TÞ ¼ f ðtÞ

Show that this is an even function with the cosine coefficients given by

an ¼ 2

n�
sin

2�

T
n�

Problem 10.8
Show, in Problem 10.7, that as � becomes very small the values of an ! 4�=T and are independent

of n, so that the spectrum consists of an infinite set of lines of constant height and spacing. The

representation now has the same form in both time and frequency; such a function is called ‘self

reciprocal’. What is the physical significance of the fact that as � ! 0, an ! 0?

Problem 10.9
The pulses of Problems 10.7 and 10.8 now have amplitude 1=2� with unit area under each pulse.

Show that as � ! 0 the infinite series of pulses is given by

f ðtÞ ¼ 1

T
þ 2

T

X1
n¼1

cos 2�nt=T

Under these conditions the amplitude of the original pulses becomes infinite, the energy per pulse
remains finite and for an infinity of pulses in the train the total energy in the waveform is also
infinite. The amplitude of the individual components in the frequency representation is finite,
representing finite energy, but again, an infinity of components gives an infinite energy.
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Problem 10.10
The unit step function is defined by the relation

f ðtÞ ¼ 1 ðt > 0Þ
¼ 0 ðt < 0Þ

t0

1

f (t )

This is a very important function in physics and engineering, but it does not satisfy the criteria for

Fourier representation because its integral is not finite. A similar function of finite period will satisfy

the criteria. If this function is defined

f ðtÞ ¼ 1ð0 < t < TÞ
¼ 0 elsewhere

show that if the transform

Fð!Þ ¼
ð1

�1
f ðtÞ e�i!t d t ¼

ð T

0

e�i!t d t

¼ 1

i!
½1 � e i!T �

then

f ðtÞ ¼ 1

2�

ð1

�1
Fð!Þ e i!t d!

¼ 1

2
þ 1

2�

ð1

�1

1

i!
e i!t d!

(use the fact that for T very large

ð1

�1

1

i!
e i!ðt�TÞ d! ¼

ð1

�1

1

i!
e�i!T d! ¼ ��

Note that the integral for the second term of f ðtÞ gives �� for t < 0 and þ� for t > 0. This spectral

representation is shown in Figure 10.13.)

Problem 10.11
Optical wave trains emitted by radiating atoms are of finite length and only an infinite wave train

may be defined in terms of one frequency. The radiation from atoms therefore has a frequency

bandwidth which contributes to the spectral linewidth. The random phase relationships between

these wave trains create incoherence and produce the difficulties in obtaining interference effects

from separate sources.

300 Fourier Methods



Let a finite length monochromatic wave train of wavelength �0 be represented by

f ðtÞ ¼ f0 e i2�
 0 t

and be a cosine of constant amplitude f0 extending in time between � �=2. The distance l ¼ c� is

called the coherence length. This finite train is the superposition of frequency components of

amplitude Fð
Þ where the transform gives

f ðtÞ ¼
ð1

�1
Fð
Þ e i2�
t d


so that

Fð
Þ ¼
ð1

�1
f ðt 0Þ e�i2�
t 0 d t 0

¼
ðþ�=2

��=2

f0 e�i2�ð
�
 0Þt 0 d t 0

Show that

Fð
Þ ¼ f0�
sin½�ð
 � 
 0Þ� �
�ð
 � 
0Þ�

and that the relative energy distribution in the spectrum follows the intensity distribution curve in a

single slit diffraction pattern.

Problem 10.12
Show that the total width of the first maximum of the energy spectrum of Problem 10.11 has a

frequency range 2�
 which defines the coherence length l of Problem 10.11 as �2
0=��.

Problem 10.13
For a ruby beam the value of �
 in Problem 10.12 is found to be 10 4 Hz and �0 ¼ 6:936 � 10�7 m.

Show that �� ¼ 1:6 � 10�17 m and that the coherence length l of the beam is 3 � 10 4 m.

Problem 10.14
The energy of the finite wave train of the damped simple harmonic vibrations of the radiating atom

in Chapter 2 was described by E ¼ E0 e�! 0t=Q. Show from physical arguments that this defines a

frequency bandwidth in this train of �! about the frequency !0, where the quality factor

Q ¼ ! 0=�!. (Suggested line of argument—at the maximum amplitude all frequency components

are in phase. After a time � the frequency component !0 has changed phase by !0�. Other

components have a phase change which interfere destructively. What bandwidth and phase change is

acceptable?)

Problem 10.15
Consider Problem 10.14 more formally. Let the damped wave be represented as a function of time by

f ðtÞ ¼ f 0 e i2�
 0t e�t=�

where f 0 is constant and � is the decay constant.
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Use the Fourier transform to show that the amplitudes in the frequency spectrum are given by

Fð
Þ ¼ f 0

1=� þ i2�ð
 � 
0Þ

Write the denominator of Fð
Þ as r e i� to show that the energy distribution of frequencies in the
region of 
 � 
0 is given by

jFð
Þj 2 ¼ f 2
0

r 2
¼ f 2

0

ð1=�Þ 2 þ ð!� !0Þ 2

Problem 10.16
Show that the expression jFð
Þj 2

of Problem 10.15 is the resonance power curve of Chapter 3; show

that it has a width at half the maximum value ð f0�Þ 2
which gives �
 ¼ 1=�� , and show that a

spectral line which has a value of �� in Problem 10.12 equal to 3 � 10�9 m has a finite wave train of

coherence length equal to 32 � 10�6 m (32 mm) if �0 ¼ 5:46 � 10�7 m.

Problem 10.17
Sketch the self-convolution of the double slit function shown in Figure Q 10.17.

d

Figure Q.10.17

Problem 10.18
Sketch the convolution of the two functions in Figure Q 10.18 and use the convolution theorem to

find its Fourier transform.

d d

×

Figure Q.10.18
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Problem 10.19
The convolution of two identical circles of radius r is very important in the modern method of testing

lenses against an ideal diffraction limited criterion.

In Figure Q 10.19 show that the area of overlap is

R

r

r

θ
A

Figure Q.10.19

A ¼ r2ð2�� 2sin � cos �Þ
and show for

R 
 2r

that the convolution

OðRÞ ¼ r2 2 cos �1 R

2r
� 2 1 � R2

4r2

� �1
2 R

2r

" #

Sketch OðRÞ for O 
 R 
 2r

Apart from a constant the linear operator ÔO is known as the modulation factor of the

optical transfer function.

Summary of Important Results
Fourier Series
Any function may be represented in the interval �� by

f ðxÞ ¼ 1

2
a0 þ

Xn

1

an cos nx þ
Xn

1

bn sin nx
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where

an ¼ 1

�

ð 2�

0

f ðxÞ cos nx dx

and

bn ¼ 1

�

ð 2�

0

f ðxÞ sin nx dx

Fourier Integral
A single non-periodic pulse may be represented as

f ðtÞ ¼
ðþ1

�1

ðþ1

�1
f ðt 0Þ e�i2�
t 0 d t 0

� �
ei2�
t d


or as

f ðtÞ ¼
ðþ1

�1
Fð
Þ e i2�
t d


where

Fð
Þ ¼
ðþ1

�1
f ðt 0Þ e�i2�
t d t 0

f ðtÞ and Fð
Þ are Fourier Transforms of each other. When t is replaced by x and 
 by k the

right hand side of each transform has a factor 1=
ffiffiffiffiffiffi
2�

p
. The Fourier Transform of a

rectangular pulse has the shape of sin�=�. (Important in optical diffraction.)
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11

Waves in Optical Systems

Light. Waves or Rays?

Light exhibits a dual nature. In practice, its passage through optical instruments such as

telescopes and microscopes is most easily shown by geometrical ray diagrams but the fine

detail of the images formed by these instruments is governed by diffraction which, together

with interference, requires light to propagate as waves. This chapter will correlate the

geometrical optics of these instruments with wavefront propagation. In Chapter 12 we shall

consider the effects of interference and diffraction.

The electromagnetic wave nature of light was convincingly settled by Clerk–Maxwell in

1864 but as early as 1690 Huygens was trying to reconcile waves and rays. He proposed

that light be represented as a wavefront, each point on this front acting as a source

of secondary wavelets whose envelope became the new position of the wavefront,

Figure 11.1(a). Light propagation was seen as the progressive development of such a

process. In this way, reflection and refraction at a plane boundary separating two optical

media could be explained as shown in Figure 11.1(b) and (c).

Huygens’ theory was explicit only on those contributions to the new wavefront directly

ahead of each point source of secondary waves. No statement was made about propagation

in the backward direction nor about contributions in the oblique forward direction. Each of

these difficulties is resolved in the more rigorous development of the theory by Kirchhoff

which uses the fact that light waves are oscillatory (see Appendix 2, p. 547).

The way in which rays may represent the propagation of wavefronts is shown in

Figure 11.2 where spherically diverging, plane and spherically converging wavefronts are

moving from left to right. All parts of the wavefront (a surface of constant phase) take the

same time to travel from the source and all points on the wavefront are the same optical

distance from the source. This optical distance must take account of the changes of

refractive index met by the wavefront as it propagates. If the physical path length is

measured as x in a medium of refractive index n then the optical path length in the medium

is the product nx. In travelling from one point to another light chooses a unique optical path

which may always be defined in terms of Fermat’s Principle.
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Fermat’s Principle

Fermat’s Principle states that the optical path length has a stationary value; its first order

variation or first derivative in a Taylor series expansion is zero. This means that when an

optical path lies wholly within a medium of constant refractive index the path is a straight

line, the shortest distance between its end points, and the light travels between these points

in the minimum possible time. When the medium has a varying refractive index or the path

crosses the boundary between media of different refractive indices the direction of the path

always adjusts itself so that the time taken between its end points is a minimum. Fermat’s

Principle is therefore sometimes known as the Principle of Least Time. Figure 11.3 shows

examples of light paths in a medium of varying refractive index. As examples of light

meeting a boundary between two media we use Fermat’s Principle to derive the laws of

reflection and refraction.

The Laws of Reflection

In Figure 11.4a Fermat’s Principle requires that the optical path length OSI should be a

minimum where O is the object, S lies on the plane reflecting surface and I is the point on

the reflected ray at which the image of O is viewed. The plane OSI must be perpendicular

to the reflecting surface for, if reflection takes place at any other point S 0 on the reflecting

surface where OSS 0 and ISS 0 are right angles then evidently OS 0 > OS and IS 0 > IS, giving

OS 0I > OSI.

The laws of reflection also require, in Figure 11.4a that the angle of incidence i equals

the angle of reflection r. If the coordinates of O, S and I are those shown and the velocity of

light propagation is c then the time taken to traverse OS is

t ¼ ðx2 þ y2Þ1=2=c

Ray

Converging
wavefront

Diverging
wavefront

Plane wavefront

Figure 11.2 Ray representation of spherically diverging, plane and spherically converging
wavefronts
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Ray from sun

Straight path
to sun

EARTH

Rare atmosphere

Apparent
reflecting
surface

Hot Air

Eye

(a)

(b)

Cool Air

Figure 11.3 Light takes the shortest optical path in a medium of varying refractive index. (a) A
light ray from the sun bends towards the earth in order to shorten its path in the denser atmosphere.
The sun remains visible after it has passed below the horizon. (b) A light ray avoids the denser
atmosphere and the road immediately below warm air produces an apparent reflection

xx

ii

r  ′
n  ′

S′

yy

n < n  ′

S(x, 0)S(x, 0)

0(0, y )0(0, y )

I(X, Y )

I(X, y )

r  

(b)(a)

Figure 11.4 The time for light to follow the path OSI is a minimum (a) in reflection, when OSI
forms a plane perpendicular to the reflecting surface and îi ¼ r̂r ; and (b) in refraction, when
n sin i ¼ n 0 sin r 0 (Snell’s Law)
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and the time taken to traverse SI is

t 0 ¼ ½ðX � xÞ2 þ y2�1=2=c

so that the total time taken to travel the path OSI is

T ¼ t þ t 0

The position of S is now varied along the x axis and we seek, via Fermat’s Principle of

Least Time, that value of x which minimizes T, so that

dT

dx
¼ x

cðx2 þ y2Þ1=2
� X � x

c½ðX � xÞ2 þ y2�1=2
¼ 0

But
x

ðx2 þ y2Þ1=2
¼ sin i

and

X � x

½ðX � xÞ2 þ y2�1=2
¼ sin r

Hence

sin i ¼ sin r

and

îi ¼ r̂r

The Law of Refraction

Exactly similar arguments lead to Snell’s Law, already derived on p. 256.

Here we express it as

n sin i ¼ n 0 sin r 0

where i is the angle of incidence in the medium of refractive index n and r 0 is the angle of

refraction in the medium of refractive index n 0ðn 0 > nÞ. In Figure 11.4b a plane boundary

separates the media and light from O (0, y) is refracted at S (x, 0) and viewed at I (X, Y) on

the refracted ray. If v and v 0 are respectively the velocities of light propagation in the media

n and n 0 then OS is traversed in the time

t ¼ ðx2 þ y2Þ1=2=v

and SI is traversed in the time

t 0 ¼ ½ðX � xÞ2 þ Y 2�1=2=v 0
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The total time to travel from O to I is T ¼ t þ t 0 and we vary the position of S along the x

axis which lies on the plane boundary between n and n 0, seeking that value of x which

minimizes T. So

dT

dx
¼ 1

v

x

ðx2 þ y2Þ1=2
� 1

v 0
ðX � xÞ

½ðX � xÞ2 þ Y 2�1=2
¼ 0

where

x

ðx2 þ y2Þ1=2
¼ sin i

and

ðX � xÞ
½ðX � xÞ2 þ Y 2�1=2

¼ sin r 0

But

1

v
¼ n

c

and

1

v 0 ¼
n 0

c

Hence

n sin i ¼ n 0 sin r 0

Rays and Wavefronts

Figure 11.2 showed the ray representation of various wavefronts. In order to reinforce the

concept that rays trace the history of wavefronts we consider the examples of a thin lens

and a prism.

The Thin Lens

In Figure 11.5 a plane wave in air is incident normally on the plane face of a plano convex

glass lens of refractive index n and thickness d at its central axis. Its spherical face has a

radius of curvature R 	 d. The power of a lens to change the curvature of a wavefront is

the inverse of its focal length f. A lens of positive power converges a wavefront, negative

power diverges the wavefront.

Simple rays optics gives the power of the plano convex lens as

P ¼ 1

f
¼ ðn � 1Þ 1

R

but we derive this result from first principles that is, by considering the way in which the

lens modifies the wavefront.
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At the central axis the wavefront takes a time t ¼ nd=c to traverse the thickness d. At a

distance r from the axis the lens is thinner by an amount r 2=2R (using the elementary

relation between the sagitta, arc and radius of a circle) so that, in the time t ¼ nd=c, points

on the wavefront at a distance r from the axis travel a distance

ðd � r 2=2RÞ

in the lens plus a distance ðr 2=2R þ zÞ in air as shown in the figure. Equating the times

taken by the two parts of the wave front we have

nd=c ¼ ðn=cÞðd � r 2=2RÞ þ ð1=cÞðz þ r 2=2RÞ
which yields

z ¼ ðn � 1Þr 2=2R

But this is again the relation between the sagitta z, its arc and a circle of radius R=ðn � 1Þ
so, in three dimensions, the locus of z is a sphere of radius R=ðn � 1Þ and the emerging

spherical wavefront converges to a focus at a distance

f ¼ R=ðn � 1Þ

(Problems 11.1, 11.2, 11.3)

The Prism

In Figure 11.6 a section, height y, of a plane wavefront in air is deviated through an angle �
when it is refracted through an isosceles glass prism, base l, vertex angle � and refractive

Plane
wavefront

r

r 2

z

d R /(n−1)

n

2R

Converging wavefront

Figure 11.5 A plane wavefront is normally incident on a plano-convex lens of refractive index n
and thickness d at the central axis. The radius of the curved surface R 	 d. The wavefront is a surface
of constant phase and the optical path length is the same for each section of the wavefront. At a
radius r from the central axis the wavefront travels a shorter distance in the denser medium and the
lens curves the incident wavefront which converges at a distance R=ðn � 1Þ from the lens
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index n. Experiment shows that there is one, and only one, value of the incident angle i for

which the angle of deviation is a minimum ¼ �min. It is easily shown using ray optics that

this unique value of i requires the passage of the wavefront through the prism to be

symmetric about the central vertical axis as shown in the figure so that the incident angle i

equals the emerging angle i 0. Equating the lengths of the optical paths AVA 0 and BB 0ð¼ nlÞ
followed by the edges of the wavefront section gives the familiar result

sin
�min þ �

2

� �
¼ n sin

�

2

which is used in the standard experiment to determine n, the refractive index of the prism.

Now there is only one value of i which produces minimum deviation and this leads us to

expect that the passage of the wavefront will be symmetric about the central vertical axis

for if a plane mirror (M in the figure) is placed parallel to the emerging wavefront the

wavefront is reflected back along its original path, and if i 6¼ i 0 there would be two values

of incidence, each producing minimum deviation. At i for minimum deviation any rotation

increases i 0.

β

α α′

θ

A A′

V

i

y y ′

l

i ′

B B′

Central
vertical
axis

M

Central
vertical
axis

Mirror

Figure 11.6 A plane wavefront suffers minimum deviation ð�minÞ when its passage through a prism
is symmetric with respect to the central vertical axis ði ¼ i 0Þ. The wavefront obeys the Optical
Helmholtz Condition that ny tan� is a constant where n is the refractive index, y is the width of the
wavefront and � is shown. (Here � ¼ � 0Þ
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However, the real argument for symmetry from a wavefront point of view depends on the

optical Helmholtz equation which we shall derive on p. 321. This states that for a plane

wavefront the product ny tan� remains constant as it passes through an optical system

irrespective of the local variations of the factors n, y and tan�. Now the wavefront has the

same width on entry into and exit from the prism so y ¼ y 0 and although n changes at the

prism faces the initial and final medium for the wavefront is air where n ¼ 1.

Hence, from the optical Helmholtz equation tan� ¼ tan� 0 in Figure 11.6. It is evident

that as long as its width y ¼ y 0 the wavefront section will turn through a minimum angle

when the physical path length BB 0 followed by its lower edge is a maximum with respect

to AVA 0, the physical path length of its upper edge.

Ray Optics and Optical Systems

An optical system changes the curvature of a wavefront. It is formed by one or more optical

surfaces separating media of different refractive indices. In Fig. 11.7 rays from the object

point L0 pass through the optical system to form an image point L 0. When the optical

surfaces are spherical the line joining L0 and L 0, which passes through the centres of

curvature of the surfaces, is called the optical axis. This axis cuts each optical surface at its

pole. If the object lies in a plane normal to the optical axis its perfect image lies in a

conjugate plane normal to the optical axis. Conjugate planes cut the optical axis at

conjugate points, e.g. L0 and L 0. In Figure 11.7 the plane at þ1 has a conjugate focal

plane cutting the optical axis at the focal point F. The plane at �1 has a conjugate focal

plane cutting the optical axis at the focal point F 0.

Paraxial Rays

Perfect geometrical images require perfect plane and spherical optical surfaces and in a real

optical system a perfect spherical optical surface is obtained by using only that part of the

wavefront close to the optical axis. This means that all angles between the axis and rays are

very small. Such rays are called paraxial rays.

Positive
curvature

Negative
curvature

Optic axisPole

Direction of
incident light

L 0 F F ′ L ′

+ ∞− ∞

Figure 11.7 Optical system showing direction of incident light from left to right and optical
surfaces of positive and negative curvature. Rays from L 0 pass through L 0 and this defines L 0 and L 0

as conjugate points. The conjugate point of F is at þ1, the conjugate point of F 0 is at �1
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Sign Convention

The convention used here involves only signs of lengths and angles. The direction of

incident light is positive and is always taken from left to right. Signs for horizontal and

vertical directions are Cartesian. If AB ¼ l then BA ¼ �l. The radius of curvature of a

surface is measured from its pole to its centre so that, in Figure 11.7, the convex surface

presented to the incident light has a positive radius of curvature and the concave surface

has a negative radius of curvature.

The Cartesian convention with origin O at the right angles of Figure 11.8 gives the angle

between a ray and the optical axis the sign of its tangent.

If the angle between a ray and the axis is � then, for paraxial rays

sin� ¼ tan� ¼ �

and

cos� ¼ 1

so that Snell’s Law of Refraction

n sin i ¼ n 0 sin r 0

becomes

ni ¼ n 0r 0

Power of a Spherical Surface

In Figure 11.9(a) and (b) a spherical surface separates media of refractive indices n and n 0.
Any ray through L0 is refracted to pass through its conjugate point L 0. The angles are

exaggerated so that the base of h is very close to the pole of the optical surface which is

taken as the origin. In Figure 11.9(a) the signs of R, l 0 and � 0 are positive with l and �
negative. In Figure 11.9(b) R, l, l 0 , � and � 0 are all positive quantities. In both figures

Snell’s Law gives

ni ¼ n 0r 0

0
++

+

+

−
−

−

−Direction of
incident light

Figure 11.8 Sign convention for lengths is Cartesian measured from the right angles at O. Angles
take the sign of their tangents. O is origin of measurements
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i.e.

nð�� �Þ ¼ n 0ð�� � 0Þ
or

n 0� 0 � n� ¼ ðn 0 � nÞ� ¼ n 0 � n

R

� �
h ¼ Ph ð11:1Þ

Thus

n 0

l 0
� n

l
¼ n 0 � n

R
¼ P ð11:2Þ

where P is the power of the surface. For n 0 > n the power P is positive and the surface

converges the wavefront. For n 0 < n, P is negative and the wavefront diverges. When the

radius of curvature R is measured in metres the units of P are dioptres.

l

l

i

i

i

n

n

α

α

α′

α′

θ

θ

h

h

R

R

L 0

L 0

L′ C

C

R, l, l ′, α, α′ are positive

R, l ′, α′, are positive
l, α are negative

l ′

l ′

L ′

i ′

i ′

n ′

n ′

(a)

(b)

Figure 11.9 Spherical surface separating media of refractive indices n and n 0. Rays from L 0 pass
through L 0. Snell’s Law gives the power of the surface as

P ¼ n 0

l 0
� n

l
¼ n 0 � n

R
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Magnification by the Spherical Surface

In Figure 11.10 the points QQ 0 form a conjugate pair, as do L0L 0. The ray QQ 0 passes

through C the centre of curvature, L0Q is the object height y, L 0Q 0 is the image height y 0 so

ni ¼ n 0r 0

gives

ny=l ¼ n 0y 0=l 0

or

nyh=l ¼ n 0y 0h=l 0

that is

ny� ¼ n 0y 0� 0 ð11:3Þ
This is the paraxial form of the optical Helmholtz equation.

The Transverse Magnification is defined as

MT ¼ y 0=y ¼ nl 0=n 0l:

The image y 0 is inverted so y and y 0 (and l and l 0) have opposite signs.

The Angular Magnification is defined as

M� ¼ � 0=�

Note that

MT ¼ n=n 0M�

which, being independent of y, applies to any point on the object so that the object in the

plane L0Q is similar to the image in the plane L 0Q 0.

α′α

n n ′
y ′

L′

Q′

Q

lL 0
i ′

l ′

y

i
h

C

Figure 11.10 Magnification by a spherical surface. The paraxial form of the optical Helmholtz
equation is ny� ¼ n 0y 0� 0 so Transverse Magnification MT ¼ y 0=y ¼ nl 0=ln 0 Angular Magnification
M� ¼ � 0=�. Note that the image is inverted so y and y 0 (and l and l 0) have opposite signs
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A series of optical surfaces separating media of refractive indices n, n 0n 00 yields the

expression

ny� ¼ n 0y 0� 0 ¼ n 00y 00� 00

which is the paraxial form of the optical Helmholtz equation.

Power of Two Optically Refracting Surfaces

If Figure 11.11 the refracting surfaces have powers P1 and P2, respectively. At the first

surface equation (11.1) gives

n1�1 � n� ¼ P1h1

and at the second surface

n 0� 0 � n1�1 ¼ P2h2

Adding these equations gives

n 0� 0 � n� ¼ P1h1 þP2h2

If the object is located at �1 so that � ¼ 0 we have

n 0� 0 ¼ P1h1 þP2h2

or

� 0 ¼ 1

n 0 ðP1h1 þP2h2Þ

Object
space

Image
spaceFirst refractive

surface
Second refractive
surface

− ∞
α = 0 α1

α1α′

n ′n1n

h1

h2

2

1

Figure 11.11 Two optically refracting surfaces of power P 1 and P 2 have a combined power of

P ¼ 1

h 1

ðP 1h1 þP 2h2Þ
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This gives the same image as a single element of power P if

� 0 ¼ 1

n 0 ðP1h1 þP2h2Þ ¼
1

n 0Ph1

where

P ¼ 1

h1

ðP1h1 þP2h2Þ ð11:4Þ

is the total power of the system. This is our basic equation and we use it first to find the

power of a thin lens in air.

Power of a Thin Lens in Air (Figure 11.12)

Equation (11.2) gives

n 0

l 0
� n

l
¼ n 0 � n

R
¼ P

for each surface, so that in Figure 11.12

P1 ¼ ðn1 � 1Þ=R1

and

P2 ¼ ð1 � n1Þ=R2

From equation (11.4)

P ¼ 1

h1

ðP1h1 þP2h2Þ

with

h1 ¼ h2

h

α = 0

n = 1

h1 = h2

n ′ = 1
f  ′

n1

R1 R2

α′
F ′

Figure 11.12 A thin lens of refractive index n1, and radii of surface curvatures R 1 and R2 has a
power

P ¼ ðn 1 � 1Þ 1

R1

� 1

R2

� �
¼ 1

f 0

where f 0 is the focal length. In the figure R1 is positive and R2 is negative
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we have

P ¼ P1 þP2

so the expression for the thin lens in air with surfaces of power P1 and P2 becomes

P ¼ 1

l 0
� 1

l
¼ ðn1 � 1Þ 1

R1

� 1

R2

� �
¼ 1

f 0

where f 0 is the focal length.

Applying this result to the plano convex lens of p. 311 we have R1 ¼ 1 and R2 negative

from our sign convention. This gives a positive power which we expect for a converging

lens.

Effect of Refractive Index on the Power of a Lens

Suppose, in Figure 11.13, that the object space of the lens remains in air ðn ¼ 1Þ but that

the image space is a medium of refractive index n 0
2 6¼ 1. How does this affect the focal

length in the medium n 0
2?

If P is the power of the lens in air we have

n 0
2�

0 � n� ¼ Ph1 ð11:5Þ
and for

� ¼ 0

we have

� 0 ¼ Ph1=n 0
2 ¼ h1=n 0

2 f 0

where f 0 is the focal length in air.

If f 0
2 is the focal length in the medium n 0

2 then

f 0
2�

0 ¼ h1

h1

n1

f2′

n2′

α′

α = 0

n = 1

≠ 1

Figure 11.13 The focal length of a thin lens measured in the medium n 0
2 is given by f 0

2 ¼ n 0
2 f 0

where f 0 is the focal length of the lens measured in air
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so

� 0 ¼ h1=f 0
2 ¼ h1=n 0

2 f 0

giving

f 0
2 ¼ n 0

2 f 0

Thus, the focal length changes by a factor equal to the refractive index of the medium in

which it is measured and the power is affected by the same factor.

If the lens has a medium n0 in its object space and a medium ni in its image space then

the respective focal lengths f0 and f i in these spaces are related by the expression

f i=f0 ¼ �ni=n0 ð11:6Þ

where the negative signs shows that f0 and f i are measured in opposite directions ð f0 is

negative and f i is positive).

Principal Planes and Newton’s Equation

There are two particular planes normal to the optic axis associated with every lens element

of an optical system. These planes are called principal planes or unit planes because

between these planes there is unit transverse magnification so the path of every ray between

them is parallel to the optic axis. Moreover, any complex optical system has two principal

planes of its own. In a thin lens the principal planes coincide.

The principal planes of a single lens do not, in general, coincide with its optical surfaces;

focal lengths, object and image distances are measured from the principal planes and not

from the optical surfaces. In Figure 11.14, PH and P 0H 0 define the first and second

L

F

L0

P

fx
l

P ′

Q Q ′

n
y

H H ′

F ′
L′

L ′
x ′

y ′

l ′

f ′

n ′

α′
α

α
α′

0

Second focal plane
conjugate to − ∞

First focal plane
conjugate to + ∞

Figure 11.14 Between the principal planes PH and P 0H 0 of a lens or lens system there is unit
magnification and rays between these planes are parallel to the optic axis. Newton’s equation defines
x x 0 ¼ f f 0. The optical Helmholtz equation is ny� ¼ constant for paraxial rays and ny tan� ¼
constant for rays from 1
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principal planes, respectively, of a lens or optical system and PF and P 0F 0 are respectively

the first and second focal lengths. The object and image planes cut the optic axis in L0 and

L 0
0, respectively.

The ray LH parallel to the optic axis proceeds to H 0 and thence through F 0 the second

focal point. The rays LH and H 0F 0 meet at H 0 and therefore define the position of the

second principal plane, P 0H 0. The position of the first principal plane may be found in a

similar way.

If Figure 11.14, the similar triangles FL0L and FPQ give y=y 0 ¼ x=f where, measured

from P, only y is algebraically positive. The similar triangles F 0L 0
0L 0 and F 0P 00H 0 give

y=y 0 ¼ f 0=x 0;

where, measured from P 0, only y 0 is algebraically negative.

We have, therefore,

x=f ¼ f 0=x 0;

where x and f are negative and x 0 and f 0 are positive.

Thus,

xx 0 ¼ f f 0

This is known as Newton’s equation.

If l, the object distance, and l 0, the image distance, are measured from the principal

planes as in Figure 11.14, then

l ¼ f þ x and l 0 ¼ f 0 þ x 0

and Newton’s equation gives

xx 0 ¼ ðl � f Þðl 0 � f 0Þ ¼ ll 0 � l 0f � l f 0 þ f f 0 ¼ f f 0

so that

f 0

l 0
þ f

l
¼ 1

But from n f 0 ¼ �n 0f (equation (11.6)) we have

n 0

l 0
� n

l
¼ n 0

f 0 ¼
�n

f
¼ P

the power of the lens.

Optical Helmholtz Equation for a Conjugate Plane at Infinity

Suppose now that the object is no longer located at L0L but at infinity so that the ray LH

originates at one point from the distant object while the ray LFQ comes from a point on the

object much more distant from the optic axis.
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We still have from triangle F 0P 0H 0 that

y ¼ f 0 tan� 0

and from triangle FPQ that

y 0 ¼ f tan�

so

f tan�

f 0 tan� 0 ¼
y

y 0 and
f

f 0 y tan� ¼ y 0 tan� 0

But

f

f 0 ¼
�n

n 0

so

ny tan� ¼ �n 0y 0 tan� 0

(Note that �; � 0 and y 0 are negative.)

This form of the Helmholtz equation applies when one of the conjugate planes is at

infinity and is to be compared with the general unrestricted form of the Helmholtz equation

for paraxial rays

ny� ¼ n 0y 0� 0

The infinite conjugate form ny tan� ¼ constant is valid when applied to the prism of p. 312

because the plane wavefront originated at infinity.

(Problems 11.4, 11.5, 11.6, 11.7, 11.8)

The Deviation Method for (a) Two Lenses and (b) a Thick Lens

Figure 11.11 illustrated how the deviation of a ray through two optically refracting surfaces

could be used to find the power of a thin lens. We now apply this process to (a) a

combination of two lenses and (b) a thick lens in order to find the power of these systems

and the location of their principal planes. We have already seen in equation (11.5), which

may be written

n 0
1�

0 � n1� ¼ P1y ð11:7Þ

where P1 is the power of the first lens in Figure 11.15a or the power of the first refracting

surface in Figure 11.15b. If the incident ray is parallel to the optic axis, then � ¼ 0 and we

have

n 0
1�

0 ¼ P1y1 ð11:8Þ
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At the second lens or refracting surface

n2�2 � n 0
1�

0
1

so

n 0
2�

0
2 � n 0

1�
0
1 ¼ P2y2 ð11:9Þ

Equation (11.8) plus equation (11.9) gives

n 0
2�

0
2 ¼ P1y1 þP2y2 ð11:10Þ

Now the incident ray strikes the principal plane P 0 at a height y1 so, extrapolating the ray

from F 0, the focal point of the system, through the plane P 0
2 to the plane P 0, we have

n 0
2�

0
2 ¼ Py1 ð11:11Þ

where P is the power of the complete system.

α1

y2

y1

y1 y2

P1

P1 P2

P1 P2

y1 − y2

y1 − y2

d

d

n1n1

n1 n1 = n2 n2

n2

′    α2

α1′

α1′

′

α2′

α2′

′ P2
′

P2
′

′ ′

P1
′

′

P ′

F ′P ′

F ′

(a)

(b)

Figure 11.15 Deviation of a ray through (a) a system of two lenses and (b) a single thick lens. P 0 is
a principal plane of the system. All the significant optical properties may be derived via this method
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From equations (11.10) and (11.11) we have

Py1 ¼ P1y1 þP2y2 ð11:12Þ

Moreover, Figure 11.15 shows that, algebraically

y2 ¼ y1 � d� 0
1

which, with equation (11.8) gives

y2 ¼ y1 �
d

n 0
1

P1y1 ¼ y1 � �ddP1y1; ð11:13Þ

where

�dd ¼ d=n 0
1

This, with equation (11.12), gives

P ¼ P1 þP2 � �ddP1P2 ð11:14Þ

where P is the power of the whole system.

From Figure 11.15 we have algebraically

P 0
2P 0 ¼ � y1 � y2

� 0
2

which with equations (11.11) and (11.13) gives

P 0
2P 0 ¼ �n 0

2
�ddP1

P
ð11:15Þ

For a similar ray incident from the right we can find

P1P ¼ n1
�ddP2

P

where P is the first principal plane (not shown in the figures).

A more significant distance for the thick lens of Figure 11.15(b) is P2F 0 the distance

between the second refracting surface and the focal point F 0.
Now

P2F 0 ¼ P 0F 0 � P 0P 0
2

which with

P 0F 0 ¼ n 0
2=P ð11:16Þ
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gives

P2F 0 ¼ n 0
2

P
� n 0

2
�ddP1

P

¼ n 0
2

P
ð1 � �ddP1Þ ð11:17Þ

We shall see in the following section that the factor 1 � �ddP1 and the power P of the

system arise quite naturally in the matrix treatment of this problem.

The Matrix Method

Tracing paraxial rays through an optical system involves the constant repetition of two

consecutive processes and is particularly suited to matrix methods.

A refracting R process carries the ray from one medium across a refracting surface into a

second medium from where it is taken by a transmitting T process through the second

medium to the next refracting surface for R to be repeated. Both R and T processes and

their products are represented by 2 
 2 matrices.

An R process is characterized by

n 0� 0 � n� ¼ P1y ð11:7Þ

which changes n� but which leaves y unaffected.

We write this in the form

��� 0 � ��� ¼ P1y ð11:18Þ
where

��� i ¼ ni� i

The reader should review Figure 11.8 for the sign convention for angles.

A T process is characterized by

y 0 ¼ y � �dd 0 ��� 0 ð11:19Þ

which changes y but leaves ��� unaffected. The thick lens of the last section demonstrates the

method particularly well and reproduces the results we have already found.

In Figure 11.16 note that

n2�2 � n 0
1�

0
1

that is

���2 ¼ ��� 0
1

We express equations (11.18) and (11.19) in a suitable 2 
 2 matrix form by writing them

as separate pairs.

The Matrix Method 325



For R we have

��� 0
1 ¼ ���1 þP1y1

where P1 is the power of the first refracting surface and

y 0
1 ¼ 0���1 þ 1y1

so, in matrix form we have

��� 0
1

y 0
1

� �
¼ 1 P1

0 1

� �
���1

y1

� �
¼ R1

���1

y1

� �

This carries the ray across the first refracting surface.

For T we have
���2 ¼ 1��� 0

1 þ 0y 0
1

y2 ¼ � �dd 0
1 ���

0
1 þ 1y 0

1

where ���2 ¼ ��� 0
1, so

���2

y2

� �
¼

1 0

��dd 0
1 1

� �
��� 0

1

y 0
1

� �
¼ T12

��� 0
1

y 0
1

� �

This carries the ray through the lens between its two refracting surfaces.

At the second refracting surface we repeat R to give

��� 0
2 ¼ 1���2 þP2 y2

y 0
2 ¼ 0���2 þ 1y2

or

��� 0
2

y 0
2

� �
¼ 1 P2

0 y2

� �
¼ R2

���2

y2

� �

d

n1 n1 = n2
n2′ 

y1 = y1′ 

′ 

′ 

y2 = y2′ 

α1

α1

α1

′ α2

′ α2

α2

21

Figure 11.16 The single lens of Figure 11.15 is used to demonstrate the equivalence of the
deviation and matrix methods for determining the important properties of a lens system. The matrix
method is easily extended to a system of many optical elements
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Therefore

��� 0
2

y 0
2

� �
¼ R2

���2

y2

� �
¼ R12T12

��� 0
1

y 0
1

� �
¼ R2T12R1

���1

y1

� �

¼
1 P2

0 1

� �
1 0

� �dd 0
1 1

� �
1 P1

0 1

� �
���1

y1

� �

which, after matrix multiplication, gives

��� 0
2

y 0
2

� �
¼

1 � �dd 0
1P2 P1 þP2 � �dd 0

1P1P2

� �dd 0
1 1 � �dd 0

1P1

" #
���1

y1

� �

Writing

R2T12R1 ¼ a11 a12

a21 a22

� �

we see that a12 is the power P of the thick lens (equation (11.14)) and that a22 apart from

the factor n02=P is the distance between the second refracting surface and the second focal

point. The product of the coefficient a11 and n1=P gives the separation between the first

focal point and the first refracting surface. Note, too, that a11 and a22 enable us to locate

the principal planes with respect to the refracting surfaces.

The order of the matrices for multiplication purposes is the reverse of the progress of the

ray through R1T12R2, etc.

If the ray experiences a number J of such transformations, the general result is

��� 0
J

y 0
J

� �
¼ RJTJ�1;J RJ�1 . . .R2T12R1

���1

y1

� �

The product of all these 2
2 matrices is itself a 2
2 matrix.

It is important to note that the determinant of each matrix and of their products is unity,

which implies that the column vector represents a property which is invariant in its passage

through the system.

The components of the column vector are, of course, ���1y1; that is, n� and y and we

already know that for paraxial rays the Helmholtz equation states that the product ny�
remains constant throughout the system.

(Problems 11.9, 11.10, 11.11)

Problem 11.1
Apply the principle of p. 311 to a thin bi-convex lens of refractive index n to show that its power is

P ¼ ðn � 1Þ 1

R1

� 1

R2

� �

where R 1 and R2, the radii of curvature of the convex faces, are both much greater than the thickness

of the lens.
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Problem 11.2
A plane parallel plate of glass of thickness d has a non-uniform refractive index n given

by n ¼ n0 � �r 2 where n 0 and � are constants and r is the distance from a certain line perpendicular

to the sides of the plate. Show that this plate behaves as a converging lens of focal length 1=2�d.

Problem 11.3
For oscillatory waves the focal point F of the converging wavefront of Figure 11.17 is located where

Huygens secondary waves all arrive in phase: the point F 0 vertically above F receives waves whose

total phase range �	 depends on the path difference AF 0–BF 0. When F 0 is such that �	 is 2
 the

resultant amplitude tends to zero. Thus,

F

F′
P

B

A

θ

Figure 11.17

the focus is not a point but a region whose width x depends on the wavelength � and the angle �
subtended by the spherical wave. If PF 0 is perpendicular to BF the phase at F 0 and P may be

considered the same. Show that the width of the focal spot is given by x ¼ �=sin �. Note that sin � is

directly related to the f=d ratio for a lens (focal length/diameter) so that x defines the minimum size

of the image for a given wavelength and a given lens.

Problem 11.4
As an object moves closer to the eye its apparent size grows with the increasing angle it subtends at

the eye. A healthy eye can accommodate (that is, focus) objects from infinity to about 25 cm, the

closest ‘distance of distinct vision’. Beyond this ‘near point’ the eye can no longer focus and a

magnifying glass is required. A healthy eye has a range of accommodation of 4 dioptres (1/1 to

1/0.25 m). If a man’s near point is 40 cm from his eye, show that he needs spectacles of power equal

to 1.5 dioptres. If another man is unable to focus at distances greater than 2 m, show that he needs

diverging spectacles with a power of �0:5 dioptres.

Problem 11.5
Figure 11.18 shows a magnifying glass of power P with an erect and virtual image at l 0. The angular

magnification

M� ¼ �=�

¼ angular size of image seen through the glass at distance l 0

angular size of object seen by the unaided eye at do
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where do is the distance of distinct vision. Show that the transverse magnification M T ¼ l 0=l where l

is the actual distance (not do) at which the object O is held. Hence show that M� ¼ do=l and use the

thin lens power equation, p. 318, to show that

M� ¼ doðP þ 1=l 0Þ ¼ Pdo þ 1

when l 0 ¼ d o. Note that M� reduces to the value Pdo when the eye relaxes by viewing the image at 1.

l

l

y
γ β0

d0 = l ′

y ′

Lens power P

Eye

Figure 11.18

Problem 11.6
A telescope resolves details of a distant object by accepting plane wavefronts from individual points

on the object and amplifying the very small angles which separate them. In Figure 11.19, � is the

angle between two such wavefronts one of which propagates along the optical axis. In normal

adjustment the astronomical telescope has both object and image at 1 so that the total power of the

system is zero. Use equation (11.14) to show that the separation of the lenses must be f o þ f e where

f o and f e are respectively the focal lengths of the object and eye lenses.
If 2y is the width of the wavefront at the objective and 2y 0 is the width of the wavefront at the eye

ring show that

M� ¼ � 0

�

����
���� ¼ f o

f e

����
���� ¼ D

d

Eye ring
Eye

Plane
wavefronts Object lens

f0 fe

Eye lens Eye

I
α

y

Dα

α α′
α′ y ′

2

d
2

Rays from virtual
image at ∞

Figure 11.19
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where D is the effective diameter of the object lens and d is the effective diameter of the eye lens.

Note that the image is inverted.

Problem 11.7
The two lens microscope system of Figure 11.20 has a short focus objective lens of power Po and a

magnifying glass eyepiece of power P e. The image is formed at the near point of the eye (the

distance do of Problems 11.4 and 11.5). Show that the magnification by the object lens is

M o ¼ �Po x 0 where the minus sign shows that the image is inverted. Hence use the expression for

the magnifying glass in Problem 11.5 to show that the total magnification is

M ¼ M oM e ¼ �PoP edo x 0

The length x 0 is called the optical tube length and is standardized for many microscopes at 0.14 m.

Object

f0

fe

d0

I1

I2

f0′
fe′

x ′

Eye

Eye

Figure 11.20
Problem 11.8
Microscope objectives are complex systems of more than one lens but the principle of the oil

immersion objective is illustrated by the following problem. In Figure 11.21 the object O is

embedded a distance R=n from the centre C of a glass sphere of radius

Glass

0 C

P

n

I

Air

Figure 11.21
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R and refractive index n. Any ray OP entering the microscope is refracted at the surface of the sphere

and, when projected back, will always meet the axis CO at the point I. Use Snell’s Law to show that

the distance IC¼ nR.

Problems 11.9, 11.10, 11.11
Using the matrix method or otherwise, find the focal lengths and the location of the principal plane

for the following lens systems (a), (b) and (c). The glass in all lenses has a refractive index of n ¼ 1:5
and all measurements have the same units. Ri is a radius of curvature.

0.3

(a)

R1 = −1 R2 = ∞

R3 = −1

R2 = −0.5

R1 = ∞ R4 = ∞

0.15 0.2 0.15

(b)

R2 = −0.5

R3 = +0.5R1 = ∞ R4 = ∞

0.15 0.150.6

(c)

Summary of Important Results

Power of a Thin Lens

P ¼ ðn � 1Þ 1

R1

� 1

R2

� �
¼ 1

f

where n is the refractive index of the lens material, R1 and R2 are the radii of curvature of

the lens surfaces and f is the focal length.

Power of two thin lenses separated a distance d in Air

P ¼ P1 þP2 � dP1P2

where P1 and P2 are the powers of the thin lenses.
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Power of a thick lens of thickness d and refractive index n

P ¼ P1 þP2 � d=nP1 P2

where P1 and P2 are the powers of the refracting surfaces of the lens.

Optical Helmholtz Equation

For a plane wavefront (source at 1) passing through an optical system the product

ny tan� ¼ constant

where n is the refractive index, y is the width of the wavefront section and � is the angle

between the optical axis and the normal to the wavefront.

For a source at a finite distance, this equation becomes, for paraxial rays,

ny� ¼ constant
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12

Interference and Diffraction

All waves display the phenomena of interference and diffraction which arise from the

superposition of more than one wave. At each point of observation within the interference

or diffraction pattern the phase difference between any two component waves of the same

frequency will depend on the different paths they have followed and the resulting

amplitude may be greater or less than that of any single component. Although we speak of

separate waves the waves contributing to the interference and diffraction pattern must

ultimately derive from the same single source. This avoids random phase effects from

separate sources and guarantees coherence. However, even a single source has a finite size

and spatial coherence of the light from different parts of the source imposes certain

restrictions if interference effects are to be observed. This is discussed in the section on

spatial coherence on p. 360. The superposition of waves involves the addition of two or

more harmonic components with different phases and the basis of our approach is that laid

down in the vector addition of Figure 1.11. More formally in the case of diffraction we

have shown the equivalence of the Fourier transform method on p. 287 of Chapter 10.

Interference

Interference effects may be classified in two ways:

1. Division of amplitude

2. Division of wavefront

1. Division of amplitude. Here a beam of light or ray is reflected and transmitted at a

boundary between media of different refractive indices. The incident, reflected and

transmitted components form separate waves and follow different optical paths. They

interfere when they are recombined.

2. Division of wavefront. Here the wavefront from a single source passes simultaneously

through two or more apertures each of which contributes a wave at the point of

superposition. Diffraction also occurs at each aperture.
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The difference between interference and diffraction is merely one of scale: in optical

diffraction from a narrow slit (or source) the aperture is of the order of the wavelength of

the diffracted light. According to Huygens Principle every point on the wavefront in the

plane of the slit may be considered as a source of secondary wavelets and the further

development of the diffracted wave system may be obtained by superposing these wavelets.

In the interference pattern arising from two or more such narrow slits each slit may be

seen as the source of a single wave so the number of superposed components in the final

interference pattern equals the number of slits (or sources). This suggests that the complete

pattern for more than one slit will display both interference and diffraction effects and we

shall see that this is indeed the case.

Division of Amplitude

First of all we consider interference effects produced by division of amplitude. In Fig-

ure 12.1 a ray of monochromatic light of wavelength � in air is incident at an angle i on a

plane parallel slab of material thickness t and refractive index n > 1. It suffers partial

reflection and transmission at the upper surface, some of the transmitted light is reflected at

the lower surface and emerges parallel to the first reflection with a phase difference

determined by the extra optical path it has travelled in the material. These parallel beams

meet and interfere at infinity but they may be brought to focus by a lens. Their optical path

difference is seen to be

nðAB þ BDÞ � AC ¼ 2nAB � AC

¼ 2nt=cos �� 2t tan � sin i

¼ 2nt

cos �
ð1 � sin2�Þ ¼ 2nt cos �

(because sin i ¼ n sin �Þ:

S

C

t constant

DA

B

q

q
n > 1

Figure 12.1 Fringes of constant inclination. Interference fringes formed at infinity by division of
amplitude when the material thickness t is constant. The mth order bright fringe is a circle centred at
S and occurs for the constant � value in 2nt cos � ¼ ðm þ 1

2Þ�
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This path difference introduces a phase difference

� ¼ 2�

�
2nt cos �

but an additional phase change of � rad occurs at the upper surface.

The phase difference � between the two interfering beams is achieved by writing the

beam amplitudes as

y1 ¼ aðsin!t þ �=2Þ and y2 ¼ a sin ð!t � �=2Þ

with a resultant amplitude

R ¼ a½sin ð!t þ �=2Þ þ sin ð!t � �=2Þ
¼ 2a sin!t cos �=2

and an intensity

I ¼ R2 ¼ 4a2 sin2 !t cos2 �=2

Figure 12.2 shows the familiar cos2 �=2 intensity fringe pattern for the spatial part of I.

Thus, if 2nt cos � ¼ m� (m an integer) the two beams are anti-phase and cancel to give

zero intensity, a minimum of interference. If 2nt cos � ¼ ðm þ 1
2
Þ� the amplitudes will

reinforce to give an interference maximum.

Since t is constant the locus of each interference fringe is determined by a constant value

of � which depends on a constant angle i. This gives a circular fringe centred on S. An

extended source produces a range of constant � values at one viewing position so the

complete pattern is obviously a set of concentric circular fringes centred on S and formed

at infinity. They are fringes of equal inclination and are called Haidinger fringes. They

are observed to high orders of interference, that is values of m, so that t may be relatively

large.

4a 2

m

δ –4π

–2 –1 0 1 2

–4π 0 2π 4π

Figure 12.2 Interference fringes of cos2 intensity produced by the division of amplitude in Figure
12.1. The phase difference � ¼ 2�nt cos �=� and m is the order of interference
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When the thickness t is not constant and the faces of the slab form a wedge, Figure 12.3a

and b the interfering rays are not parallel but meet at points (real or virtual) near the wedge.

The resulting interference fringes are localized near the wedge and are almost parallel to

the thin end of the wedge. When observations are made at or near the normal to the wedge

cos � � 1 and changes slowly in this region so that 2nt cos � � 2nt: The condition for bright

fringes then becomes

2nt ¼ ðm þ 1
2
Þ�

and each fringe locates a particular value of the thickness t of the wedge and this defines

the patterns as fringes of equal thickness. As the value of m increases to m þ 1 the thickness

of the wedge increases by �=2n so the fringes allow measurements to be made to within a

fraction of a wavelength and are of great practical importance.

t varying

t varying

n > 1

n > 1

(a)

(b)

Figure 12.3 Fringes of constant thickness. When the thickness t of the material is not constant the
fringes are localized where the interfering beams meet (a) in a real position and (b) in a virtual
position. These fringes are almost parallel to the line where t ¼ 0 and each fringe defines a locus of
constant t
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The spectral colours of a thin film of oil floating on water are fringes of constant

thickness. Each frequency component of white light produces an interference fringe at that

film thickness appropriate to its own particular wavelength.

In the laboratory the most familiar fringes of constant thickness are Newton’s Rings.

Newton’s Rings

Here the wedge of varying thickness is the air gap between two spherical surfaces of

different curvature. A constant value of t yields a circular fringe and the pattern is one of

concentric fringes alternately dark and bright. The simplest example, Figure 12.4, is a

plano convex lens resting on a plane reflecting surface where the system is illuminated

from above using a partially reflecting glass plate tilted at 45	. Each downward ray is

partially reflected at each surface of the lens and at the plane surface. Interference takes

Incident
light

Interfering
beams

OPTICAL FLAT

L

Focal plane
of L

Semi-silvered
reflector

Figure 12.4 Newton’s rings of interference formed by an air film of varying thickness between the
lens and the optical flat. The fringes are circular, each fringe defining a constant value of the air film
thickness
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place between the light beams reflected at each surface of the air gap. At the lower (air to

glass) surface of the gap there is a � rad phase change upon reflection and the centre of the

interference fringe pattern, at the point of contact, is dark. Moving out from the centre,

successive rings are light and dark as the air gap thickness increases in units of �=2. If R is

the radius of curvature of the spherical face of the lens, the thickness t of the air gap at a

radius r from the centre is given approximately by t � r 2=2R. In the mth order of

interference a bright ring requires

2t ¼ ðm þ 1
2
Þ� ¼ r 2=R

and because t / r 2 the fringes become more crowded with increasing r. Rings may be

observed with very simple equipment and good quality apparatus can produce fringes for

m > 100:

(Problem 12.1)

Michelson’s Spectral Interferometer

This instrument can produce both types of interference fringes, that is, circular fringes of

equal inclination at infinity and localized fringes of equal thickness. At the end of the

nineteenth century it was one of the most important instruments for measuring the structure

of spectral lines.

As shown in Figure 12.5 it consists of two identical plane parallel glass plates G1 and G2

and two highly reflecting plane mirrors M1 and M2. G1 has a partially silvered back face,

G2 does not. In the figure G1 and G2 are parallel and M1 and M2 are perpendicular. Slow,

accurately monitored motion of M1 is allowed in the direction of the arrows but the

mounting of M2 is fixed although the angle of the mirror plane may be tilted so that M1

and M2 are no longer perpendicular.

The incident beam from an extended source divides at the back face of G1. A part of it is

reflected back through G1 to M1 where it is returned through G1 into the eye or detector.

The remainder of the incident beam reaches M2 via G2 and returns through G2 to be

reflected at the back face of G1 into the eye or detector where it interferes with the beam

from the M1 arm of the interferometer. The presence of G2 assures that each of the two

interfering beams has the same optical path in glass. This condition is not essential for

fringes with monochromatic light but it is required with a white light source where

dispersion in glass becomes important.

An observer at the detector looking into G1 will see M1, a reflected image of M2 (M 0
2,

say) and the images S1 and S 0
2 of the source provided by M1 and M2. This may be

represented by the linear configuration of Figure 12.6 which shows how interference takes

place and what type of firnges are produced.

When the optical paths in the interferometer arms are equal and M1 and M2 are

perpendicular the planes of M1 and the image M 0
2 are coincident. However a small optical

path difference t between the arms becomes a difference of 2t between the mirrored images

of the source as shown in Figure 12.6. The divided ray from a single point P on the

extended source is reflected at M1 and M2 (shown as M 0
2) but these reflections appear to
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come from P1 and P 0
2 in the image planes of the mirrors. The path difference between the

rays from P1 and P 0
2 is evidently 2t cos �. When 2t cos � ¼ m� a maximum of interference

occurs and for constant � the interference fringe is a circle. The extended source produces a

range of constant � values and a pattern of concentric circular fringes of constant

inclination.

If the path difference t is very small and the plane of M2 is now tilted, a wedge is formed

and straight localized fringes may be observed at the narrowest part of the wedge. As the

wedge thickens the fringes begin to curve because the path difference becomes more

strongly dependent upon the angle of observation. These curved fringes are always convex

towards the thin end of the wedge.

M1

G1 G2

M2

Allowed
movement
of M1

Source
S

Eye or detector

Figure 12.5 Michelson’s Spectral Interferometer. The beam from source S splits at the back face of
G1, and the two parts are reflected at mirrors M1 and M2 to recombine and interfere at the eye or
detector. G2 is not necessary with monochromatic light but is required to produce fringes when S is a
white light source
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The Structure of Spectral Lines

The discussion on spatial coherence, p. 362, will show that two close identical sources

emitting the same wavelength � produce interference fringe systems slightly displaced

from each other (Figure 12.17).

The same effect is produced by a single source, such as sodium, emitting two

wavelengths, � and ���� so that the maxima and minima of the cos2 fringes for � are

slightly displaced from those for ����. This displacement increases with the order of

interference m until a value of m is reached when the maximum for � coincides with a

minimum for ���� and the fringes disappear as their visibility is reduced to zero.

In 1862, Fizeau, using a sodium source to produce Newton’s Rings, found that the

fringes disappeared at the order m ¼ 490 but returned to maximum visibility at m ¼ 980.

He correctly identified the presence of two components in the spectral line.

The visibility

ðImax � IminÞ=ðImax þ IminÞ

equals zero when

m� ¼ ðm þ 1
2
Þð����Þ

and for � ¼ 0:5893 mm and m ¼ 490 we have �� ¼ 0:0006mm (6 Å), which are the

accepted values for the D lines of the sodium doublet.

Using his spectral interferometer, Michelson extended this work between the years 1890

and 1900, plotting the visibility of various fringe systems and building a mechanical

harmonic analyser into which he fed different component frequencies in an attempt to

M1S S1

P1

~2 t cosq

′M2
′S2

′P2

q

P

t 2t

Figure 12.6 Linear configuration to show fringe formation by a Michelson interferometer. A ray
from point P on the extended source S reflects at M1, and appears to come from P1 in the reflected
plane S1. The ray is reflected from M2 (shown here as M 0

2) and appears to come from P 0
2 in the

reflected plane S 0
2. The path difference at the detector between the interfering beams is effectively

2t cos � where t is the difference between the path lengths from the source S to the separate mirrors
M1 and M2
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reproduce his visibility curves. The sodium doublet with angular frequency components !
and !þ�! produced a visibility curve similar to that of Figures 1.7 and 4.4 and was easy

to interpret. More complicated visibility patterns were not easy to reproduce and the

modern method of Fourier transform spectroscopy reverses the procedure by extracting the

frequency components from the observed pattern.

Michelson did however confirm that the cadmium red line, � ¼ 0:6438 mm was highly

monochromatic. The visibility had still to reach a minimum when the path difference in his

interferometer arms was 0.2 m.

Fabry -- Perot Interferometer

The interference fringes produced by division of amplitude which we have discussed so far

have been observed as reflected light and have been produced by only two interfering

beams. We now consider fringes which are observed in transmission and which require

multiple reflections. They are fringes of constant inclination formed in a pattern of

concentric circles by the Fabry–Perot interferometer. The fringes are particularly narrow

and sharply defined so that a beam consisting of two wavelengths � and ���� forms two

patterns of rings which are easily separated for small ��. This instrument therefore has an

extremely high resolving power. The main component of the interferometer is an etalon

Figure 12.7 which consists of two plane parallel glass plates with identical highly reflecting

inner surfaces S1 and S2 which are separated by a distance d.

Suppose a monochromatic beam of unit amplitude, angular frequency ! and wavelength

(in air) of � strikes the surface S1 as shown. A fraction t of this beam is transmitted in

passing from glass to air. At S2 a further fraction t 0 is transmitted in passing from air to

glass to give an emerging beam of amplitude tt 0 ¼ T . The reflection coefficient at the air–

S1 and air–S2 surfaces is r so each subsequent emerging beam is parallel but has an

amplitude factor r 2 ¼ R with respect to its predecessor. Other reflection and transmission

losses are common to all beams and do not affect the analysis. Each emerging beam has a

phase lag � ¼ 4�d cos �=� with respect to its predecessor and these parallel beams interfere

when they are brought to focus via a lens.

The vector sum of the transmitted interfering amplitudes together with their appropriate

phases may be written

A ¼ T ei!t þ TR e ið!t��Þ þ TR2 e ið!t�2�Þ . . .

¼ T ei!t½1 þ R e�i� þ R2 e�i2� . . .

which is an infinite geometric progression with the sum

A ¼ T ei!t=ð1 � R e�i�Þ

This has a complex conjugate

A� ¼ T e�i!t=ð1 � R ei�Þ
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If the incident unit intensity is I0 the fraction of this intensity in the transmitted beam may

be written

I t

I0

¼ AA�

I0

¼ T 2

ð1 � R e�i�Þð1 � R ei�Þ ¼
T 2

ð1 þ R2 � 2R cos �Þ

or, with

cos � ¼ 1 � 2 sin2 �=2

Glass

S1 S2

Glass

Air

I

t

d

q
q
q
q

t t ′ = T

r 
2

 t t ′ = RT

r 
2t

r t

r 
4

 t t ′ = R 
2T

r 
6

 t t ′ = R 
3T

Figure 12.7 S1 and S2 are the highly reflecting inner surfaces of a Fabry--Perot etalon with a
constant air gap thickness d. Multiple reflections produce parallel interfering beams with amplitudes
T, RT, R2T , etc. each beam having a phase difference

� ¼ 4�d cos �=�

with respect to its neighbour
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as

I t

I0

¼ T 2

ð1 � RÞ2 þ 4R sin2 �=2
¼ T 2

ð1 � RÞ2

1

1 þ ½4R sin2 �=2=ð1 � RÞ2


But the factor T 2=ð1 � RÞ2
is a constant, written C so

I t

I0

¼ C � 1

1 þ ½4R sin2 �=2=ð1 � RÞ2


Writing CI0 ¼ Imax, the graph of I t versus � in Figure 12.8 shows that as the reflection

coefficient of the inner surfaces is increased, the interference fringes become narrow and

more sharply defined. Values of R > 0:9 may be reached using the special techniques of

multilayer dielectric coating. In one of these techniques a glass plate is coated with

alternate layers of high and low refractive index materials so that each boundary presents a

large change of refractive index and hence a large reflection. If the optical thickness of

each layer is �=4 the emerging beams are all in phase and the reflected intensity is high.

Resolving Power of the Fabry -- Perot Interferometer

Figure 12.8 shows that a value of R ¼ 0:9 produces such narrow and sharply defined

fringes that if the incident beam has two components � and ���� the two sets of fringes

should be easily separated. The criterion for separation depends on the shape of the fringes:

R = 0.04 R = 0.04

R = 0.9

R = 0.5

R = 0.9

R = 0.5

I max

I t

> δ

Figure 12.8 Observed intensity of fringes produced by a Fabry--Perot interferometer. Transmitted
intensity I t versus �: R ¼ r 2 where r is the reflection coefficient of the inner surfaces of the etalon.
As R increases the fringes become narrower and more sharply defined
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the diffraction grating of p. 373 uses the Rayleigh criterion, but the fringes here are so

sharp that they are resolved at a much smaller separation than that required by Rayleigh.

Here the fringes of the two wavelengths may be resolved when they cross at half their

maximum intensities; that is, at I t ¼ Imax=2 in Figure 12.9.

Using the expression

I t ¼ Imax �
1

1 þ 4R sin2 �=2

ð1 � RÞ2

we see that I t ¼ Imax when � ¼ 0 and I t ¼ Imax=2 when the factor

4R sin2 �=2=ð1 � RÞ2 ¼ 1

The fringes are so narrow that they are visible only for very small values of � so we may

replace sin �=2 by �=2 in the expression

4R sin2 �=2=ð1 � RÞ2 ¼ 1

∆m

∆m

λ λ – ∆λ

m + ∆m m + 1mOrder

In
te

ns
ity

Phase

Order

Phase0

0.5

1.0

2 pδ 1
2

2δ1
2

∆m

I max

Figure 12.9 Fabry--Perot interference fringes for two wavelength � and ���� are resolved at
order m when they cross at half their maximum intensity. Moving from order m to m þ 1 changes the
phase � by 2� rad and the full ‘half-value’ width of each maximum is given by �m ¼ 2� 1=2 which is
also the separation between the maxima of � and ���� when the fringes are just resolved
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to give the value

�1=2 ¼ ð1 � RÞ
R1=2

as the phase departure from the maximum, � ¼ 0, which produces the intensity I t ¼ Imax=2

for wavelength �. Our criterion for resolution means, therefore, that the maximum intensity

for ���� is removed an extra amount �1=2 along the phase axis of Figure 12.9. This axis

also shows the order of interference m at which the wavelengths are resolved, together with

the order m þ 1 which represents a phase shift of � ¼ 2� along the phase axis.

In the mth order of interference we have

2d cos � ¼ m�

and for fringes of equal inclination (� constant), logarithmic differentiation gives

�=�� ¼ �m=�m

Now �m ¼ 1 represents a phase change of � ¼ 2� and the phase difference of 2:�1=2

which just resolves the two wavelengths corresponds to a change of order

�m ¼ 2:�1=2=2�

Thus, the resolving power, defined as

�

��
¼ m

�m

��� ��� ¼ m�

�1=2

¼ m�R1=2

ð1 � RÞ

The equivalent expression for the resolving power in the mth order for a diffracting

grating of N lines (interfering beams) is shown on p. 376 to be

�

��
¼ mN

so we may express

N 0 ¼ �R1=2=ð1 � RÞ

as the effective number of interfering beams in the Fabry–Perot interferometer.

This quantity N 0 is called the finesse of the etalon and is a measure of its quality. We see that

N 0 ¼ 2�

2�1=2

¼ 1

�m
¼ separation between orders m and m þ 1

‘half value’ width of mth order

Thus, using one wavelength only, the ratio of the separation between successive fringes to

the narrowness of each fringe measures the quality of the etalon. A typical value of N 0 � 30.

Free Spectral Range

There is a limit to the wavelength difference �� which can be resolved with the Fabry–

Perot interferometer. This limit is reached when �� is such that the circular fringe for � in
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the mth order coincides with that for ���� in the m þ 1th order. The pattern then loses its

unique definition and this value of �� is called the free spectral range.

From the preceding section we have the expression

�

��
¼ � m

�m

and in the limit when �� represents the free spectral range then

�m ¼ 1

and

�� ¼ ��=m

But m� ¼ 2d when � ’ 0 so the free spectral range

�� ¼ ��2=2d

Typically d � 10�2 m and for � (cadmium red) ¼ 0:6438 microns we have, from 2d ¼ m�,

a value of

m � 3 � 104

Now the resolving power

�

��
¼ mN 0

so, for

N 0 � 30

the resolving power can be as high as 1 part in 106.

Central Spot Scanning

Early interferometers recorded flux densities on photographic plates but the non-linear

response of such a technique made accurate resolution between two wavelengths tedious

and more difficult. This method has now been superseded by the use of photoelectronic

detectors which have the advantage of a superior and more reliable linearity. Moreover, the

response of such a device with controlled vibration of one mirror of the etalon allows the

variation of the intensity across the free spectral range to be monitored continuously.

The vibration of the mirror, originally electro-mechanical, is now most often produced

by using a piezoelectric material on which to mount one of the etalon mirrors. When a

voltage is applied to such a material it changes its length and the distance d between the

etalon mirrors can be varied. The voltage across the piezoelectric mount is tailored to

produce the desired motion.

Changing d by �=2 is equivalent to changing �m by 1, which corresponds to a scan of

the free spectral range, ��, when �=�� ¼ jm=�mj (Figure 12.9).
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One of the most common experimental arrangements is that of central spot scanning

(Figure 12.10). Where the earlier photographic technique recorded the flux density over a

wide region for a short period, central spot scanning focuses on a single point in space for a

long period over many cycles of the etalon vibration. Matching the time base of the

oscilloscope to the vibration period of the etalon produces a stationary trace on the screen

which can be measured directly in addition to being filmed for record purposes.

The Laser Cavity

The laser cavity is in effect an extended Fabry–Perot etalon. Mirrors coated with multi-

dielectric films described in the next section can produce reflection coefficients R � 0:99

and the amplified stimulated emission in the laser produces a beam which is continuously

reflected between the mirror ends of the cavity. The high value of R allows the amplitudes

of the beam in opposing directions to be taken as equal, so a standing wave system is

generated (Figure 12.11) to form a longitudinal mode in the cavity.

The superposed amplitudes after a return journey from one mirror to the other and back

are written for a wave number k and a frequency ! ¼ 2�	 as

E ¼ A1ðeið!t�kxÞ � eið!tþkxÞÞ
¼ A1ðe�ikx � eikxÞ ei!t ¼ �2iA1 sin kx ei!t

of which the real part is E ¼ 2A1 sin kx sin!t.

E = Etalon
S = Source
Sc = Screen

P = Pinhole
D = Detector

P
D

Sc

E

P
S

Sc

Figure 12.10 Fabry--Perot etalon central spot scanning. The distance between the etalon mirrors
changes when one mirror vibrates on its piezoelectric mount. The free spectral range is scanned
over many vibration cycles at a central spot and a stationary trace is obtained on the oscilloscope
screen
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If the cavity length is L, one round trip between the mirrors creates a phase change of


 ¼ �2Lk þ 2� ¼ � 4�L

c
	 þ 2�

where � is the phase change on reflection at each mirror.

For this standing wave mode to be maintained, the phase change must be a multiple of

2�, so for m an integer


 ¼ m2� ¼ 4�L

c
	 � 2�

or

	 ¼ mc

2L
þ �c

2�L

When m changes to m þ 1, the phase change of 2� corresponds to an extra wavelength �
for the return journey; that is, an extra �=2 in the standing wave mode. A series of

longitudinal modes can therefore exist with frequency intervals �	 ¼ c=2L determined by

a unit change in m.

The intensity profile for each mode and the separation �	 is best seen by reference to

Figure 12.9, where 
 � � is given by the unit change in the order of interference from m to

m þ 1.

The intensity profile for each cavity mode is that of Figure 12.9, where the full width at

half maximum intensity is given by the phase change

2�1=2 ¼ 2ð1 � RÞ
R1=2

where R is the reflection coefficient. This corresponds to a full width intensity change over

a frequency d	 generated by the phase change

d
 ¼ 4�L

c
d	 in the expression for 
 above

M = Highly reflecting mirror

M M

Figure 12.11 A longitudinal mode in a laser cavity which behaves as an extended Fabry--Perot
etalon with highly reflecting mirrors at each end. The standing wave system acquires an extra �=2 for
unit change in the mode number m. A typical output is shown in Figure 12.12

348 Interference and Diffraction



The width at half maximum intensity for each longitudinal mode is therefore given by

4�L

c
d	 ¼ 2ð1 � RÞ

R1=2

or

d	 ¼ ð1 � RÞc
R1=22�L

For a laser 1 m long with R ¼ 0:99, the longitudinal modes are separated by frequency

intervals

�	 ¼ c

2L
¼ 1:5 � 108 Hz

Each mode intensity profile has a full width at half maximum of

d	 ¼ 10�2 c

2�
� 4:5 � 105 Hz

For a He–Ne laser the mean frequency of the output at 632.8 nm is 4:74 � 1014 Hz. The

pattern for �	 and d	 is shown in Figure 12.12, where the intensities are reduced under the

dotted envelope as the frequency difference from the mean is increased.

The finesse of the laser cavity is given by

�	

d	
¼ 1:5 � 108

4:5 � 105
� 300

for the example quoted.

In
te

ns
ity

Mean frequency

>
dν
<

∆ν ν< >

Figure 12.12 Output of a laser cavity. A series of longitudinal modes separated by frequency
intervals �	 ¼ c=2L, where c is the velocity of light and L is the cavity length. The modes are
centred about the mean output frequency and are modulated under the dotted envelope. For a He--Ne
laser 1 m long the separation �	 between the modes � 300 full widths of a mode intensity profile at
half its maximum value
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The intensity of each longitudinal mode is of course, amplified by each passage of the

stimulated emission. Radiation allowed from out of one end represents the laser output but

the amplification process is dominant and the laser produces a continuous beam.

Multilayer Dielectric Films

We have just seen that in the mth order of interference the resolving power of a Fabry–

Perot interferometer is given by

�=�� � mN 0

where the finesse or number of interfering beams

N 0 ¼ �R1=2=ð1 � RÞ ¼ �r=ð1 � r 2Þ

and r is the reflection coefficient of the inner surfaces of the etalon.

It is evident that as r ! 1 the values of N 0 and the resolving power become much larger.

The value of r can be increased to more than 99% by using a metallic coating on the inner

surfaces of the etalon or by depositing on them a multilayer of dielectric films with

alternating high and low refractive indices. For a given monochromatic electromagnetic

wave each layer or film has an optical thickness of �=4.

The reflection coefficient r for such a wave incident on the surface of a higher refractive

index film is increased because the externally and internally reflected waves are in phase; a

phase change of � occurs only on the outer surface and is reinforced by the � phase change

of the wave reflected at the inner surface which travels an extra �=2 optical distance.

High values of r result from films of alternating high and low values of the refractive

index because reflections from successive boundaries are in phase on return to the front

surface of the first film. Those retarded an odd multiple of � by the extra optical path length

per film also have a � phase change on reflection to make a total of 2� rad.

We consider the simplest case of a monochromatic electromagnetic wave in a medium of

refractive index n1, normally incident on a single film of refractive index n 0
1, and thickness

d 0
1. This film is deposited on the surface of a material of refractive index n 0

2, which is called

a substrate (Figure 12.13). The phase lag for a single journey across the film is written �.
The boundary conditions are that the components of the E and H fields parallel to a

surface are continuous across that surface. We write these field amplitudes as Ef and

Hf ¼ nEf for the forward-going wave to the right in Figure 12.13 and Er and Hr ¼ nEr for

the reflected wave going to the left.

We see that at surface 1 the boundary conditions for the electric field E are

Ef 1 þ Er1 ¼ E 0
f 1 þ E 0

r1 ð12:1aÞ
and for the magnetic field

n1Ef 1 � n1Er1 ¼ n 0
1E 0

f 1 � n 0
1E 0

r1 ð12:1bÞ

where the negative sign for the reflected amplitude arises when the E � H direction of the

wave is reversed (see Figure 8.7).
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At surface 2 in Figure 12.13, E 0
f 1 arrives with a phase lag of � with respect to E 0

f 1 at

surface 1 but the E 0
r1 wave at surface 2 has a phase � in advance of E 0

r1 at surface 1, so we

have the boundary conditions

E 0
f 1 e�i� þ E 0

r1 e i� ¼ E 0
f 2 ð12:1cÞ

and

n 0
1E 0

f 1 e�i� � n 0
1E 0

r1 e i� ¼ n 0
2E 0

f 2 ð12:1dÞ

We can eliminate E 0
f 1 and E 0

r1 from equations (12.1a)–(12.1d) to give

1 þ Er1

Ef 1

¼ cos � þ i
n 0

2

n 0
1

sin �

� �
E 0

f 2

Ef 1

ð12:2Þ

and

n1 � n1

Er1

Ef 1

¼ ðin 0
1 sin � þ n 0

2 cos �Þ
E 0

f 2

Ef 1

ð12:3Þ

which we can express in matrix form

1

n1

� �
þ 1

�n1

� �
Er1

Ef 1

¼ cos � i sin �=n 0
1

in 0
1 sin � cos �

� �
1

n 0
2

� �
E 0

f 2

Ef 1

E f 1

Film Substrate

E r 1

E ′f 1

d ′1

n ′1n 1 n ′2

E ′f 2

E ′r 1

Figure 12.13 A thin dielectric film is deposited on a substrate base. At each surface an
electromagnetic wave is normally incident, as Efi, in a medium of refractive index n i and is reflected
as E ri. A multilayer stack of such films, each of optical thickness �=4 and of alternating high and low
refractive indices can produce reflection coefficients >99%
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We write this as

1

n1

� �
þ 1

�n1

� �
r ¼ M1

1

n 0
2

� �
t

where r ¼ Er1=Ef 1 is the reflection coefficient at the first surface and t ¼ E 0
f 2=Ef 1 is the

transmitted coefficient into medium n 0
2 (a quantity we shall not evaluate).

The 2�2 matrix

M1 ¼ cos � i sin �=n 0
1

in 0
1 sin � cos �

� �

relates r and t across the first film and is repeated with appropriate values of n0i for each

successive film. The product of these 2 � 2 matrices is itself a 2 � 2 matrix as with the

repetitive process we found in the optical case of p. 325.

Thus, for N films we have

1

n1

� �
þ 1

�n1

� �
R ¼ M1M2M3 � � �MN

1

n 0
Nþ1

� �
T ; ð12:4Þ

where R ¼ Er1=Ef 1 as before and T ¼ E 0
f ðNþ1Þ=Ef 1 the transmitted coefficient

after the final film. Note, however, that Er1 in R is now the result of reflection from all the

film surfaces and that these are in phase.

The typical matrix M3 relates r to t across the third film and the product of the matrices

M1M2M3 � � �MN ¼ M ¼ M11 M12

M21 M22

� �

is a 2�2 matrix.

Eliminating T from the two simultaneous equations (12.4) we have, in terms of the

coefficients of M

R ¼ A � B

A þ B
ð12:5Þ

where

A ¼ n1ðM11 þ M12n 0
Nþ1Þ

and

B ¼ ðM21 þ M22n 0
Nþ1Þ

If we now consider a system of two films, the first of higher refractive index nH and the

second of lower refractive index nL, where each has an optical thickness d ¼ �=4, then the

phase � ¼ �=2 for each film and

M1M2 ¼ 0

inH

i=nH

0

� �
0 i=nL

inL 0

� �
¼ �nL=nH 0

0 �nH=nL

� �
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A stack of N such pairs, 2N films in all with alternating nH and nL, produces

M1M2 � � �M2N ¼ ½M1M2
N ¼

�nL

nH

� �N

0

0
�nH

nL

� �N

2
6664

3
7775

giving R the total reflection coefficient from equation (12.5) equal to

R ¼

�nL

nH

� �N

� �nH

nL

� �N

�nL

nH

� �N

þ �nH

nL

� �N

We see that as long as nH 6¼ nL, then as N ! 1, R ! 1 and this value may be used in

our derivation of the expressions for the finesse and resolving power of the Fabry–Perot

interferometer.

Multilayer stacks using zinc sulphate ðnH ¼ 2:3Þ and cryolite ðnL ¼ 1:35Þ have achieved

R values > 99.5%.

Note that all the 2�2 matrices and their products have determinants equal to unity which

states that the column vectors represent a quantity which remains invariant throughout the

matrix transformations.

(Problem 12.2)

The Thin Film Optical Wave Guide

Figure 12.14 shows a thin film of width d and refractive index n along which light of

frequency 	 and wave number k is guided by multiple internal reflections. The extent of the

P

θ θ

θ θ
Q

O

n ′

n d

Figure 12.14 A thin dielectric film or fibre acts as an optical wave guide. The reflection angle �
must satisfy the relation n sin �� n 0, where n 0 is the refractive index of the coating over the film of
refractive index n. Propagating modes have standing wave systems across the film as shown and
constructive interference occurs on the standing wave axis where the amplitude is a maximum.
Destructive interference occurs at the nodes
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wave guide is infinite in the direction normal to the page. The internal reflection angle �
must satisfy

n sin �� n 0

where n 0 is the refractive index of the medium bounding the thin film surfaces. Each

reflected ray is normal to a number of wave fronts of constant phase separated by �, where

k ¼ 2�=� and constructive interference is necessary for any mode to propagate. Reflections

may take place at any pair of points P and O along the film and we examine the condition

for constructive interference by considering the phase difference along the path POQ,

taking into account a phase difference � introduced by reflection at each of P and Q.

Now

PO ¼ cos �=d

and

OQ ¼ PO cos 2�

so with

cos 2� ¼ 2 cos2 �� 1

we have

PO þ OQ ¼ 2d cos �

giving a phase difference

�
 ¼ 
Q � 
P ¼ � 2�	

c
ðn 2d cos �Þ þ 2�

Constructive interference requires

�
 ¼ m 2�

where m is an integer, so we write

m 2� ¼ 2�	

c
n 2d cos �� 2��m

where

�m ¼ 2�=2�

represents the phase change on reflection.

Radiation will therefore propagate only when

cos � ¼ cðm þ�mÞ
	 2nd

for m ¼ 0; 1; 2; 3.
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The condition n sin �� n 0 restricts the values of the frequency 	 which can propagate. If

� ¼ �m for mode m and

cos �m ¼ ð1 � sin2 �mÞ1=2

then

n sin �m � n 0

becomes

cos �m � 1 � n 0

n

� �2
" #1=2

and 	 must satisfy

	� cðm þ�mÞ
2dðn2 � n 02Þ1=2

The mode m ¼ 0 is the mode below which 	 will not propagate, while �m is a constant

for a given wave guide. Each mode, Figure 12.14, is represented by a standing wave system

across the wave guide normal to the direction of propagation. Constructive interference

occurs on the axis of this wave system where the amplitude is a maximum and destructive

interference is indicated by the nodes.

Division of Wavefront

Interference Between Waves from Two Slits or Sources

In Figure 12.15 let S1 and S2 be two equal sources separated by a distance f, each

generating a wave of angular frequency ! and amplitude a. At a point P sufficiently distant

from S1 and S2 only plane wavefronts arrive with displacements

y1 ¼ a sin ð!t � kx1Þ from S1

and

y2 ¼ a sin ð!t � kx2Þ from S2

so that the phase difference between the two signals at P is given by

� ¼ kðx2 � x1Þ ¼
2�

�
ðx2 � x1Þ

This phase difference �, which arises from the path difference x2 � x1, depends only on x1,

x2 and the wavelength � and not on any variation in the source behaviour. This requires that

there shall be no sudden changes of phase in the signal generated at either source – such

sources are called coherent.
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The superposition of displacements at P gives a resultant

R ¼ y1 þ y2 ¼ a½sin ð!t � kx1Þ þ sin ð!t � kx2Þ


Writing X � ðx1 þ x2Þ=2 as the average distance from the two sources to point P we

obtain

kx1 ¼ kX � �=2 and kx2 ¼ kX þ �=2

to give

R ¼ a½sin ð!t � kX þ �=2Þ þ sin ð!t � kX � �=2Þ

¼ 2a sin ð!t � kXÞ cos �=2

and an intensity

I ¼ R2 ¼ 4a2 sin2 ð!t � kXÞ cos2 �=2

S1

X2 – X1 = 0

X 1 X 2

S2
f

(X2 – X1) = Constantδ = 2 p
λ

(X2 – X1)δ = 2 p
λ

 = Constant
P

Figure 12.15 Interference at P between waves from equal sources S1 and S2, separation f, depends
only on the path difference x 2 � x1. Loci of points with constant phase difference � ¼ ð2�=�Þ
ðx 2 � x1Þ are the family of hyperbolas with S1 and S2 as foci
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When

cos
�

2
¼ �1

the spatial intensity is a maximum,

I ¼ 4a2

and the component displacements reinforce each other to give constructive interference.

This occurs when

�

2
¼ �

�
ðx2 � x1Þ ¼ n�

that is, when the path difference

x2 � x1 ¼ n�

When

cos
�

2
¼ 0

the intensity is zero and the components cancel to give destructive interference. This

requires that

�

2
¼ ð2n þ 1Þ�

2
¼ �

�
ðx2 � x1Þ

or, the path difference

x2 � x1 ¼ ðn þ 1
2
Þ�

The loci or sets of points for which x2 � x1 (or �) is constant are shown in Figure 12.15 to

form hyperbolas about the foci S1 and S2 (in three dimensions the loci would be the

hyperbolic surfaces of revolution).

Interference from Two Equal Sources of Separation f

Separation f � �. Young’s Slit Experiment

One of the best known methods for producing optical interference effects is the Young’s slit

experiment. Here the two coherent sources, Figure 12.16, are two identical slits S1 and S2

illuminated by a monochromatic wave system from a single source equidistant from S1 and

S2. The observation point P lies on a screen which is set at a distance l from the plane of

the slits.

The intensity at P is given by

I ¼ R2 ¼ 4a2 cos2 �

2
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and the distances PP0 ¼ z and slit separation f are both very much less than l (experi-

mentally � 10�3 lÞ: This is indicated by the break in the lines x1 and x2 in Figure 12.16

where S1P and S2P may be considered as sufficiently parallel for the path difference to be

written as

x2 � x1 ¼ f sin � ¼ f
z

l

to a very close approximation.

Thus

� ¼ 2�

�
ðx2 � x1Þ ¼

2�

�
f sin � ¼ 2�

�
f

z

l

If

I ¼ 4a2 cos2 �

2

then

I ¼ I0 ¼ 4a2 when cos
�

2
¼ 1

that is, when the path difference

f
z

l
¼ 0; ��; �2�; . . .� n�

to P

to P

to P

P

S1

f

S2

X 1

q

q

X 1

X 2

Z 0 P0

X 2

l

f sin q ≈ f z
l

Z

Figure 12.16 Waves from equal sources S1 and S2 interfere at P with phase difference � ¼ ð2�=�Þ
ðx 2 � x1Þ ¼ ð2�=�Þ f sin � � ð2�=�Þ f ðz=lÞ. The distance l � z and f so S1P and S2P are effectively
parallel. Interference fringes of intensity I ¼ I 0 cos2 �=2 are formed in the plane PP0
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and

I ¼ 0 when cos
�

2
¼ 0

that is, when

f
z

l
¼ ��

2
; � 3�

2
; �ðn þ 1

2
Þ�

Taking the point P0 as z ¼ 0, the variation of intensity with z on the screen P0P will be

that of Figure 12.16, a series of alternating straight bright and dark fringes parallel to the

slit directions, the bright fringes having I ¼ 4a2 whenever z ¼ n�l=f and the dark fringes

I ¼ 0, occurring when z ¼ ðn þ 1
2
Þ�l=f , n being called the order of interference of the

fringes. The zero order n ¼ 0 at the point P0 is the central bright fringe. The distance on the

screen between two bright fringes of orders n and n þ 1 is given by

znþ1 � zn ¼ ½ðn þ 1Þ � n
�l

f
¼ �l

f

which is also the physical separation between two consecutive dark fringes. The spacing

between the fringes is therefore constant and independent of n, and a measurement of the

spacing, l and f determines �.

The intensity distribution curve (Figure 12.17) shows that when the two wave trains

arrive at P exactly out of phase they interfere destructively and the resulting intensity or

energy flux is zero. Energy conservation requires that the energy must be redistributed, and

that lost at zero intensity is found in the intensity peaks. The average value of cos2 �=2 is 1
2
,

and the dotted line at I ¼ 2a2 is the average intensity value over the interference system

which is equal to the sum of the separate intensities from each slit.

There are two important points to remember about the intensity interference fringes

when discussing diffraction phenomena; these are

� The intensity varies with cos2 �=2.

� The maxima occur for path differences of zero or integral numbers of the wavelength,

whilst the minima represent path differences of odd numbers of the half-wavelength.

4a 22a 2

δ–5π –3π –π 0 5π3ππ

Figure 12.17 Intensity of interference fringes is proportional to cos2 �=2, where � is the phase
difference between the interfering waves. The energy which is lost in destructive interference
(minima) is redistributed into regions of constructive interference (maxima)
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Spatial Coherence In the preceding section nothing has been said about the size of the

source producing the plane wave which falls on S1 and S2. If this source is an ideal point

source A equidistant from S1 and S2, Figure 12.18, then a single set of cos2 fringes is

produced. But every source has a finite size, given by AB in Figure 12.18, and each point

on the line source AB produces its own set of interference fringes in the plane PP0; the eye

observing the sum of their intensities.

If the solid curve A 0C0 is the intensity distribution for the point A of the source and the

broken curves up to B 0 represent the corresponding fringes for points along AB the

resulting intensity curve is DE. Unless A 0B 0 extends to C the variations of DE will be seen

as faint interference bands. These intensity variations were quantified by Michelson, who

defined the

Visibility ¼ Imax � Imin

Imax þ Imin

A
d

f

B

d >> f

S1

P0

P

A′

B′

C′

C

D

E
S2

gg
cos

2

intensity

R
esultant

intensity

I maxI min

Figure 12.18 The point source A produces the cos2 interference fringes represented by the solid
curve A 0C0. Other points on the line source AB produce cos2 fringes (the displaced broken curves B 0)
and the observed total intensity is the curve DE. When the points on AB extend A 0B 0 to C the fringes
disappear and the field is uniformly illuminated
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The cos2 fringes from a point source obviously have a visibility of unity because the

minimum intensity Imin ¼ 0.

When A 0B 0 of Figure 12.18 ¼ A 0C, the point source fringe separation (or a multiple of

it) the field is uniformly illuminated, fringe visibility ¼ 0 and the fringes disappear.

This occurs when the path difference

AS2 � BS1 � AB sin 
 ¼ �=2 where AS2 ¼ AS1:

Thus, the requirement for fringes of good visibility imposes a limit on the finite size of the

source. Light from points on the source must be spatially coherent in the sense that

AB sin 
 � �=2 in Figure 12.18.

But for f � d,

sin 
 � f=2d

so the coherence condition becomes

sin 
 ¼ f=2d � �=2AB

or

AB=d � �=f

where AB/d measures the angle subtended by the source at the plane S1S2.

Spatial coherence therefore requires that the angle subtended by the source

� �=f

where f is the linear size of the diffracting system. (Note also that �=f measures �ð� z=lÞ
the angular separation of the fringes in Figure 12.16.)

As an example of spatial coherence we may consider the production of Young’s

interference fringes using the sun as a source.

The sun subtends an angle of 0.018 rad at the earth and if we accept the approximation

AB

d
� �

f
� �

4 f

with � ¼ 0:5 mm ,

we have

f � 0:5

4ð0:018Þ � 14mm

This small value of slit separation is required to meet the spatial coherence condition.

Separation f � �ðk f � 1 where k ¼ 2�=�Þ
If there is a zero phase difference between the signals leaving the sources S1 and S2 of

Figure 12.16 then the intensity at some distant point P may be written

I ¼ 4a2 cos2 �

2
¼ 4I s cos2 k f sin �

2
� 4I s;
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where the path difference S2P � S1P ¼ f sin � and I s ¼ a2 is the intensity from each

source.

We note that, since f � �ðk f � 1Þ, the intensity has a very small � dependence and the

two sources may be effectively replaced by a single source of amplitude 2a.

Dipole Radiation ð f � �Þ
Suppose, however, that the signals leaving the sources S1 and S2 are anti-phase so that their

total phase difference at some distant point P is

� ¼ ð�0 þ k f sin �Þ
where �0 ¼ � is the phase difference introduced at source.

The intensity at P is given by

I ¼ 4 I s cos2 �

2
¼ 4 Is cos2 �

2
þ k f sin �

2

� �

¼ 4 I s sin2 k f sin �

2

� �
� I sðk f sin �Þ2

because

k f � 1

Two anti-phase sources of this kind constitute a dipole whose radiation intensity I � I s

the radiation from a single source, when k f � 1. The efficiency of radiation is seen to

depend on the product kf and, for a fixed separation f the dipole is a less efficient radiator at

low frequencies (small k) than at higher frequencies. Figure 12.19 shows the radiation

intensity I plotted against the polar angle � and we see that for the dipole axis along the

direction � ¼ �=2, completely destructive interference occurs only on the perpendicular

axis � ¼ 0 and � ¼ �. There is no direction (value of �) giving completely constructive

interference. The highest value of the radiated intensity occurs along the axis � ¼ �=2 and

� ¼ 3�=2 but even this is only

I ¼ ðk f Þ2
I s;

where

k f � 1

The directional properties of a radiating dipole are incorporated in the design of

transmitting aerials. In acoustics a loudspeaker may be considered as a multi dipole source,

the face of the loudspeaker generating compression waves whilst its rear propagates

rarefactions. Acoustic reflections from surrounding walls give rise to undesirable

interference effects which are avoided by enclosing the speaker in a cabinet. Bass reflex

or phase inverter cabinets incorporate a vent on the same side as the speaker face at an

acoustic distance of half a wavelength from the rear of the speaker. The vent thus acts as a

second source in phase with the speaker face and radiation is improved.
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(Problems 12.3, 12.4, 12.5)

Interference from Linear Array of N Equal Sources

Figure 12.20 shows a linear array of N equal sources with constant separation f generating

signals which are all in phase ð�0 ¼ 0Þ. At a distant point P in a direction � from the

sources the phase difference between the signals from two successive sources is given by

� ¼ 2�

�
f sin �

and the resultant at P is found by superposing the equal contribution from each source with

the constant phase difference � between successive contributions.

But we found from Figure 1.11 that the resultant of such a superposition was given by

R ¼ a
sin ðN�=2Þ
sin ð�=2Þ

I max = I s (k f )2

I = I s (k f sin q )2

q

f << λ

kf << 1

q = p
2

q = p q = 0

dipole
axis

Figure 12.19 Intensity I versus direction � for interference pattern between waves from two equal
sources, � rad out of phase (dipole) with separation f � �. The dipole axis is along the direction
� ¼ ��=2
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where a is the signal amplitude at each source, so the intensity may be written

I ¼ R2 ¼ a2 sin2 ðN�=2Þ
sin2 ð�=2Þ

¼ I s

sin2 ðN�f sin �=�Þ
sin2 ð�f sin �=�Þ

¼ I s

sin2 N�

sin2 �

where I s is the intensity from each source and � ¼ �f sin �=�.

If we take the case of N ¼ 2, then

I ¼ I s

sin2 2�

sin2 �
¼ 4I s cos2 � ¼ 4I s cos2 �

2

which gives us the Young’s Slit Interference pattern.

We can follow the intensity pattern for N sources by considering the behaviour of the

term sin2 N�=sin2 �.

N f sin q 

sin q 

N f

f

q

q

f

f

f

Figure 12.20 Linear array of N equal sources separation f radiating in a direction � to a distant
point P. The resulting amplitude at P (see Figure 1.11) is given by

R ¼ a½sin Nð�=2Þ=sin ð�=2Þ

where a is the amplitude from each source and

� ¼ ð2�=�Þ f sin �

is the common phase difference between successive sources
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We see that when

� ¼ �

�
sin � ¼ 0 � �� 2�; etc:

i.e. when

f sin � ¼ 0; ��; �2� . . .� n�

constructive interference of the order n takes place, and

sin2 N�

sin2 �
! N 2� 2

� 2
! N 2

giving

I ¼ N 2I s

that is, a very strong intensity at the Principal Maximum condition of

f sin � ¼ n�

We can display the behaviour of the sin2 N�=sin2 � term as follows

Numerator sin2 N� is zero for N� ! 0� . . .N� . . . 2N�

# # #
Denominator sin2 � is zero for � ! 0 . . . � . . . 2�

The coincidence of zeros for both numerator and denominator determine the Principal

Maxima with the factor N 2 in the intensity, i.e. whenever f sin � ¼ n�.

Between these principal maxima are N � 1 points of zero intensity which occur

whenever the numerator sin2 N� ¼ 0 but where sin2 � remains finite.

These occur when

f sin � ¼ �

N
;

2�

N
. . . ðn � 1Þ �

N

The N � 2 subsidiary maxima which occur between the principal maxima have much

lower intensities because none of them contains the factor N 2. Figure 12.21 shows the

intensity curves for N ¼ 2; 4; 8 and N ! 1.

Two scales are given on the horizontal axis. One shows how the maxima occur at the

order of interference n ¼ f sin �=�. The other, using units of sin � as the ordinate displays

two features. It shows that the separation between the principal maxima in units of sin � is

�=f and that the width of half the base of the principal maxima in these units is �=N f (the

same value as the width of the base of subsidiary maxima). As N increases not only does

the principal intensity increase as N 2 but the width of the principal maximum becomes

very small.

As N becomes very large, the interference pattern becomes highly directional, very

sharply defined peaks of high intensity occurring whenever sin � changes by �=f .
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The directional properties of such a linear array are widely used in both transmitting and

receiving aerials and the polar plot for N ¼ 4 (Figure 12.22) displays these features. For N

large, such an array, used as a receiver, forms the basis of a radio telescope where the

receivers (sources) are set at a constant (but adjustable) separation f and tuned to receive a

fixed wavelength. Each receiver takes the form of a parabolic reflector, the axes of which

are kept parallel as the reflectors are oriented in different directions. The angular separation

between the directions of incidence for which the received signal is a maximum is given by

sin � ¼ �=f :

(Problems 12.6, 12.7)

Diffraction

Diffraction is classified as Fraunhofer or Fresnel. In Fraunhofer diffraction the pattern is

formed at such a distance from the diffracting system that the waves generating the pattern

may be considered as plane. A Fresnel diffraction pattern is formed so close to the

diffracting system that the waves generating the pattern still retain their curved

characteristics.

N = 2

–2

–2

–1

–1

0

0

1 2

1 2

–2 –1 0 1 2

–2 –1 0 1 2

units of
sin q 

N = 4

N = 8

N ∞

λ
f

λ
f

f sin q 

λ

f sin q 

λ

λ
Nf

λ
f

λ
f

λ
Nf

λ
f

λ
f

λ
Nf

λ
f

λ
f

λ
f

λ
f

units of
sin q 

f sin q 

λ

units of
sin q 

f sin q 

λ

units of
sin q 

Figure 12.21 Intensity of interference patterns from linear arrays of N equal sources of separation
f. The horizontal axis in units of f sin �=� gives the spectral order n of interference. The axis in units
of sin � shows that the separation between principal maxima is given by sin � ¼ �=f and the half-
width of the principal maximum is given by sin � ¼ �=Nf
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Fraunhofer Diffraction

The single narrow slit. Earlier in this chapter it was stated that the difference between

interference and diffraction is merely one of scale and not of physical behaviour.

Suppose we contract the scale of the N equal sources separation f of Figure 12.20 until

the separation between the first and the last source, originally Nf, becomes equal to a

distance d where d is now assumed to be the width of a narrow slit on which falls a

monochromatic wavefront of wavelength � where d � �. Each of the large number N equal

sources may now be considered as the origin of secondary wavelets generated across the

plane of the slit on the basis of Huygens’ Principle to form a system of waves diffracted in

all directions.

When these diffracted waves are focused on a screen as shown in Figure 12.23 the

intensity distribution of the diffracted waves may be found in terms of the aperture of the

slit, the wavelength � and the angle of diffraction �. In Figure 12.23 a plane light wave falls

normally on the slit aperture of width d and the waves diffracted at an angle � are brought

to focus at a point P on the screen PP0. The point P is sufficiently distant from the slit for all

wavefronts reaching it to be plane and we limit our discussion to Fraunhofer Diffraction.

Finding the amplitude of the light at P is the simple problem of superposing all the small

contributions from the N equals sources in the plane of the slit, taking into account the

phase differences which arise from the variation in path length from P to these different

sources. We have already solved this problem several times. In Chapter 10 we took it as an

example of the Fourier transform method but here we reapply the result already used in this

chapter on p. 364, namely that the intensity at P is given by

I ¼ I s

sin2 N�

sin2 �
where N� ¼ �

�
N f sin �

is half the phase difference between the contributions from the first and last sources. But

now N f ¼ d the slit width, and if we replace � by � where � ¼ ð�=�Þ d sin � is now half

Sources

f

q = p
2

λ
2

q = p
6

q = p
6

q = p q = 0

Figure 12.22 Polar plot of the intensity of the interference pattern from a linear array of four
sources with common separation f ¼ �=2. Note that the half-width of the principal maximum is
� ¼ �=6 satisfying the relation sin � ¼ �=Nf and that the separation between principal maxima
satisfies the relation that the change in sin � ¼ �=f
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the phase difference between the contributions from the opposite edges of the slit, the

intensity of the diffracted light at P is given by

I ¼ I s ¼
sin2 ð�=�Þd sin �

sin2 ð�=�NÞd sin �
¼ I s

sin2 �

sin2 ð�=NÞ

For N large

sin2 �

N
! �

N

� �2

and we have

I ¼ N 2I s

sin2 �

�2
¼ I0

sin2 �

�2

(recall that in the Fourier Transform derivation on p. 289,

I0 ¼ d 2h2

4�2

where h was the amplitude from each source).

Plotting I ¼ I0ðsin2 �=�2Þ with � ¼ ð�=�Þd sin � in Figure 12.24 we see that its pattern

is symmetrical about the value

� ¼ � ¼ 0

where I ¼ I0 because sin�=�! 1 as �! 0. The intensity I ¼ 0 whenever sin� ¼ 0 that

is, whenever � is a multiple of � or

� ¼ �

�
d sin � ¼ �� � 2� � 3�; etc:

Source of
monochromatic
light

Condenser
lens

Slit of
width d

Focusing
lens

Plane of
diffraction
pattern

d sin q 

q d
P

P0

Figure 12.23 A monochromatic wave normally incident on a narrow slit of width d is diffracted
through an angle � and the light in this direction is focused at a point P. The amplitude at P is the
superposition of all the secondary waves in the plane of the slit with their appropriate phases. The
extreme phase difference from contributing waves at opposite edges of the slit is 
 ¼
2�d sin �=� ¼ 2�
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giving

d sin � ¼ �� � 2� � 3�; etc:

This condition for diffraction minima is the same as that for interference maxima

between two slits of separation d, and this is important when we consider the problem of

light transmission through more than one slit.

The intensity distribution maxima occur whenever the factor sin2 �=�2 has a maximum;

that is, when

d

d�

sin�

�

� �2

¼ d

d�

sin�

�

� �
¼ 0

or

cos�

�
� sin�

�2
¼ 0

This occurs whenever � ¼ tan�, and Figure 12.25 shows that the roots of this equation

are closely approximated by � ¼ �3�=2;�5�=2, etc. (see problem at end of chapter on

exact values).

Table 12.1 shows the relative intensities of the subsidiary maxima with respect to the

principal maximum I0.

The rapid decrease in intensity as we move from the centre of the pattern explains why

only the first two or three subsidiary maxima are normally visible.

Scale of the Intensity Distribution

The width of the principal maximum is governed by the condition d sin � ¼ ��. A constant

wavelength � means that a decrease in the slit width d will increase the value of sin � and

will widen the principal maximum and the separation between subsidiary maxima. The

narrower the slit the wider the diffraction pattern; that is, in terms of a Fourier transform the

narrower the pulse in x-space the greater the region in k- or wave number space required to

represent it.

λ 2λ

–2π –π 0 2ππ

I 0

I 0

sin2a
a 

2

d sin q 

λ
p d sin q α =

α

Figure 12.24 Diffraction pattern from a single narrow slit of width d has an intensity I ¼
I0 sin2 �=�2 where � ¼ � d sin �=�
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(Problems 12.8, 12.9)

Intensity Distribution for Interference with Diffraction
from N Identical Slits

The extension of the analysis from the example of one slit to that of N equal slits of width d

and common spacing f, Figure 12.26, is very simple.

3π
2

0
0 π

2

tan a

tan a

y

y = a

Figure 12.25 Position of principal and subsidiary maxima of single slit diffraction pattern is given
by the intersections of y ¼ � and y ¼ tan�

Table 12.1

�
sin2 �

� 2

I0 sin2 �

� 2

0 1 I0

3�

2

4

9�2

I0

22:2

5�

2

4

25� 2

I0

61:7

7�

2

4

49� 2

I0

121
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To obtain the expression for the intensity at a point P of diffracted light from a single

slit we considered the contributions from the multiple equal sources across the plane of the

slit.

We obtained the result

I ¼ I0

sin2 �

�2

by contracting the original linear array of N sources of spacing f on p. 364. If we expand the

system again to recover the linear array, where each source is now a slit giving us the

diffraction contribution

I s ¼ I0

sin2 �

�2

we need only insert this value at I s in the original expression for the interference intensity,

I ¼ I s

sin2 N�

sin2�

Plane of
intensity
pattern

P

N identical slits
width d
separation f

Plane of 
focusing
lens

I = I0
sin2 sin2Nα

α

α θ 

β
sin2β2

π
λ

= d sin 

β θ 

θ 

π
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= f sin 

d

f

P
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Figure 12.26 Intensity distribution for diffraction by N equal slits is

I ¼ I0
sin2 �

� 2

sin2 N�

sin2 �

the product of the diffraction intensity for one slit, I 0sin
2 �=�2 and the interference intensity

between N sources sin2 N�=sin2 �, where � ¼ ð�=�Þd sin � and � ¼ ð�=�Þ f sin �
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on p. 364 where

� ¼ �

�
f sin �

to obtain, for the intensity at P in Figure 12.26, the value

I ¼ I0

sin2 �

�2

sin2 N�

sin2�
;

where

� ¼ �

�
d sin �

Note that this expression combines the diffraction term sin2 �=�2 for each slit (source) and

the interference term sin2 N�=sin2 � from N sources (which confirms what we expected

from the opening paragraphs on interference). The diffraction pattern for any number of

slits will always have an envelope

sin2 �

�2
ðsingle slit diffractionÞ

modifying the intensity of the multiple slit (source) interference pattern

sin2 N�

sin2 �

Fraunhofer Diffraction for Two Equal Slits ðN ¼ 2Þ
When N ¼ 2 the factor

sin2 N�

sin2 �
¼ 4 cos2 �

so that the intensity

I ¼ 4I0

sin2 �

�2
cos2 �

the factor 4 arising from N 2 whilst the cos2 � term is familiar from the double source

interference discussion. The intensity distribution for N ¼ 2, f ¼ 2d, is shown in Figure 12.27.

The intensity is zero at the diffraction minima when d sin � ¼ n�. It is also zero at the

interference minima when f sin � ¼ ðn þ 1
2
Þ�.

At some value of � an interference maximum occurs for f sin � ¼ n� at the same position

as a diffraction minimum occurs for d sin � ¼ m�.
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In this case the diffraction minimum suppresses the interference maximum and the order

n of interference is called a missing order.

The value of n depends upon the ratio of the slit spacing to the slit width for

n�

m�
¼ f sin �

d sin �

i.e.

n

m
¼ f

d
¼ �

�

Thus, if

f

d
¼ 2

the missing orders will be n ¼ 2; 4; 6; 8, etc. for m ¼ 1; 2; 3; 4, etc.

The ratio

f

d
¼ �

�

governs the scale of the diffraction pattern since this determines the number of interference

fringes between diffraction minima and the scale of the diffraction envelope is governed by�.

(Problem 12.10)

Transmission Diffraction Grating (N Large)

A large number N of equivalent slits forms a transmission diffraction grating where the

common separation f between successive slits is called the grating space.

missing order

f = 2d

0 1 2 3 4 n

2λλ d sinθ

Figure 12.27 Diffraction pattern for two equal slits, showing interference fringes modified by the
envelope of a single slit diffraction pattern. Whenever diffraction minima coincide with interference
maxima a fringe is suppressed to give a ‘missing order’ of interference
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Again, in the expression for the intensity

I ¼ I0

sin2 �

�2

sin2 N�

sin2�

the pattern lies under the single slit diffraction term (Figure 12.28).

sin2 �

�2

The principal interference maxima occur at

f sin � ¼ n�

having the factor N 2 in their intensity and these are observed as spectral lines of order n.

We see, however, that the intensities of the spectral lines of a given wavelength decrease

with increasing spectral order because of the modifying sin2 �=�2 envelope.

Resolving Power of Diffraction Grating

The importance of the diffraction grating as an optical instrument lies in its ability to

resolve the spectral lines of two wavelengths which are too close to be separated by the

naked eye. If these two wavelengths are � and �þ d� where d�=� is very small the

Resolving Power for any optical instrument is given by the ratio �=d�.

single slit
diffraction envelope

n = spectral order

The intensity of each
spectral line contains
the factor N 

2

n = 0 n = 1 n = 2 n = 3

N - 2 subsidiary maxima

Figure 12.28 Spectral line of a given wavelength produced by a diffraction grating loses
intensity with increasing order n as it is modified by the single slit diffraction envelope. At
the principal maxima each spectral line has an intensity factor N 2 where N is the number of lines in
the grating
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Two such lines are just resolved, according to Rayleigh’s Criterion, when the maximum

of one falls upon the first minimum of the other. If the lines are closer than this their

separate intensities cannot be distinguished.

If we recall that the spectral lines are the principal maxima of the interference pattern

from many slits we may display Rayleigh’s Criterion in Figure 12.29 where the nth order

spectral lines of the two wavelengths are plotted on an axis measured in units of sin �. We

have already seen in Figure 12.21 that the half width of the spectral lines (principal

maxima) measured in such units is given by �=Nf where N is now the number of

grating lines (slits) and f is the grating space. In Figure 12.29 the nth order of wavelength �
occurs when

f sin � ¼ n�

n th order spectral
line for λ + dλ

n th order spectral
line for λ

f (sin   + ∆sin   ) = n (λ + dλ)θ θ

∆(sin  ) = λ /Nfθ

f sin   = n λ θ

 sin   θ

Figure 12.29 Rayleigh’s criterion states that the two wavelengths � and �þ d� are just resolved
in the nth spectral order when the maximum of one line falls upon the first minimum of the other as
shown. This separation, in units of sin �, is given by �=Nf where N is the number of diffraction lines
in the grating and f is the grating space. This leads to the result that the resolving power of the
grating �=d� ¼ nN
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whilst the nth order for �þ d� satisfies the condition

f ½sin �þ�ðsin �Þ
 ¼ nð�þ d�Þ
so that

f�ðsin �Þ ¼ n d�

Rayleigh’s Criterion requires that the fractional change

�ðsin �Þ ¼ �

Nf

so that

f�ðsin �Þ ¼ n d� ¼ �

N

Hence the Resolving Power of the diffraction grating in the nth order is given by

�

d�
¼ Nn

Note that the Resolving Power increases with the number of grating lines N and the

spectral order n. A limitation is placed on the useful range of n by the decrease of intensity

with increasing n due to the modifying diffraction envelope

sin2 �

�2
ðFig: 12:28Þ

Resolving Power in Terms of the Bandwidth Theorem

A spectral line in the nth order is formed when f sin � ¼ n� where f sin � is the path

difference between light coming from two successive slits in the grating. The extreme path

difference between light coming from opposite ends of the grating of N lines is therefore

given by

Nf sin � ¼ Nn�

and the time difference between signals travelling these extreme paths is

�t ¼ Nn�

c

where c is the velocity of light.

The light frequency 	 ¼ c=� has a resolvable differential change

j�	j ¼ c
j��j
�2

¼ c

Nn�

because ��=� ¼ 1=Nn (from the inverse of the Resolving Power).
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Hence

�	 ¼ c

Nn�
¼ 1

�t

or �	�t ¼ 1 (the Bandwidth Theorem).

Thus, the frequency difference which can be resolved is the inverse of the time difference

between signals following the extreme paths

ð�	�t ¼ 1 is equivalent of course to �!�t ¼ 2�Þ

If we now write the extreme path difference as

Nn� ¼ �x

we have, from the inverse of the Resolving Power, that

��

�
¼ 1

Nn

so

j��j
�2

¼ �
1

�

� �
¼ �k

2�
¼ 1

Nn�
¼ 1

�x

where the wave number k ¼ 2�=�.

Hence we also have

�x�k ¼ 2�

where �k is a measure of the resolvable wavelength difference expressed in terms of the

difference �x between the extreme paths.

On pp. 70 and 71 we discussed the quality factor Q of an oscillatory system. Note that

the resolving power may be considered as the Q of an instrument such as the diffraction

grating or a Fabry–Perot cavity for

�

��
¼ 	

�	

��� ��� ¼ !

�!
¼ Q

(Problems 12.11, 12.12, 12.13, 12.14)

Fraunhofer Diffraction from a Rectangular Aperture

The value of the Fourier transform method of Chapter 10 becomes apparent when we

consider plane wave diffraction from an aperture which is finite in two dimensions.

Although Chapter 10 carried through the transform analysis for the case of only one

variable it is equally applicable to functions of more than one variable.

In two dimensions, the function f ðxÞ becomes the function f ðx; yÞ, giving a transform

Fðkx; kyÞ where the subscripts give the directions with which the wave numbers are

associated.

Fraunhofer Diffraction from a Rectangular Aperture 377



In Figure 12.30 a plane wavefront is diffracted as it passes through the rectangular

aperture of dimensions d in the x-direction and b in the y-direction. The vector k, which is

normal to the diffracted wavefront, has direction cosines l and m with respect to the x- and

y-axes respectively. This wavefront is brought to a focus at point P, and the amplitude at P

is the superposition of the contributions from all points ðx; yÞ in the aperture with their

appropriate phases.

A typical point ðx; yÞ in the aperture may be denoted by the vector r; the difference in

phase between the contribution from this point and the central point O of the aperture is, of

course, ð2�=�Þ (path difference). But the path difference is merely the projection of the

vector r upon the vector k, and the phase difference is k � r ¼ ð2�=�Þðlx þ myÞ, where

lx þ my is the projection of r on k.

If we write

2�l

�
¼ kx and

2�m

�
¼ ky

we have the Fourier transform in two dimensions

Fðkx; kyÞ ¼
1

ð2�Þ2

ð1
�1

ð1
�1

f ðx; yÞ e�iðk xxþk yyÞ dx dy

where f ðx; yÞ is the amplitude of the small contributions from the points in the aperture.

Taking f ðx; yÞ equal to a constant a, we have Fðkx; kyÞ the amplitude in k-space at P

¼ a

ð2�Þ2

ðþd=2

�d=2

ðþb=2

�b=2

e�ik xx e�ik yy dx dy

¼ a

4�2
bd

sin�

�

sin�

�

y

b

d

r

xy

lx +my

x
k

P

0

Plane wavefront
normally incident
on rectangular
aperture

Plane of
focusing
lens

Plane of
diffraction
image

Light diffracted
in direction k
focuses at P

Figure 12.30 Plane waves of monochromatic light incident normally on a rectangular aperture are
diffracted in a direction k. All light in this direction is brought to focus at P in the image plane. The
amplitude at P is the superposition of contributions from all the typical points, x, y in the aperture
plane with their appropriate phase relationships
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where

� ¼ �ld

�
¼ kxd

2

and

� ¼ �mb

�
¼ kyb

2

Physically the integration with respect to y evaluates the contribution of a strip of the

aperture along the y direction, and integrating with respect to x then adds the contributions

of all these strips with their appropriate phase relationships.

The intensity distribution of the rectangular aperture is given by

I ¼ I0

sin2 �

�2

sin2 �

� 2

and relative intensities of the subsidiary maxima depend upon the product of the two

diffraction terms sin2 �=�2 and sin2 �=� 2.

These relative values will therefore be numerically equal to the product of any two terms

of the series

4

9�2
;

4

25�2
;

4

49�2
; etc:

The diffraction pattern from such an aperture together with a plan showing the relative

intensities is given in Figure 12.31.

Fraunhofer Diffraction from a Circular Aperture

Diffraction through a circular aperture presents another two-dimensional problem to which

the Fourier transform technique may be applied.

As in the case of the rectangular aperture, the diffracted plane wave propagates in a

direction k with direction cosines l and m with respect to the x- and y-axes (Figure 12.32a).

The circular aperture has a radius r0 and any point in it is specified by polar coordinates

ðr; �Þ where x ¼ r cos � and y ¼ r sin �. This plane wavefront in direction k is focused at a

point P in the plane of the diffraction pattern and the amplitude at P is the superposition of

the contributions from all points ðr; �Þ in the aperture with their appropriate phase

relationships. The phase difference between the contribution from a point defined ðx; yÞ and

that from the central point of the aperture is

2�

�
(path difference) ¼ 2�

�
ðlx þ myÞ ¼ kxx þ kyy ð12:6Þ

as with the rectangular aperture, so that the Fourier transform becomes

FðkxkyÞ ¼
1

ð2�Þ2

ð1
�1

ð1
�1

f ðx; yÞ e�iðk yxþk yyÞ dx dy ð12:7Þ
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If we use polar coordinates, f ðx; yÞ becomes f ðr; �Þ and dx dy becomes r dr d�, where the

limits of � are from 0 to 2�. Moreover, because of the circular symmetry we may simplify

the problem. The amplitude or intensity distribution along any radius of the diffraction

pattern is sufficient to define the whole of the pattern, and we may choose this single radial

direction conveniently by restricting k to lie wholly in the xz plane (Figure 12.32b) so that

m ¼ ky ¼ 0 and the phase difference is simply

2�

�
lx ¼ kxx ¼ kxr cos �

Assuming that f ðr; �Þ is a constant amplitude a at all points in the circular aperture, the

transform becomes

FðkxÞ ¼
a

2�

ð 2�

0

d�

ð r0

0

e�ik xr cos �r dr ð12:8Þ

This can be integrated by parts with respect to r and then term by term in a power series

for cos �, but the result is well known and conveniently expressed in terms of a Bessel

function as

FðkxÞ ¼
ar0

kx

J1ðkxr0Þ

where J1ðkxr0Þ is called a Bessel function of the first order.
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Figure 12.31 The distribution of intensity in the diffraction pattern from a rectangular aperture is
seen as the product of two single-slit diffraction patterns, a wide diffraction pattern from the narrow
dimension of the slit and a narrow diffraction pattern from the wide dimension of the slit. This
‘rotates’ the diffraction pattern through 90	 with respect to the aperture
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Bessel functions are series expansions which are analogous to sine and cosine functions.

Where sines and cosines are those functions which satisfy rectangular boundary conditions

defined in Cartesian coordinates, Bessel functions satisfy circular or cylindrical boundary

conditions requiring polar coordinates.

Standing waves on a circular membrane, e.g. a drum, would require definition in terms of

Bessel functions.

The Bessel function of order n is written

JnðxÞ ¼
xn

2nn!
1 � x2

2 � 2n þ 2
þ x4

2 � 4 � 2n þ 2 � 2n þ 4
. . .

� �

so that

J1ðxÞ ¼
x

2
� x3

224
þ x5

22426
� x7

2242628

The expression a2r 2
0 ½J1ðkxr0Þ=kxr0
2

, which measures the intensity along any radius of the

diffraction pattern due to a circular aperture is normalized and plotted in Figure 12.33.
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Figure 12.32 (a) A plane monochromatic wave diffracted in a direction k from a circular aperture is
focused at a point P in the image plane. Contributions from all points x, y in the aperture superpose
at P with appropriate phase relationships. (b) The direction k of (a) is chosen to lie wholly in the xz-
plane to simplify the analysis. No generality is lost because of circular symmetry. The variation of the
amplitude of diffracted light along any one radius determines the complete pattern
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J1ðkxr0Þ has an infinite number of zeros, and the diffraction pattern is formed by an

infinite number of light and dark concentric rings. The first dark band will occur at the first

zero of J1ðkxr0Þ which is given by kxr0 ¼ 1:219�.

However,

kxr0 ¼ 2�

�
lr0 ¼ 2�

�
r0 sin � 0z

where � 0z is the angle between the vector k and the z-axis and defines the angle of

diffraction. The first minimum therefore occurs at r0 sin � 0z ¼ 0:61� and the next minimum

at r0 sin � 0z ¼ 1:16�.

If the aperture were square with a side length 2r0 (the diameter of the circle) the first dark

fringe would be at r0 sin � 0z ¼ 0:5� and the second at r0 sin � 0z ¼ �.

As the radius of the circular aperture is reduced the value of � 0z for the first minimum

is increased and the whole pattern expands. This reminds us that a reduction of the pulse in

x-space requires an increase in wave number or k-space to represent it.

We may write equation (12.8) as

FðkxÞ ¼
a

2�

ð ro

0

ð 2�

0

e�ik x�r cos �r drd�

where
Ð 2�

0
e�ik x�r cos �d� ¼ 2�J0ðkxrÞ and J0 is the Bessel function of order zero.

Then

FðkxÞ ¼ a

ðr0

0

J0ðkxrÞrdr

Relative intensity of diffraction pattern
from circular aperture

r = 0

r0 sin qz 1.22π

.61λ 1.16λ

2.32π 2π
λ

2π
λ

r ′

kx = (direction cosine)x

I ∝
J1(kx r0 )

kx r0

2

′

r0 sin qz ′

Figure 12.33 Intensity of the diffraction pattern from a circular aperture of radius r0 versus r0, the
radius of the pattern. The intensity is proportional to ½J1ðkxr0Þ=kxr0
2, where J 1 is Bessel’s function
of order 1. The pattern consists of a central circular principal maximum surrounded by a series of
concentric rings of minima and subsidiary maxima of rapidly diminishing intensity
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Now J1ðkxrÞ and J0ðkxrÞrdr are related by

ðkxr0

0

J0ðkxrÞkxrdðkxrÞ ¼ kxr0J1ðkxr0Þ

giving

FðkxÞ ¼ a�r2
0

2J1ðkxr0Þ
kxr0

� �

where r0 is the radius of the aperture.

The Intensity

I ¼ I0

J1ðkxr0Þ
kxr0

� �2

with the curve shown in Figure 12.33.

Fraunhofer Far Field Diffraction

If we remove the focusing lens in Figure 12.32 and leave the aperture open or place the

lens within it we have the conditions for far field diffraction, Figure 12.34, where R0
0 the

distance from ~OO to P0 is � distances in the aperture and image planes from the optic axis.

The aperture is uniformly illuminated by a distant monochromatic source and a small area

d~ss ¼ d~xxd~yy in the aperture is � �2, where � is the wavelength.

θz′
R0

r0

R′

~ ~ ~

~

~

~
P (x, y)

ds

o

P′(x′,y′,z′)

′

Z

Figure 12.34 In Fraunhofer far field diffraction the distance from the aperture to the image point
P0 is � distances in the aperture and image planes from the optic axis. The electric field at P0 is the
integral of the spherical waves from small areas d~ss in the aperture plane and the resulting intensity
pattern is that of Figure 12.33. It is known as the Airy disc
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The electric field at P0 due to the spherical wave from d~ss is

dEP
0 ¼

~EE

R0 ei!t�kR0
d~ss

Where ~EEei!t is the field at d~ss
Now

R02 ¼ z02 þ ðx0 � ~xxÞ2 þ ðy0 � ~yyÞ2

and

R02
0 ¼ z02 þ x02 þ y02

which combine to give

R0 ¼ R0
0½1 þ ð~xx2 þ ~yy2Þ=R02

0 � 2ðx0~xx þ y0~yyÞ=R02
0 


1=2

and R02
0 � ð~xx2 þ ~yy2Þ

so we write

R0 ¼ R0
0½1 � 2ðx0~xx þ y0~yyÞ=R02

0 

1=2

and if we neglect higher terms

R0 ¼ R0
0½1 � ðx0~xx þ y0~yyÞ=R02

0 


¼ R0
0 �

x0~xx

R0
0

� y0~yy

R0
0

We use this value for R0 in the expression for dEp0 to give the total field at P0 as

EP0 ¼
~EEei!t�kR0

0

R0
0

ð ð
aperture

e
ik

ðx0~xxþy0~yyÞ
R0

0 d~ss

Comparison with equation (12.6) shows that k~xx=R0
0 ¼ kl and k~yy=R0

0 ¼ km of that

equation and proceeding via polar co-ordinates we obtain the same value for the intensity

of the diffraction pattern,

i.e.

I ¼ I0

J1ðkr0sin �02Þ
kr0sin �

0
2

� �2

in Figure 12:33

This far field diffraction pattern is known as the Airy disc, Figure 12.35, and its size places

a limit on the resolving power of a telescope. When the two components of a double star

with an angular separation �
 are viewed through a telescope with an objective lens of

focal length l and diameter d their images will appear as two Airy discs separated by the

angle �
. The two diffraction patterns will be resolved if �
 is much wider than the
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angluar width of a disc but not if it is much less. Lord Rayleigh’s criterion (Figure 12.29)

gives the critical angle �
 for resolution as that when the maximum of one disc falls on the

first minimum of the other �, Figure 12.36. Figure 12.33 then gives

�
 ¼ 0:61�

r0

¼ 1:22�

d

ð�
 ¼ �0
z in Figure 12:33Þ

where � is the rediated wavelength.

Figure 12.35 Photograph of an Airy disc showing the central bright disc, the first dark ring and the
first subsidiary maximum. Compare this with Figure 12.33

∆ φ

∆ φ

Figure 12.36 Two stars with angular separation �
 form separate Airy disc images when viewed
through a telescope. Rayleigh’s criterion (Figure 12.29) states that the these images are resolved
when the central maximum of one falls upon the first minimum of the other
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This condition is known as diffraction-limited resolution. A poor quality lens will

introduce aberrations and will not meet this criterion.

The Michelson Stellar Interferometer

In the discussion on Spatial Coherence (p. 360) we saw that the relative displacement of the

interference fringes from separate sources 1 and 2 led to a partial loss of the visibility of the

fringes defined as

V ¼ Imax � Imin

Imax þ Imin

and eventually when the displacement was equal to half a fringe width V ¼ 0 and there was

a complete loss of contrast.

Michelson’s Stellar Interferomenter (1920) used this to measure the angular separation

between the two components of a double star or, alternatively, the angular width of a

single star.

Initially, we take the simplest case to illustrate the principle and then discuss the

practical problems which arise. We assume in the first instance that light from the stars is

monochromatic with a wavelenght �0. Michelson used four mirros M1 M2 M3 M4 mounted

on a girder with two slits S1 and S2 in front of the lens of an astronomical telescope, Fig-

ure 12.37. The slits were perpendicular to the line joining the two stars. The separation h of

the outer pair of mirrors (�meters) was increased until the fringes observed in the focal

plane of the objective just disappeared. Assuming zero path difference between M1M2 P0

and M4 M3 P0 the light from star A will form its zero order fringe maximum at P0 and its

first order fringe maximum at P1, due to a path difference S2N ¼ d sin � ¼ �0 so the fringe

spacing is determined by d, the separation between the inner mirrors M2 and M3.

The condition for fringe disappearance is that rays from star B will form a first order

maximum fringe midway between P0 and P1, that is, when

CM1M2S1P0 � M4M3S2P0 ¼ CM1 ¼ h sin
 ¼ �0=2

The condition for fringe disappearnce is therefore determined by h while the angular size

of the fringes depends on d so there is an effective magnification of h=d over a fringe

system produced by the slits alone.

The angles � and 
 are small and the minimum value of h is found which produces

V ¼ 0 so that the fringes disappear at

h
 ¼ �0=2 or h ¼ �

2


Measurement of h thus determines the double-star angular separation.

Several assumptions have been made in this simple case presentation. First, that the

intensities of the light radiated by the stars are equal and that they are coherent soruces. In

386 Interference and Diffraction



fact, even if the sources are incoherent their radiation is essentially coherent at the

interferometer. Second, the radiation is not monochromatic and only a few fringes around

the zero order were visible so �0 must be taken as a mean wavelength. Finally, the

introduction of a lens into the system inevitably creates Airy discs and the visibility must

be expressed in terms of the Airy disc intensity distribution. This results in

V ¼ 2
J1ðuÞ

u

� �

where

u ¼ �h
=�0

B

B
C

A

A

h
P1

M2 S1

S2M3

M4

M1

P0

h sin f

d

N

d sin

θ

θ

f

f

Figure 12.37 In the Michelson stellar interferometer light from stars A and B strike the movable
outer mirrors M1 and M4 to be reflected via fixed mirrors M2 and M3 through two slits S1 and S2 and a
lens to form interference fringes. Light from Star A forms its zero order fringe at P0 and its first order
fringe at P1 when S2N ¼ d sin � ¼ �0. The minimum separation h of M1M4 is found for light from B to
reduce the fringe visibility to zero, that is, when the path difference h ¼ sin
 ¼ �0=2. The angles
are so small that � and 
 replace their sines. Note that the fringe separation depends on d, but the
fringe visibility is governed by h
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If this visibility is plotted against h
=�0 its first zero occurs at 1.22 so the fringes disappear

when h ¼ 1:22�0=
.

In fact, Michelson first used his interferometer in 1920 to measure the angular diameter

of the star Betelgeuse the colour of which is orange. His astronomical telescope was the

2.54 m (100 in.) telescope of the Mt. Wilson Observatory. A mean wavelength

�0 ¼ 570 � 10�9m was used and the fringes vanished when h ¼ 3:07 m to give an angular

diameter 
 ¼ 22:6 � 10�8 radians or 0.047 arc seconds. The distance of Betelgeuse from

the Earth was known and its diameter was calculated to be about 384 � 106km, roughly

280 times that of the Sun. This magnitude is greater than that of the orbital diameter of

Mars around the Sun.

The Convolution Array Theorem

This is a very useful application of the Convolution Theorem p. 297 5th edn, when one of

the members is the sum of a series of d functions.

e.g.

gðxÞ ¼ f1ðxÞ �
X

m

�ðx � xmÞ

¼
ð1
�1

f1ðx0Þ
X

m

�ðx � x0 � xmÞdx0

¼
X

m

f1ðx � xmÞ

This is a linear addition of functions each of the form f1ðxÞ but shifted to new origins at

xmðm ¼ 1; 2; 3 . . .Þ, Figure 12.38.

The convolution theorem gives the Fourier Transform of gðxÞ as

F½ gðxÞ
 ¼ F½ f1ðxÞ
F
X

m

�ðx � xmÞ
" #

i.e.

FðkxÞ ¼ F1½ f1ðxÞ

X

m

e�ikxxm

so the transform of the spatially shifted local function is just the product of the transform of

the local function and a phase factor.

This is the Array Theorem which we now apply in a more rigorous approach to the effect

of diffraction on the interference fringes in Young’s slit experiment (p. 358) where the

illuminating source is equidistant from both slits.

The Array Theorem may be applied to any combination of identical apertures but

Young’s experiment involves only the two rectangular (slits) pulses in Figure 12.39a. Here,

f1ðxÞ is a rectangular pulse of width d and the xm values above are xm ¼ � a=2.
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Thus, we have the transform amplitude

FðkxÞ ¼ F1ðkxÞ
X

m

e�ikxxm

where kx ¼ k � x ¼ kx sin � and k in Figure 13.39b is the vector direction from x ¼ �a=2 to

a point P on the diffraction-interference pattern. p. 288 gives

F1ðkxÞ /
sin�

�

where

� ¼ �

�
d sin �

The second term, a phase factor, is

X
m

e�ikxxm ¼ ½eikxa=2 þ e�ikxa=2
 ¼ 2 cos kxa=2

x

x

x

f1

f1 f2

∞ ∞ ∞

x1

x1 x2 x3

x2 x3

f2 

×

Figure 12.38 In the convolution array theorem a function f1ðxÞ is convolved with a series of Dirac
functions which shift it to new origins
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We may equate kxa=2 with �=2 on p. 358 where � ¼ 2�
� ðx2 � x1Þ is the phase difference at

point P due to the path difference from the two sources. Here, kxa=2 ¼ ka sin �=2 ¼
�a sin �=� (Figure 13.39b). When coskxa=2 ¼ 1 for maximum constructive interference

ka sin �=2 ¼ �

�
a sin � ¼ n�

i.e.

a sin � ¼ n�

The amplitude squared or intensity is, therefore

I / sin2�

�2
4 cos2ð�=2Þ

a cos2 interference system modulated by a diffraction envelope as shown in Figure 12.27

–a /2 +a /20
x

>d< >d<

(a)

–a /2 +a /20

x

k

P

P
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a 
si

n θ

θ

(b)

Figure 12.39 Young’s double slit experiment represented in convolution array theorem (a) by two
reactangular pulses and (b) with a path difference in the direction k of d sin
 where a is the
separation between the pulse centres
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This method can be extended to produce the pattern for a diffraction grating of N

identical slits.

The Optical Transfer Function

The modern method of testing an optical system, e.g. a lens, is to consider the object

as a series of Fourier frequency components and to find the response of the system to

these frequencies. A test chart with a sinusoidal distribution of intensity would make a

suitable object for this purpose. The function of the lens or optical system is considered to

be that of a linear operator which transforms a sinusoidal input into an undistorted

sinusoidal output.

The linear operator is defined in terms of the Optical Transfer Function (OTF)

which may be real or complex. The real part, the Modulation Transfer Function (MTF),

measures the effect of the lens on the amplitude of the sinusoidal input; the complex

element is the Phase Transfer Function (PTF), a shift in phase when aberrations are present.

If there are no aberrations and the effect on the image is limited to diffraction the PTF is

zero.

Changing the amplitude of the object frequency components affects the contrast between

different parts of the image compared with the corresponding parts of the object. We shall

evaluate this effect at the end of the analysis.

We shall assume that the object is space invariant and incoherent. Space invariance

means that the only effect of moving a point source over the object is to change the location

of the image. When an object is incoherent its intensity or irradiance varies from point to

point and all contributions to the final image are added under the integral sign.

Over a small area dx dy of the object the radiated flux will be I0ðx; yÞdx dy and this makes

its contribution to the image intensity. In addition, every point source on the object creates

a circular diffraction pattern (Airy disc) around the corresponding image point so the

resulting intensity of the image at ðx0; y0Þ will be

d I0ðx0; y0Þ ¼ I0ðx; yÞOðx; y; x0y0Þdx dy

where Oðx; y; x0y0Þ is the radially symmetric intensity distribution of the diffraction pattern

(Airy disc). In this context it is called the Point Spread Function (PSF).

Adding all contributions gives the image intensity

I0ðx0; y0Þ ¼
ð1
�1

ð1
�1

Ioðx; yÞOðx; y; x0y0Þdx dy

If, as we shall assume for simplicity, the magnification is unity, there is a one-to-one

correspondence between the point ðx; yÞ on the object and the centre of its diffraction

pattern in the image plane. Using ðx; yÞ as the coordinate of this centre the value of

Oðx; y; x0; y0Þ at any other point ðx0; y0Þ in the diffraction pattern is given by

Oðx0 � x; y0 � yÞ
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Thus, the intensity or irradiance at any image point may be written

I0ðx0; y0Þ ¼
ð1
�1

ð1
�1

I0ðx; yÞOðx0 � x; y0 � yÞdx dy

This is merely the two-dimensional form of the convolution we met on p. 293 and we

reduce it to one dimension by writing

I0ðx0Þ ¼
ð1
�1

I0ðxÞOðx0 � xÞdx ¼
ð1
�1

I0ðx0 � xÞOðxÞdx

because the convolution theorem of p. 297 allows us to exchange the variables of the

functions under the convolution integral.

This is evidently of the form

I0 ¼ I0 � O

with Fourier Transforms

FðI0Þ ¼ FðI0Þ � FðOÞ

The choice of one dimension which adds clarity to the following analysis tranforms the

PSF to a Line Spread Function (LSF) by cutting a narrow slice from the three-dimensional

PSF. This is achieved by using a line source represented by a Dirac � function, the sifting

property of which isolates an infinitesimally narrow section of the PSF.

The shape of the three-dimensional PSF may be imagined by rotating Figure 12.33 about

its vertical axis for a complete revolution. The profile of a slice along the diameter through

the centre of the PSF is then the intensity of Figure 12.33 together with its reflection about

the vertical axis. Any other slice, not through the centre, will have a similar profile but will

differ in some details, e.g. its minimum values will not be zero, Figure 12.40.

Thus, in one dimension, replacing OðxÞ by LðxÞ the LSF, we have

I0ðx0Þ ¼
ð1
�1

I0ðx0 � xÞ LðxÞdx

or

I0 ¼ I0 � L ¼ L � I0

with

FðI0Þ ¼ FðI0Þ � FðLÞ ¼ FðLÞ � FðI0Þ

Let us write the intensity distribution of an object frequency component in one dimension

as a þ bcoskxx, where b modulates the cosine and a is a positive d.c. bias greater than b so
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that the intensity is always positive. Then, in the convolution above

I0 ¼ a þ bcoskxðx0 � xÞ

and the image intensity at x0 is

I0ðx0Þ ¼
ð1
�1

½a þ bcoskxðx0 � xÞ
LðxÞ dx

¼
ð1
�1

LðxÞ½a þ bcoskxðx0 � xÞ dx

We remove the x0 terms from the integral by expanding the cosine term to give

I0ðx0Þ ¼ a

ð1
�1

LðxÞdx þ b cos kxx0
ð1
�1

LðxÞ cos kxxdx þ b sin kxx0
ð1
�1

LðxÞ sin kxx dx

ð12:9Þ

The integrals in the second and third terms on right-hand side of this equation are,

repectively, the cosine and sine Fourier transforms from pp. 285, 286.

If we write

CðkxÞ ¼
ð1
�1

LðxÞcoskxxdx

and

SðkxÞ ¼
ð1
�1

LðxÞsinkxxdx

I

Figure 12.40 The profile of the Line Spread Function LðxÞ is formed by cutting an off-centre slice
from the three-dimensional Point Spread Function: LðxÞ is the area under the curve. Note that the
minimum values of LðxÞ are non-zero, unlike the curve of Figure 12.33
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we have

CðkxÞ � i SðkxÞ ¼
ð1
�1

LðxÞe�ikxxdx ¼ FðLxÞ ¼ MðkxÞe�i
ðkxÞ

where

MðkxÞ ¼ ½CðkxÞ2 þ SðkxÞ2
1=2

is the MTF and e�i
ðkxÞ is the PTF with

tan
 ¼ SðkxÞ=CðkxÞ

The OTF is, therefore, the Fourier transform of the LSF.

If the LSF is symmetrical, as in the case of the diffraction pattern, the odd terms in SðkxÞ
are zero, so the phase change 
 ¼ 0 and the OTF is real.

For a given frequency component n we can normalize LðxÞ to give

LnðxÞ ¼
LðxÞÐ1

�1 LnðxÞdx
¼ 1

so that equation (12.9) becomes

I0ðx0Þ ¼ a þ MðkxÞbðcoskxx0cos
� sinkxx0sin
Þ
¼ a þ MðkxÞbðcos kxx0 þ 
Þ

In the absence of aberrations, that is, in the symmetric diffraction limited case, 
 ¼ 0: I0 is

shown in Figure 12.41(a) and I0ðx0Þ in Figure 12.41(b) where 
 6¼ 0 due to aberrations.

a

b

I0(x)

(a)

Figure 12.41 (a) The object frequency component a þ b cos kxx is modified by the Optical Transfer
Function
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The effect of the MTF on the amplitude of the frequency components is to reduce the

contrast between parts of the image compared with corresponding parts of the object.

We have already met an expression for the contrast which we called Visibility on p. 360.

Thus, we can write

Contrast ¼ Imax � Imin

Imix þ Imin

¼ ða þ bÞ � ða � bÞ
ða þ bÞ þ ða � bÞ ¼

b

a
for the object

The image contrast MðkxÞb=a < b=a so the image contrast is less than that of the object.

Fresnel Diffraction

The Straight Edge and Slit

Our discussion of Fraunhofer diffraction considered a plane wave normally incident upon a

slit in a plane screen so that waves at each point in the plane of the slit were in phase. Each

point in the plane became the source of a new wavefront and the superposition of these

wavefronts generated a diffraction pattern. At a sufficient distance from the slit the

superposed wavefronts were plane and this defined the condition for Fraunhofer diffraction.

Its pattern followed from summing the contributions from these waves together with their

relative phases and on p. 21 we saw that these formed an arc of constant length. When the

a

M(kx)b

φ

I′(x′)

(b)

Figure 12.41 (b) In the image component a þ MðkÞbcos ðkxx
0 þ 
Þ, MðkÞ is the Modulation

Transfer Function, which is < 1 and the phase change 
 results from aberrations. The contrast in the
image is less than that in the object. Note that in (b) 
 is negative in the expression cosðkxx

0 þ 
Þ
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contributions were all in phase the arc was a straight line but as the relative phases

increased the arc curved to form closed circles of decreasing radii. The length of the chord

joining the ends of the arc measured the resulting amplitude of the superposition and the

square of that length measured the light intensity within the pattern.

Nearer the slit where the superposed wavefronts are not yet plane but retain their curved

character the diffraction pattern is that of Fresnel. There is no sharp division between

Fresnel and Fraunhofer diffraction, the pattern changes continuously from Fresnel to

Fraunhofer as the distance from the slit increases.

The Fresnel pattern is determined by a procedure exactly similar to that in Fraunhofer

diffraction, an arc of constant length is obtained but now it convolutes around the arms of a

pair of joined spirals, Figure 12.42, and not around closed circles.

An understanding of Fresnel diffraction is most easily gained by first considering, not the

slit, but a straight edge formed by covering the lower half of the incident plane wavefront

with an infinite plane screen. The undisturbed upper half of the wavefront will contribute

one half of the total spiral pattern, that part in the first quadrant.

0.5

0.5

u

–0.5

–0.5 0

y = Ú sin     p u 
2du1

2

Ú cos     p u 
2du = x1

2

Z2

Z3

Z1

Z1′

Figure 12.42 Cornu spiral associated with Fresnel diffraction. The spiral in the first quadrant
represents the contribution from the upper half of an infinite plane wavefront above an infinite
straight edge. The third quadrant spiral results from the downward withdrawal of the straight edge.
The width of the wavefront contributing to the diffraction pattern is correlated with the length u
along the spiral. The upper half of the wavefront above the straight edge contributes an intensity
(OZ1Þ2 which is the square of the length of the chord from the origin to the spiral eye. This intensity
is 0.25 of the intensity (Z1Z

0
1)

2 due to the whole wavefront
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The Fresnel diffraction pattern from a straight edge, Figure 12.43, has several significant

features. In the first place light is found beyond the geometric shadow; this confirms its

wave nature and requires a Huygens wavelet to contribute to points not directly ahead of it

(see the discussion on p. 305). Also, near the edge there are fringes of intensity greater and

less than that of the normal undisturbed intensity (taken here as unity). On this scale the

intensity at the geometric shadow is exactly 0.25.

To explain the origin of this pattern we consider the point O at the straight edge of Fig-

ure 12.44 and the point P directly ahead of O. The line OP defines the geometric shadow.

Below O the screen cuts off the wavefront. The phase difference between the contributions

to the disturbance at P from O and from a point H, height h above O is given by

�ðhÞ ¼ 2�

�
ðHP � OPÞ ’ 2�

�

1

2

h2

l

where OP ¼ l and higher powers of h2=l2 are neglected.

We now divide the wavefront above O into strips which are parallel to the infinite

straight edge and we call these strips ‘half period zones’. This name derives from the fact

that the width of each strip is chosen so that the contributions to the disturbance at P from

the lower and upper edges of a given strip differ in phase by � radians.

Since the phase �ðhÞ / h2 we shall not expect these strips or half period zones to be of

equal width and Figure 12.45 shows how the width of each strip decreases as h increases.

The total contribution from a strip will depend upon its area; that is, upon its width. The

amplitude and phase of the contribution at P from a narrow strip of width dh at a height h

above O may be written as ðdhÞ ei� where � ¼ �h2=�l.

This contribution may be resolved into two perpendicular components

dx ¼ dh cos�

Undisturbed
intensity

Geometric
shadow

1.0

0.25

Figure 12.43 Fresnel diffraction pattern from a straight edge. Light is found within the geometric
shadow and fringes of varying intensity form the observed pattern. The intensity at the geometric
shadow is 0.25 of that due to the undisturbed wavefront
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0

H

h

l

Semi-infinite
screen

P

HP - OP ≈      h 
2/l1

2

Figure 12.44 Line OP normal to the straight edge defines the geometric shadow. The wavefront at
height h above O makes a contribution to the disturbance at P which has a phase lag of �h2=�l with
respect to that from O. The total disturbance at P is the vector sum (amplitude and phase) of all
contributions from the wavefront section above O

h

3p2p 4pp

1

∆ (h ) in half period units
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s

Figure 12.45 Variation of the width of each half period zone with height h above the straight edge
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and

dy ¼ dh sin�

If we now plot the vector sum of these contributions the total disturbance at P from that

section of the wavefront measured from O to a height h will have the component values

x ¼
Ð

dx and y ¼
Ð

dy. These integrals are usually expressed in terms of the dimensionless

variable u ¼ hð2=�lÞ1=2
, the physical significance of which we shall see shortly.

We then have � ¼ �u2=2 and dh ¼ ð�l=2Þ1=2
du and the integrals become

x ¼
ð

dx ¼
ð u

0

cos ð�u2=2Þ du

and

y ¼
ð

dy ¼
ð u

0

sin ð�u2=2Þ du

These integrals are called Fresnel’s Integrals and the locus of the coordinates x and y

with variation of u (that is, of h) is the spiral in the first quadrant of Figure 12.42. The

complete figure is known as Cornu’s spiral.

As h, the width of the contributing wavefront above the straight edge, increases, we

measure the increasing length u from 0 along the curve of the spiral in the first quadrant

unit, as h and u ! 1 we reach Z1 the centre of the spiral eye with coordinate x ¼ 1
2
; y ¼ 1

2
.

The tangent to the spiral curve is

dy

dx
¼ tan

�u2

2

and this is zero when the phase

�ðhÞ ¼ �h2=�l ¼ �u2=2 ¼ m�

where m is an integer so that u ¼ pð2mÞ relates u, the distance measured along the spiral to

m the number of half period zones contributing to the disturbance at P. The total intensity at

P due to all the half period zones above the straight edge is given by the square of the

length of the ‘chord’ OZ1. This is the intensity at the geometric shadow.

Suppose now that we keep P fixed as we slowly withdraw the screen vertically

downwards from O. This begins to reveal contributions to P from the lower part of the

wavefront; that is, the part which contributes to the Cornu spiral in the third quadrant. The

length u now includes not only the whole of the upper spiral arm but an increasing part of

the lower spiral until, when u has extended to Z2 the ‘chord’ Z1Z2 has its maximum value

and this corresponds to the fringe of maximum intensity nearest the straight edge. Further

withdrawal of the screen lengthens u to the position Z3 which corresponds to the first

minimum of the fringe pattern and the convolutions of an increasing length u around the
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spiral eye will produce further intensity oscillations of decreasing magnitude until, with the

final removal of the screen, u is now the total length of the spiral and the square of the

‘chord’ length Z1Z 0
1 gives the undisturbed intensity of unit value. But Z1Z 0

1 ¼ 2Z1O so

that the undisturbed intensity (Z1Z 0
1)2 is a factor of four greater than (Z1O)2 the intensity

at the geometric shadow.

The Fresnel diffraction pattern from a slit may now be seen as that due to a fixed height h

of the wavefront equal to that of the slit width. This defines a fixed length u of the spiral

between the end points of which the ‘chord’ is drawn and its length measured and squared

to give the intensity. At a given distance from the slit the intensity at a point P in the

diffraction pattern will correlate with the precise location of the fixed length u along the

spiral. At the centre of the pattern P is symmetric with respect to the upper and lower edges

of the slit and the fixed length u is centred about O (Figure 12.46). As P moves across the

pattern towards the geometric shadow the length u moves around the convolutions of the

spiral. In the geometric shadow this length is located entirely within the first or third

quadrant of the spiral and the magnitude of the ‘chord’ between its ends is less than

OZ1. When the slit is wide enough to produce the central minimum of the diffraction

pattern in Figure 12.47 the length u is centred at O with its ends at Z3 and Z4 in

Figure 12.46.

0.5

0.5u

–0.5

–0.5 0

Z2

Z3

Z4

Z1

Z1′

Figure 12.46 The slit width h defines a fixed length u of the spiral. The intensity at a point P in the
diffraction pattern is correlated with the precise location of u on the spiral. When P is at the centre
of the pattern u is centred on O and moves along the spiral as P moves towards the geometric
shadow. Within the geometric shadow the chord joining the ends of u is less than OZ1

400 Interference and Diffraction



Circular Aperture (Fresnel Diffraction)

In this case the half period zones become annuli of decreasing width. If rn is the mean

radius of the half period zone whose phase lag is n� with respect to the contribution from

the central ring the path difference in Figure 12.48 is given by

NP � OP ¼ � ¼ n�=2 ¼ 1
2

r 2
n=l

Unlike the rectangular example of the straight edge where the area of the half period

zone was proportional to its width dh each zone here has the same area equal to ��l.

Each zone thus contributes equally to the disturbance at P except for a factor arising

from the rigorous Kirchhoff theory which, until now, we have been able to ignore. This

is the so-called obliquity factor cos � where � is shown in the figure. This factor is

negligible for small values of n but its effect is to reduce a zone contribution as n

increases. A large circular aperture with many zones produces, in the limit, an undisturbed

normal intensity on the axis and from Figure 12.49 where we show the magnitude

and phase from successive half zones we see that the sum of these vectors which represents

the amplitude produced by an undisturbed wave is only half of that from the innermost

zone.

It is evident that if alternate zones transmit no light then the contributions from the

remaining zones would all be in phase and combine to produce a high intensity at P similar

Slit width

Intensity

Figure 12.47 Fresnel diffraction pattern from a slit which is wide enough for the spiral length u to
be centred at O and to end on points Z3 and Z4 of Figure 12.46. This produces the intensity minimum
at the centre of the pattern

Fresnel Diffraction 401



to the focusing effect of a lens. Such circular ‘zone plates’ are made by blacking out the

appropriate areas of a glass slide, Figure 12.50. A further refinement increases the intensity

still more. If the alternate zone areas are not blacked out but become areas where the

optical thickness of the glass is reduced, via etching, by �=2 the light transmitted through

these zones is advanced in phase by � rad so that the contributions from all the zones are

now in phase.

l0 P

rn

N
χ

Figure 12.48 Fresnel diffraction from a circular aperture. The mean radius r n defines the half period
zone with a phase lag of n� at P with respect to the contribution from the central zone. The obliquity
angle � which reduces the zone contribution at P increases with n

Figure 12.49 The vector contributions from successive zones in the circular aperture. The
amplitude produced by an undisturbed wave is seen to be only half of that from the central zone.
Removing the contributions from alternate zones leaves the remainder in phase and produces a very
high intensity. This is the principle of the zone plate of Figure 12.50
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Holography

Why is it that when we observe an object we see it in three dimensions but when we

photograph it we obtain only a flat two dimensional distribution of light intensity? The

answer is that the photograph has lost the information contained in the phase of the

incident light. Holographic processes retain this information and a hologram reconstructs a

three-dimensional image.

The principle of holography was proposed by Gabor in 1948 but its full development

needed the intense beams of laser light. A hologram requires two coherent beams and the

holographic plate records their interference pattern. In practice both beams derive from the

same source, one serves as a direct reference beam the other is the wavefront scattered from

the object.

Figure 12.51 shows one possible arrangement where a partly silvered beam splitter

passes the direct reference beam and reflects light on to the object which scatters it on to

the photographic plate. Mirrors or deviating prisms are also used to split the incident beam.

In Figure 12.51 let the reference beam amplitude be A0 e i!t. If the holographic plate lies

in the yz plane both the amplitude and phase of scattered light which strikes a given point

ðy; zÞ on the plate will depend on these co-ordinates. We simplify the analysis by

considering only the y co-ordinate shown in the plane of the paper and we represent the

scattered light in amplitude and phase as a function of y, namely

AðyÞ eið!tþ
ðyÞÞ

It is this information we shall wish to recover.

Figure 12.50 Zone plate produced by removing alternate half zones from a circular aperture to
leave the remaining contributions in phase
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We may now write the resulting amplitude at y (after removing the common ei!t

factor) as

A ¼ A0 þ AðyÞ ei
ðyÞ

The intensity is therefore

I ¼ AA� ¼ ½A0 þ AðyÞ ei
ðyÞ
½A0 þ AðyÞ e�i
ðyÞ

¼ A2

0 þ AðyÞ2 þ A0AðyÞ½ei
ðyÞ þ e�i
ðyÞ


The holographic plate records this intensity as shown in Figure 12.52 where the

reference intensity A2
0 is modulated by the terms which contain AðyÞ and 
ðyÞ, the original

scattered amplitude and phase information. This modulation shows of course as contrasting

interference fringes whose local intensity is governed by the amplitude AðyÞ and whose

distribution along the y axis is determined by the phase 
ðyÞ. The wavefront scattered by

the object is now reconstructed to form the holographic image. This is done by shining the

reference beam through the processed hologram which acts as a diffraction grating. The

greater the recorded intensity the lower the transmitted amplitude. If the developed

photographic emulsion possessed idealized characteristics the relation between

the transmitted amplitude of the reference beam and the exposure would be linear.

Beam
splitter

Reference
beam

Laser
beam

Hologram

Scattered
wavefront

Object

y

Figure 12.51 The hologram records the interference between two parts of the same laser beam. The
original beam is divided by the partially silvered beam splitter to form a direct reference beam and a
wavefront scattered from the object. The amplitude and phase information contained in the
scattered wavefront must be preserved and recovered
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Exposure defines the product of incident intensity and exposure time. The curve relating

the characteristics for a real holographic emulsion is shown in Figure 12.53 and this is

linear only over a limited range near the centre indicated by the dotted lines. This imposes

several conditions on practical holography.

In the first place the exposure must be correctly chosen at the value EC. Secondly, the

value of the reference beam intensity A2
0 must be chosen to produce the correct transmitted

amplitude T0 on the vertical axis of Figure 12.53. This value of T0 is at the centre of the

linear range. Finally, the modulation of A2
0 by the scattered intensity AðyÞ2

in Figure 12.53

must be small enough for the transmission of the modulated signal to remain within the

linear range of the characteristic curve. Excursions outside this range introduce non-linear

distortions by generating extra Fourier frequency components (the situation is similar to

that for characteristic curves in electronic amplifiers).

Experimentally this final restriction requires AðyÞ � A0.

Shining the reference beam through the processed hologram produces a transmitted

amplitude

A0T ¼ A3
0 þ A2

0AðyÞ ei
ðyÞ þ A2
0AðyÞ e�i
ðyÞ

¼ A2
0½A0 þ AðyÞ ei
ðyÞ þ AðyÞ e�i
ðyÞ


where we have neglected the AðyÞ2
term as � A2

0 and have written the negative and

positive exponential terms separately. This has a profound physical significance for we see

that apart from the common constant factor A2
0, the observed transmitted beam has three

components A0;AðyÞ ei
ðyÞ and AðyÞ e�i
ðyÞ.

Distance along hologram

Intensity
recorded
by hologram

A 0
2

y

Figure 12.52 Total intensity recorded as a function of y by the holographic plate. The direct
reference beam intensity A 2

0 is modulated by information from the scattered wavefront. This shows as
variations in the intensity of an interference fringe pattern
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A 0
2

T0

T

Linear response
region of curve

Exposure = intensity × time

Amplitude transmittance

E C

Figure 12.53 Characteristic curve of a real holographic emulsion (transmittance versus exposure).
Only the central linear section of the curve is used. The transmittance T 0 (governed by the reference
beam intensity A 2

0) is chosen with the critical exposure E C to produce the central point on the linear
part of the curve. Information from the scattered wavefront must keep the modulations within the
linear range for faithful reproduction free from distortion

(a) (b)

0

Plane of
hologram

Plane of
hologramVirtual image

Wavefronts
from object

Real image

Eye X

Eye Y

0′

A 0

y

A (y )e–if (y )

A (y )e–if (y )

A (y )eif (y )

A (y )eif (y )

y

I

Figure 12.54 (a) Shining the reference beam through the processed hologram produces three
components A 0; AðyÞ e i
ðyÞ and AðyÞ e�i
ðyÞ in the directions shown. Movement of the eye from X to Y
about the component AðyÞ e i
ðyÞ resolves the separate points O and O 0 on the image of the object to
reveal its three dimensional nature. (b) This image at O is seen to be virtual while the image
associated with the component AðyÞ e�i
ðyÞ is real. This real image is ‘phase reversed’ and the object
appears ‘inside out’
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The first term, A0, shows that the incident reference beam has continued beyond the

hologram to form the central beam of Figure 12.54a. The second component AðyÞ ei
ðyÞ has

the same form in amplitude and phase as the original wavefront scattered from the object.

As shown in Figure 12.54b it is seen to be a wavefront diverging from a virtual image of

the object having the same size and three dimensional distribution as the object itself.

Moving the eye across this beam in 12.54a exposes a different section OO 0 of the virtual

image to produce a three dimensional effect.

The third component of the transmitted beam is identical with the second except for the

phase reversal; it has a negative exponential index. It forms another image, in this case a

real image often referred to as ‘pseudoscopic’. It is an image of the original object turned

inside out. All contours are reversed, bumps become dents and the closest point on the

original object when viewed directly by the observer now becomes the most distant.

Problem 12.1
Suppose that Newton’s Rings are formed by the system of Figure 12.4 except that the plano convex

lens now rests centrally in a concave surface of radius of curvature R1 and not on an optical flat.

Show that the radius rn of the nth dark ring is given by

r 2
n ¼ R1R2n�=ðR1 � R2Þ

where R2 is the radius of curvature of the lens and R1 > R2 (note that R1 and R2 have the

same sign).

Problem 12.2
Light of wavelength � in a medium of refractive index n1 is normally incident on a thin film of

refractive index n2 and optical thickness �=4 which coats a plane substrate of refractive index n3.

Show that the film is a perfect anti-reflector ðr ¼ 0Þ if n 2
2 ¼ n 1n3.

Problem 12.3
Two identical radio masts transmit at a frequency of 1500 kc s�1 and are 400 m apart. Show that the

intensity of the interference pattern between these radiators is given by I ¼ 2I0½1 þ cos ð4� sin �Þ
,
where I0 is the radiated intensity of each. Plot this intensity distribution on a polar diagram in which

the masts lie on the 90	–270	 axis to show that there are two major cones of radiation in opposite

directions along this axis and 6 minor cones at 0	, 30	, 150	, 180	, 210	 and 330	.

Problem 12.4
(a) Two equal sources radiate a wavelength � and are separated a distance �=2. There is a phase

difference �0 ¼ � between the signals at source. If the intensity of each source is I s, show that the

intensity of the radiation pattern is given by

I ¼ 4I s sin2 �

2
sin �

� �
where the sources lie on the axis ��=2.

Plot I versus �.
(b) If the sources in (a) are now �=4 apart and � 0 ¼ �=2 show that

I ¼ 4I s cos2 �

4
ð1 þ sin �Þ

h i
Plot I versus �.
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Problem 12.5
(a) A large number of identical radiators is arranged in rows and columns to form a lattice of which

the unit cell is a square of side d. Show that all the radiation from the lattice in the direction � will be

in phase at a large distance if tan � ¼ m=n, where m and n are integers.

(b) If the lattice of section (a) consists of atoms in a crystal where the rows are parallel to the crystal

face, show that radiation of wavelength � incident on the crystal face at a grazing angle of � is

scattered to give interference maxima when 2d sin � ¼ n� (Bragg reflection).

Problem 12.6
Show that the separation of equal sources in a linear array producing a principal maximum along the

line of the sources ð� ¼ ��=2Þ is equal to the wavelength being radiated. Such a pattern is called

‘end fire’. Determine the positions (values of �) of the secondary maxima for N ¼ 4 and plot the

angular distribution of the intensity.

Problem 12.7
The first multiple radio astronomical interferometer was equivalent to a linear array of N ¼ 32

sources (receivers) with a separation f ¼ 7 m working at a wavelength � ¼ 0:21 m. Show that the

angular width of the central maximum is 6 min of arc and that the angular separation between

successive principal maxima is 1	42 0.

Problem 12.8
Monochromatic light is normally incident on a single slit, and the intensity of the diffracted light at

an angle � is represented in magnitude and direction by a vector I, the tip of which traces a polar

diagram. Sketch several polar diagrams to show that as the ratio of slit width to the wavelength

gradually increases the polar diagram becomes concentrated along the direction � ¼ 0.

Problem 12.9
The condition for the maxima of the intensity of light of wavelength � diffracted by a single slit of

width d is given by � ¼ tan�, where � ¼ �d sin �=�. The approximate values of � which satisfy this

equation are � ¼ 0;þ3�=2;þ5�=2, etc. Writing � ¼ 3�=2 � �; 5�=2 � �, etc. where � is small,

show that the real solutions for � are � ¼ 0, �1:43�;�2:459�;�3:471�, etc.

Problem 12.10
Prove that the intensity of the secondary maximum for a grating of three slits is 1

9
of that of the

principal maximum if only interference effects are considered.

Problem 12.11
A diffraction grating has N slits and a grating space f. If � ¼ �f sin �=�, where � is the angle of

diffraction, calculate the phase change d� required to move the diffracted light from the principal

maximum to the first minimum to show that the half width of the spectral line produced by the

grating is given by d � ¼ ðnN cot �Þ�1
, where n is the spectral order. (For N ¼ 14; 000; n ¼ 1 and

� ¼ 19	, d� � 5 s of arc.)

Problem 12.12
(a) Dispersion is the separation of spectral lines of different wavelengths by a diffraction grating and

increases with the spectral order n. Show that the dispersion of the lines when projected by a lens of

focal length F on a screen is given by

dl

d�
¼ F

d�

d�
¼ nF

f
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for a diffraction angle � and the nth order, where l is the linear spacing on the screen and f is the

grating space.

(b) Show that the change in linear separation per unit increase in spectral order for two wavelengths

� ¼ 5 � 10�7 m and �2 ¼ 5:2 � 10�7 m in a system where F ¼ 2 m and f ¼ 2 � 10�6 m is

2 � 10�2 m.

Problem 12.13
(a) A sodium doublet consists of two wavelength �1 ¼ 5:890 � 10�7 m and �2 ¼ 5:896 � 10�7 m.

Show that the minimum number of lines a grating must have to resolve this doublet in the third

spectral order is � 328.

(b) A red spectral line of wavelength � ¼ 6:5 � 10�7 m is observed to be a close doublet. If the two

lines are just resolved in the third spectral order by a grating of 9 � 10 4 lines show that the doublet

separation is 2:4 � 10�2 m.

Problem 12.14
Optical instruments have circular apertures, so that the Rayleigh criterion for resolution is given by

sin � ¼ 1:22�=a, where a is the diameter of the aperture.

s exaggerated. Consider OB II O′B
OA II O′A

A

B

i

0′

0

I′

I
S

Two points O and O 0 of a specimen in the object plane of a microscope are separated by a distance
s. The angle subtended by each at the objective aperture is 2i and their images I and I 0 are just
resolved. By considering the path difference between O 0A and O 0B show that the separation
s ¼ 1:22�=2 sin i.

Summary of Important Results

Interference: Division of Wavefront (Two Equal Sources)

Intensity

I ¼ 4I s cos2 �=2

where

I s ¼ source intensity

and

� ¼ 2�

�
(path difference)

� �
is phase difference
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Interference (N Equal Sources -- Separation f )

I ¼ I s

sin2 N�

sin2 �
where � ¼ �

�
f sin �

Principal Maxima

I ¼ N 2I s at f sin � ¼ n�

Fraunhofer Diffraction (Single Slit -- Width d)

Intensity

I ¼ I0

sin2 �

�2
where � ¼ �

�
d sin �

Intensity Distribution from N Slits (Width d -- Separation f )

I ¼ I0

sin2 �

�2

sin2 N�

sin2 �

(interference pattern modified by single slit diffraction envelope).

Resolving Power of Transmission Grating

�

d�
¼ nN

where n is spectral order and N is number of grating lines:

Expressible in terms of Bandwidth Theorem as

�	�t ¼ 1

where �	 is resolvable frequency difference and �t is the time difference between extreme

optical paths.

Resolving power

�

��
¼ 	

�	

��� ��� ¼ !

�!
¼ Q

where Q is the quality factor of the system.
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13

Wave Mechanics

The wave mechanics of Schrödinger (1926) and the equivalent matrix formulation by

Heisenberg (1926) are the basis of what is known as ‘modern physics’. Without exception

they have been successful in replacing or including classical mechanics over the whole

range of physics at atomic and molecular levels; these in turn govern the larger scale

macroscopic properties. Very high energy phenomena in the physics of elementary

particles still, however, present many problems.

In this chapter we shall be concerned only with Schrödinger’s wave mechanics and in the

way it displays the dual wave–particle nature of matter. This dual nature was first

established for electromagnetic radiation but the parallel attempt to establish the wave

nature of material particles is the basic history of twentieth century physics.

Origins of Modern Quantum Theory

In the nineteenth century interference and diffraction experiments together with classical

electromagnetic theory had confirmed the wave nature of light beyond all doubt but in

1901, in order to explain the experimental curves of black body radiation, Planck

postulated that electromagnetic oscillators of frequency � had discrete energies nh� where

n was an integer and h was a constant (p. 252). A quarter of a century was to elapse before

this was formally derived from the new quantum mechanics.

X-rays had been found by Roentgen in 1895, their wave-like properties were displayed

by the diffraction experiments of von Laue in 1912, and their electromagnetic nature was

soon proved. A much longer time was required to reconcile a wave nature with the

negatively charged particles which J. J. Thomson found in his cathode ray experiments of

1897. It was not until 1927 that interference effects from reflected or scattered electrons

were obtained by Davisson and Germer whilst in 1928 G. P. Thomson (the son of J. J.)

produced concentric ring diffraction patterns by firing electrons through a thin foil.

In the meantime, in 1906, Einstein had used Planck’s idea to explain the photoelectric

effect where light falling on a given surface caused electrons to be ejected. Einstein

considered the light beam as a stream of individual photons, or quanta of light, each of
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energy hv. Collisions between these quanta and electrons in the target material gave the

electrons sufficient energy to escape.

In 1912 the alpha particle scattering experiments of Rutherford led to his proposal that

the atom consisted of a small positively charged nucleus surrounded by enough negative

electrons to leave the atom electrically neutral. This atom was the model used by Bohr and

Sommerfeld in their ‘old quantum theory’, a mixture of classical mechanics and quantum

postulates, attempting to explain, amongst other things, the regularity of spectroscopic

series from radiating atoms. Electrons were required to orbit the nucleus at definite energy

levels (like planets round the Sun), and radiation at a fixed frequency � was given out when

an electron moved from a higher to a lower energy orbit with an energy difference

�E ¼ h�. These orbits were required to be stable or ‘stationary’ orbits with quantized, that

is, allowed values of energy and angular momentum. The fact that classical

electromagnetic theory had shown that an accelerating charge (electron in an orbit) was

itself a source of radiation remained an unresolved difficulty.

By 1920 Einstein had provided two of the vital tools necessary for further progress (a)

that a quantum of radiation has energy E ¼ h�, and (b) that a particle of momentum

p ¼ mv and rest mass m0 has a relativistic energy E where E 2 ¼ p2c2 þ ðm0c2Þ2
.

This relation established the equivalence of matter and energy; a stationary particle

v ¼ 0 has an energy E ¼ m0c2 where c is the velocity of light.

The time was now ripe for the final steps leading to the modern quantum theory. The first

of these was provided by Compton (1922–23) and the second by de Broglie in 1924.

Compton fired X-rays of a known frequency at a thin foil and observed that the

frequency � of the scattered radiation was independent of the foil material. This implied

that the scattering was the result of collisions between X-ray quanta of energy h� and the

electrons in the target material. In addition to scattering at the incident frequency a lower

frequency of scattered radiation was always found which depended only on the mass of the

scattering particles (electrons) and the angle of scattering. Compton showed that these

results were consistent if momentum and energy were conserved in an elastic collision

between two ‘particles’, the electron and an X-ray of energy h�, a rest mass m0 ¼ 0 and

(from Einstein’s relativistic energy equation), a momentum

p ¼ E

c
¼ h�

c
¼ h

�
;

where c ¼ ��.

De Broglie in 1924 proposed that if the dual wave-particle nature of electromagnetic

fields required a particle momentum of p ¼ h=�, it was possible that a wavelength � of a

‘matter’ field could be associated with any particle of momentum p ¼ mv to give the

relation p ¼ h=�. His argument was as follows.

If the phase velocity of such a ‘matter’ wave obeys the usual relation

v p ¼ ��

where � is the frequency, the assumption that any particle has a momentum p ¼ h=�
together with Einstein’s expression E ¼ h� yields v p ¼ E=p.
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The theory of relativity gives, for a particle of rest mass m0 and velocity v an energy

E ¼ mc2 and a momentum p ¼ mv, where

m ¼ m0 1 � v 2

c2

� ��1=2

is the particle mass at velocity v. For such a particle the phase velocity

v p ¼ E

p
¼ c2

v

that is,

vv p ¼ c2

(an expression we met earlier for the wave guides of p. 243).

This gives a phase velocity v p > c for a particle velocity v < c. However, the energy in

the de Broglie wave (or particle) travels with the group velocity

v g ¼ @!

@k

which, for

E ¼ h� ¼ h

2	
!

and

p ¼ h

�
¼ h

2	
k

gives

v g ¼ @!

@k
¼ @E

@p

Such a particle with relativistic energy E where

E 2 ¼ p2c2 þ ðm0c2Þ2

has

2E
@E

@p
¼ 2pc2
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or

v g ¼ @E

@p
¼ pc2

E
¼ vc2

c2
¼ v

so that the group velocity of de Broglie matter wave corresponds to the particle velocity v.
Even the ‘old quantum theory’ of Bohr–Sommerfeld gained something from de

Broglie’s hypothesis. Their postulate that the angular momentum of stationary orbits was

restricted to integral (quantum) numbers of the unit angular momentum h was shown, for

the circular orbit of radius r, to yield

2	rp ¼ nh

or

2	r ¼ nh

p
¼ n�

so that the circumference of a stationary orbit was a standing wave system and contained an

integral number n of �, the de Broglie wavelength.

Within three years, however, such quantum numbers ceased to be assumptions. They

were the natural outcome of the new quantum theory of Schrödinger and Heisenberg.

Heisenberg’s Uncertainty Principle

Although, as we shall see, Schrödinger’s equation takes the form of a standing wave

equation, the fitting of an integral number of de Broglie standing waves around a Bohr orbit

presents a fundamental difficulty. The azimuthal symmetry of such a pattern, Figure 13.1,

Figure 13.1 Integral number of de Broglie standing waves � ¼ h=p around a circular Bohr orbit
does not allow the exact position of the electron to be specified at a particular time
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representing an electron in an orbit, does not allow the exact position of the electron to be

specified at a particular time. This dilemma was resolved by Heisenberg on the basis of the

Bandwidth Theorem we first met on p. 134.

There, a group of waves with a group velocity v g and a frequency range �� superposed

effectively only for a time �t where

���t � 1

Similarly, a group in the wave number range �k superposed in space over a distance �x

where

�x�k � 2	

But the velocity of the de Broglie matter wave is essentially a group velocity with a

momentum

p ¼ h

�
¼ h

2	
k ¼ �hk

where

�h ¼ h

2	

so

�p ¼ �h�k

and the Bandwidth Theorem becomes Heisenberg’s Uncertainty Principle

�x�p � h

Since

E ¼ h� ¼ h

2	
! ¼ �h!

it follows that

�E

��
¼ �E�t � h

and

�E � �h�!

are also expressions of Heisenberg’s Uncertainty Principle.
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This relation sets a fundamental limit on the ultimate precision with which we can know

the position x of a particle and the x component of its momentum. If Figure 13.2 shows a

wave group representing the particle, the range �x shows the uncertainty of the position of

the particle in the range of space over which it could be found, with the probability of its

being at a particular place given by the square of the wave amplitude of that position. The

relation

�x�p � h

means that the velocity of the particle ð p ¼ mvÞ is also uncertain, the more accurate the

knowledge of the particle position, the less certain that of the value of its velocity. If the

particle is ‘observed’ at some later time, dispersion of the group will have increased the

range �x and decreased the amplitude. The uncertainty of the position has increased and

the probability of its being at any one place has become less. But this is because of the

original uncertainty of its velocity, through �p, which makes an accurate forecast of its

position after time t even more unlikely.

The shape of the wave group above is often taken as a Gaussian curve written �ðx; tÞ
with a width �x at t ¼ 0 where the value �ðx; tÞ is e�1 of its maximum value (see p. 289).

PðxtÞ defines the probability density of finding the particle at a position �x, i.e. within

the range x and x þ�x.

The position x and momentum px of a particle are conjugate parameters, so the

representation of the particle in momentum space �ðpx; tÞ is the Fourier transform of

�ðx; tÞ and �ðpx; tÞ is also a Gaussian curve with a width �px where �ðpxtÞ is e�1 of its

maximum value.

If the group velocity of the wave packet is vg ¼ p0=m a rigorous treatment of the time

development of these functions leads to the conclusion that PðxtÞ falls to e�1 of its

maximum value at the points where

x � vgt ¼ ��x

∆ x

∆ x

x

Wave group

Same group
after time t

Figure 13.2 A wave group representing a particle showing dispersion after time t. The square of the
wave amplitude at any point represents the probability of the particle being in that position, and the
dispersion represents the increasing uncertainty of the particle position with time (Heisenberg’s
Uncertainty Principle)
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where

�xðtÞ ¼ �h

px

1 þ ð�pxÞ4

m2�h2
t2

" #1
2

and hence increases with time.

If the time is sufficiently small so that

t � t1 ¼ m�h

ð�pxÞ2

the second term in the bracket is negligible and the wave packet propagates with only a

very small change in its width.
As an example, a Gaussian wave packet for an electron localized at time t ¼ 0 to within

a distance of 10�10m (atomic dimensions) with �px ¼ �h=�x � 10�24kg 	 m 	 s�1 will have

spread to twice its size at time t ¼ t1

ffiffiffi
3

p
� 10�16s.

An example of the relation

�E �t � h

may be found in considering the time spent by an electron in an atomic orbit. In a stable

orbit this time �t is long and the energy uncertainty �E is small so the energy levels of

stable orbits are well defined. When an electron changes energy levels and radiation is

emitted the time in the orbit may be short and the energy levels ill defined so that the term

�E contributes to the breadth of a spectral line.

(Problems 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 13.10)

Schrödinger’s Wave Equation

The old quantum theory had sought to establish rules for the existence of discrete

frequencies and energy levels. An integral number of de Broglie half wavelengths could be

fitted around a circular Bohr orbit. Both of these facts are consistent with the classical

standing wave systems we examined in Chapters 5 and 9 when waves travelling between

rigid boundaries were perfectly reflected.

In Chapter 5 we saw that the transverse displacement yðxtÞ of a string of length l with

both ends fixed obeys the wave equation

@ 2y

@x2
� 1

v 2
p

@ 2y

@t 2
¼ 0

where v p is the wave velocity.

The x and t dependence could be separated in the solution for standing waves to give

yðx; tÞ ¼ A sin
!nx

v p

sin!nt
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where n could take the integral values n ¼ 1; 2; 3, etc. to give the discrete eigenfrequencies,

!n ¼ n	v p

l

The solution yðx; tÞ corresponding to a given !n is called an eigenfunction or a wave

function.

In developing the Schrödinger wave equation which applies to particle behaviour we use

arguments below which in no way constitute a proof because wave mechanics cannot be

derived from classical mechanics. Wave mechanics is based on certain postulates the

validity of which can be confirmed only by the accuracy of the predicted results.

From the preceding sections we have the representation of a particle as a matter wave

with energy E ¼ �h!, momentum p ¼ �hk and velocity v g ¼ @!=@k.

Wave mechanics uses the notation

�ðx; tÞ ¼ �0 e�ið!t�kxÞ ¼ �0 e iðpx�EtÞ=�h

to define the amplitude of a matter wave at a point x at time t. The physical significance of

 is amplified on p. 422 but for the moment we note the reversed sign of the exponential

index which follows the convention used in all books on quantum mechanics. This merely

introduces a 	 rad phase difference from the notation consistently used in the earlier

chapters of this book but the new convention will be used throughout this chapter to avoid

confusion with other texts and attention will be carefully drawn to any possible ambiguity.

In classical mechanics the total energy E of a particle of mass m and momentum p in a

conservative field of potential V is given by

E ¼ p2=2m þ V

Differentiating �ðx; tÞ gives

@ 2

@x2
�ðx; tÞ ¼ �p2

�h2
�ðx; tÞ

and inserting this value of p2 in the classical energy equation above gives

�h2

2m

@ 2

@x2
�ðx; tÞ þ ðE � VÞ�ðx; tÞ ¼ 0

If we now express �ðx; tÞ ¼  ðxÞ e�i!t we may cancel the common e�i!t factor from the

equation above to obtain the time independent Schrödinger wave equation

�h2

2m

@ 2

@x2
 ðxÞ þ ðE � VÞ ðxÞ ¼ 0

This time independent wave equation will give states of constant frequency; that is, of

constant energy, and these are the only states we shall consider in this book.
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Note that this equation has the same form as the standing wave equation we first met on

p. 124.

States which are not of constant energy require the time dependence to be retained in

Schrödinger’s equation. We do this by using the fact that

@

@t
�ðx; tÞ ¼ �iE

�h
�ðx; tÞ

and inserting this value of E in the classical energy equation. This gives the time dependent

Schrödinger wave equation

��h2

2m

@ 2

@x2
�ðx; tÞ þ V�ðx; tÞ ¼ i�h

@

@t
�ðx; tÞ:

One-dimensional Infinite Potential Well

Consider as a first example the case of a particle constrained to move in a region between

x ¼ 0 and x ¼ a where the potential V ¼ 0. At x ¼ 0 and x ¼ a the potential walls are

infinitely high as shown in Figure 13.3. This is an idealized form of the potential seen by an

electron in the low energy levels near the nucleus of an atom.

h 
2

 p 
2

 

2m a 
2

V (x )

V (x ) = 0

n = 3

x = ax = 0

y = 0y = 0 y n =  A sin k n x

E 3 = 9E 1

n = 2 E 2 = 4E 1

n = 1 E 1 =

Figure 13.3 An infinitely deep potential well showing allowed energy levels En for a particle
constrained to move within it with wave function  n ¼ A sin knx where k 2

n ¼ 2mE=�h2 and m is the
particle mass
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Since VðxÞ ¼ 0 for 0 < x < a Schrödinger’s equation becomes

@ 2 ðxÞ
@x2

þ 2mE

�h2
 ¼ 0

which may be written, as on p. 124, in the form

@ 2 

@x2
þ k 2 ¼ 0

with

k 2 ¼ 2mE

�h2

The boundary conditions are that  ðxÞ ¼ 0 at x ¼ 0 and x ¼ a where VðxÞ becomes

infinite, whilst the other terms in the equation remain finite. The particle must lie within the

well and classically, whatever the value of its energy E it will rebound elastically off the

potential ‘walls’. When moving to the right the particle behaviour may be represented by a

wave function of the form eþikx which satisfies Schrödinger’s equation, and when moving

to the left by a wave function of the form

e�ikx

But, as with the waves on the string, perfect reflection which reverses the amplitude

allows  nðxÞ, the solution of Schrödinger’s equation, to represent a standing wave system

at !n; expressed in the form

 nðxÞ ¼ C eik nx � C e�ik nx

¼ A sin knx

where

A ¼ C

2i

The boundary condition  nðxÞ ¼ 0 at x ¼ a gives kna ¼ n	 for n ¼ 1; 2; 3, etc. i.e.

kn ¼ n	=a.

Hence

k 2
n ¼ 2mEn

�h2
¼ n2	2

a2

giving energy eigenvalues

En ¼ n2	2�h2

a22m
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Thus, we see that discrete energy values governed by the quantum number n arise naturally

from the application of boundary conditions to the wave function solutions of

Schrödinger’s equation. Values of the particle momentum are also quantized since

p ¼ h

�
¼ �hk ¼ n	�h

a

It is evident that in an infinite potential well, an electron or particle cannot have an arbitrary

energy but must take only the quantized values En. This restriction will hold whenever

Schrödinger’s equation is solved for a potential VðxÞ which imposes boundary conditions

constraining the particle to move in a limited region.

The wave functions  nðxÞ for n ¼ 1; 2; 3 are plotted in Figure 13.4 showing them to be

identical with the allowed amplitude functions for standing waves on a vibrating string

with fixed ends. Note that the interval between allowed energy states decreases as either the

mass of the particle or the dimensions of the potential box increase relative to h. For

particles of large mass and systems of large dimensions the allowed energy states form, for

all practical purposes, a continuum and are no longer quantized. Thus, in passing from

atomic to much larger dimensions the results of quantum mechanics approach those of

classical physics.

We see that the minimum value of the energy of the particle in the potential well is not

zero but

E1 ¼ �h2	2

2ma2

y 2

y 3

y 1

n = 1

x = 0 x = 0x = a x = a

n = 2

n = 3

y 3
2

y 2
2

y 1
2

Figure 13.4 Wave functions  nðxÞ and probability densities j nðxÞj 2 for the first three allowed
energy levels in an infinitely deep potential well of width a
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This minimum energy is related to Heisenberg’s Uncertainty Principle

�x�p � h

The uncertainty in the position of the particle is obviously �x ¼ a and the particle

momentum p may be in either the positive or negative x direction giving an uncertainty

�p ¼ 2p

Thus

�x�p ¼ a 	 2p � h

or

p � h

2a

Now, for VðxÞ ¼ 0

E ¼ p2

2m
� h2

8ma2
� �h2	2

2ma2

This is an example of the so-called zero point energy. We shall meet others.

(Problem 13.11)

Significance of the Amplitude wnðxÞ of the Wave Function

In Figure 13.4 the amplitude  nðxÞ of the wave function is plotted for the values n ¼ 1; 2; 3
together with the values

j nðxÞj2

In the waves we have met so far, the amplitude, or rather the amplitude squared, has been a

measure of the intensity of the wave. At a position of high amplitude, the wave was more

intense—more energy was localized there. Here we have expressed the motion of a particle

confined to a small region of space in terms of its associated matter wave. The amplitude of

the wave function  ðxÞ varies from point to point within the small region in which the

particle is to be found. Outside the infinite well  ðxÞ is zero. The intensity of the matter

wave is written

j ðxÞj2 ¼  �ðxÞ ðxÞ

where the complex conjugate  �ðxÞ indicates that  ðxÞ may sometimes be complex. Since

the matter field describes the motion of the particle we may say that the regions of space in
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which the particle is more likely to be found are those in which the intensity j ðxÞj2
is

large, or, more formally

‘the probability of finding the particle described by the wave function  ðxÞ in the
interval dx around the point x is j ðxÞj2

dx’.

The probability per unit length of finding the particle at x is

PðxÞ ¼ j ðxÞj2

In three dimensions a wave function would be of the form  ðx; y; zÞ and the probability of

finding the particle in the unit volume element surrounding the point xyz is

PðxyzÞ ¼ j ðxyzÞj2

The probability of finding the particle within a finite volume V is obviously

PV ¼
ð

V

j ðxyzÞj2
dx dy dz

Now the particle must always be somewhere in space so, in extending the integral over all

space, the probability becomes a certainty; that is, it equals unity, orð
all space

j ðxyzÞj2
dx dy dz ¼ 1

This process of integrating over all possible locations to give unity is called

normalization and it always imposes restrictions on the form of  ðx; y; zÞ which must

tend to zero as x, y or z tends to infinity.

Normalization determines the value of the constant A in our wave function

 nðxÞ ¼ A sin
n	x

a

for the case of the infinite potential well.

There ð1
�1

j nðxÞj2
dx ¼

ð a

0

j nðxÞj2
dx

¼ A2

ð a

0

sin2 n	x

a
dx ¼ A2 a

2
¼ 1

Hence

A ¼
ffiffiffi
2

a

r
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and the normalized wave function

 nðxÞ ¼
ffiffiffi
2

a

r
sin

n	x

a

(Problem 13.12)

Particle in a Three-dimensional Box

Suppose the particle is confined to a rectangular volume abc at the bottom of an infinitely

deep potential well ðV ¼ 0Þ where a, b and c are the lengths of the sides of the rectan-

gular box.

The energy of the particle is then

E ¼ p2

2m
¼ 1

2m
ð p2

x þ p2
y þ p2

z Þ

where the momentum components are

px ¼ n1

	�h

a

py ¼ n2

	�h

b

pz ¼ n3

	�h

c

and n1, n2 and n3 are integers.

The energy levels allowed in the box are therefore given by

E ¼ 	2�h2

2m

n2
1

a2
þ n2

2

b2
þ n2

3

c2

� �

and solutions for the space part of the wave function may be written

 ðx; y; zÞ ¼ A sin
n1	x

a
sin

n2	y

b
sin

n3	z

c

in accordance with the three-dimensional normal mode solution of p. 249.

If the box is cubical so that a ¼ b ¼ c the allowed energy levels become

E ¼ 	2�h2

2ma2
ðn2

1 þ n2
2 þ n2

3Þ ¼
	2�h2

2ma2
k 2

where k 2 ¼ n2
1 þ n2

2 þ n2
3 with wave functions

 ðxyzÞ ¼ A sin
n1	x

a
sin

n2	y

a
sin

n3	z

a
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We saw, however, on p. 250 that combinations of different n values can give the same k

value; that is, the same energy value. When n1, n2 and n3 are permuted without changing

the k value, the wave function is also changed so that a certain energy level may be

associated with several different wave functions or dynamical states. The energy level is

said to be degenerate, the order of degeneracy being defined by the number of different or

independent wave functions associated with the given energy.

In the case of the cubic potential box, the lowest energy level is 3E1, i.e.

ðn1 ¼ n2 ¼ n3 ¼ 1Þ

where

E1 ¼ 	2�h2

2ma2

The next energy level is given by 6E1, with a degeneracy of 3 where the n values are

given by (2, 1, 1) (1, 2, 1) and (1, 1, 2). Higher energy values with degeneracy orders are

shown in Table 13.1 above.

(Problem 13.13)

Number of Energy States in Interval E to E þ dE

As long as the dimensions of the cubical box above are small the energy levels remain

distinct. However, when the volume increases, as is the case for free electrons in a metal,

successive energy levels become so close that an almost continuous spectrum is formed.

If we wish to find how many energy levels may be contained in the small energy range

dE when the potential box is very large, we have only to apply the result of p. 251 where

we found that the number of possible normal modes of oscillation per unit volume of an

enclosure in the frequency range � to � þ d� is given by

dn ¼ 4	� 2d�

c3

Table 13.1

Energy n1, n 2, n 3 Combinations Degeneracy

3E1 (1, 1, 1) 1

6E1 (2, 1, 1) (1, 2, 1) (1, 1, 2) 3

9E1 (2, 2, 1) (2, 1, 2) (1, 2, 2) 3

11E1 (3, 1, 1) (1, 3, 1) (1, 1, 3) 3

12E1 (2, 2, 2) 1

14E1 (1, 2, 3) (3, 2, 1) (2, 3, 1) (1, 3, 2) (2, 1, 3) (3, 1, 2) 6
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There we stressed that the result was independent of any particular system and we applied

it to Planck’s Radiation Law and Debye’s Theory of Specific Heats. Here we use it with

E ¼ p2

2m
¼ h� and p ¼ E

c
¼ h�

c�
so that

dE ¼ p

m
dp ¼ h d�

and

dp ¼ h d�

c

�

to give the number of states per unit volume in the energy interval dE as

dnðEÞ ¼ 4	ð2m3Þ1=2
E 1=2

h3
dE

This may be applied directly to determine how free electrons in a metal may distribute

themselves in a band of energies from zero to some value E. Each energy level can

accommodate two electrons (with opposing spins) according to Pauli’s Principle so the

total number of electrons per unit volume in the energy range zero to E is

n ¼
ð

dnðEÞ ¼ 2 	 4	ð2m3
eÞ

1=2

h3

ð E

0

E 1=2 dE

¼ 16	ð2m3
eÞ

1=2

3h3
E 3=2

where m e is the electron mass.

If the metal is in its ground state the available electrons will occupy the lowest possible

energy levels, and if the total number of electrons per unit volume n0 is less than the total

number of energy levels in the band, then the electrons will occupy all energy states up to a

maximum energy EF called the Fermi Energy which is given by

n0 ¼ 16	ð2m3
eÞ

1=2
E

3=2
F

3h3

Typical values of EF are of the order of 5 eV ð1 eV ¼ 1:6 � 10�19 JÞ.

(Problems 13.14, 13.15)

The Potential Step

The standing wave system of the infinite potential well where the wave function

 nðxÞ
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is finite in the region VðxÞ ¼ 0 but zero at all other points is unique in the formal

correspondence it presents between classical and quantum mechanical results. The

quantum effects become evident when we consider the general case of the potential step of

finite height V in Figure 13.5 which is an idealized form of the very steep potential gradient

of a conservative force

FðxÞ ¼ � @V

@x

Such a potential step would be seen by a free electron near the surface of a metal.

It is necessary to consider separately the two cases where the total particle energy E is (a)

less than the potential energy V, and (b) greater than V, where

E ¼ p2

2m
þ VðxÞ

(a) E < V

When E is less than V, the region x > 0 of Figure 13.5 is forbidden to the particle by

classical mechanics for the kinetic energy

p2

2m

would then have a negative value.

In finding the complete solution for  ðxÞ for the potential step we must solve

Schrödinger’s equation for the separate regions of Figure 13.5, x < 0 (region 1) and x > 0

(region 2).

V (x ) = 0

V (x ) = V

x = 0

E < V

E > V

y 1(x ) = A 

y 1(x )
y 2(x )

y 2(x ) =

(1) (2)

eik 1x
A e–α x

e–ik xik 1 + a
ik 1 – a

2ik 1

ik 1 – a+

2m  (V – E )a 
2 =

h 
2

k1 
2 = 2m E / h 

2

Figure 13.5 Wave functions  1ðxÞ and  2ðxÞ for a particle mass m, energy E < V at a potential
step VðxÞ ¼ V
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In region 1, VðxÞ ¼ 0 and we have

@ 2 1ðxÞ
@x2

þ 2mE

�h2
 1ðxÞ ¼ 0

with a solution

 1ðxÞ ¼ A eik 1x þ B e�ik 1x

where

k 2
1 ¼ 2mE

�h2

The term A eik 1x (with the sign convention of this chapter) is the wave representation of an

incident particle moving to the right, and B e�ik 1x represents a reflected particle moving to

the left.

In region 2, VðxÞ ¼ V and Schrödinger’s equation becomes

@ 2 2ðxÞ
@x2

þ 2mðE � VÞ
�h2

 2ðxÞ ¼ 0

or

@ 2 2ðxÞ
@x2

� �2 2ðxÞ ¼ 0

where

�2 ¼ 2mðV � EÞ
�h2

This equation has the solution

 2ðxÞ ¼ C e��x þ D e�x

Now the probability of finding the particle in region 2 where it is classically forbidden

depends on the square of the wave function amplitude j 2ðxÞj2
with the condition that for

any wave function to be normalized

�
i.e. for

ð
j 2ðxÞj2

dx ¼ 1

�

the wave function  2ðxÞ ! 0 as x ! 1.

This forbids the second term D e�x which increases with x but still leaves

 2ðxÞ ¼ C e��x
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to give a finite probability of finding the particle beyond the potential step, a probability

which decreases exponentially with distance. This is a profound departure from classical

behaviour.

At the boundary x ¼ 0,  ðxÞ must be finite to give a finite probability of finding the

particle there, but there is a finite discontinuity in VðxÞ. In these circumstances

Schrödinger’s equation asserts that the second derivative

@ 2 ðxÞ
@x2

at x ¼ 0 is finite, which means that both  ðxÞ and ð@ ðxÞ=@xÞ are continuous at x ¼ 0.

These are the boundary conditions which allow the separate solutions

 1ðxÞ and  2ðxÞ

for the wave function, to be matched across the boundary of the two regions.

The continuity of  ðxÞ at x ¼ 0 gives  1ðxÞ ¼  2ðxÞ or A þ B ¼ C whilst

@ 1ðxÞ
@x

¼ @ 2ðxÞ
@x

at x ¼ 0 gives

ik1ðA � BÞ ¼ ��C ¼ ��ðA þ BÞ

Thus

B ¼ ik1 þ �

ik1 � �

� �
A

and

C ¼ 2ik1

ik1 � �
A

The wave functions for the separate regions then become

 1ðxÞ ¼ A eik 1x þ ik1 þ �

ik1 � �
e�ik 1x

� �

and

 2ðxÞ ¼
2ik1

ik1 � �
A e��x

and these are shown in Figure 13.5. Note particularly that the intensity of the incident part

of the wave function

j 1ðxÞj2 ¼ jAj2
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whilst the reflected intensity is

jBj2 ¼ ik1 þ �

ik1 � �
A

����
����

2

¼ jAj2

Thus, for any energy E < V we have total reflection as in the classical case, even for those

particles which penetrate the classically forbidden region x > 0 where  2ðxÞ is finite.

In region 2 the probability of finding the particle is

PðxÞ ¼ j 2ðxÞj2 ¼ jC e��xj2

¼ 2ik1

ik1 � �
A e��x

����
����

2

¼ 4k 2
1

k 2
1 þ �2

A2 e�2�x

Since the exponential coefficient � depends on VðxÞ the greater the value VðxÞ the faster

the wave function  2ðxÞ goes to zero in region 2 for a given total energy E < V.

When VðxÞ ! 1, as in the case of the infinite potential well,  2ðxÞ becomes zero, as we

have seen; and there is no penetration into the classically forbidden region.

Several important physical phenomena may be explained on the assumption that a

particle with E < V meeting a potential step of finite height V and finite width b has a wave

function  2ðxÞ which is still finite at x ¼ b, making it possible for the particle to tunnel

through the potential barrier (Figure 13.6). The probability that the particle will penetrate

the barrier to x ¼ b is given by

PðxÞ ¼ j 2ðxÞj2 / e�2�x

and beyond this barrier the particle will propagate in region 3 with a wave function  3ðxÞ
of reduced amplitude. The boundary conditions must then be applied at x ¼ b to match

 2ðxÞ to  3ðxÞ.

y 2(x )

y 3(x )

y 1(x )

Region 1

b

Region 3

Figure 13.6 Narrow potential barrier of width b penetrated by a particle represented by  1ðxÞ
leaving a finite amplitude  3ðxÞ as a measure of the reduced probability of finding the particle in
region 3
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This quantum ‘tunnel effect’ is the basis of the explanation of the radioactive decay of

the nucleus. In addition the potential step seen by a free electron near the surface of a metal

may be distorted, as shown in Figure 13.7, by the application of an external electric field, to

form a barrier of finite width. The most energetic electrons near the surface of the metal can

leak through the barrier in a process known as field electron emission.

Another example results from the two possible positions of the single nitrogen atom with

respect to the three hydrogen atoms in the ammonia molecule NH3. These positions are

shown as N and N 0 in Figure 13.8 together with the potential barrier presented to the

nitrogen atom as it moves to and fro between N and N 0. This penetration occurs at a

frequency of 2:3786 � 1010 Hz for the ground state of NH3 and its high definition is used

as an atomic clock to fix standards of time.

Metal surface
potential

Tunnelling
of energetic
electron

V  = V 0 – Ex

V 0

x = 0

Figure 13.7 Application of an electric field E to the surface of a metal at potential V0 reduces the
potential to V ¼ V 0 � E x forming a barrier of finite width which may be penetrated by an energetic
electron near the metal surface

H

N

N′

N

H

H

H H

H
HH

N′

H

V for
N motion

Potential
barrier

Figure 13.8 The two possible configurations N and N 0 of the nitrogen atom with respect to the
triangular hydrogen base in the ammonia molecule NH3 and the finite potential barrier penetrated by
the nitrogen atom at a frequency of >1010 Hz in the NH3 ground state
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(Problem 13.16)
(b) E > V

In the region x < 0 in Figure 13.5 VðxÞ ¼ 0 and Schrödinger’s equation is

@ 2 1ðxÞ
@x2

þ 2mE

�h2
 1ðxÞ ¼ 0

or

@ 2 1

@x2
þ k 2

1 1 ¼ 0

with

k 2
1 ¼ 2mE

�h2

having a solution

 1ðxÞ ¼ A eik 1x þ B e�ik 1x

with both incident and reflected terms.

The momentum of the particle is p1 where p2
1=2m ¼ E.

In the region x > 0, VðxÞ ¼ V and Schrödinger’s equation is

@ 2 2ðxÞ
@x2

þ 2mðE � VÞ
�h2

 2ðxÞ ¼ 0

or

@ 2 2

@x2
þ k 2

2 2 ¼ 0

where

k 2
2 ¼ 2mðE � VÞ

�h2

and the particle momentum p2 is given by p2
2=2m ¼ ðE � VÞ.

In the wave function solution for this region we consider only the right-going or

transmitted term since there is nothing beyond x ¼ 0 to cause a reflection, so

 2ðxÞ ¼ C eik 2x

Now the wave number k is related to the de Broglie wavelength of the particle and we

see that k changes when the potential V changes; that is, when the particle experiences a
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change in the force acting on it. Such a particle therefore reacts to a changing potential as

light reacts to changing refractive index. As the potential V increases for E > V the

momentum p and wave number kðp ¼ �hkÞ decrease and the wavelength � increases.

At x ¼ 0 the conditions for continuity give

 1ðxÞ ¼  2ðxÞ

or

A þ B ¼ C

and

@ 1ðxÞ
@x

¼ @ 2ðxÞ
@x

or

k1ðA � BÞ ¼ k2C

These two equations give

B ¼ ðk1 � k2Þ
ðk1 þ k2Þ

A

and

C ¼ 2k1

k1 þ k2

A

Since B is not zero, some reflection takes place at x ¼ 0 even though the energy E > V.

This is clearly not classical behaviour. If many particles form an incident beam at x ¼ 0

and each particle has velocity

v 1 ¼ p1

m
¼ �hk1

m

then the velocity of transmitted particles will be

v 2 ¼ p2

m
¼ �hk2

m

The incident flux of particles; that is, the number crossing unit area per unit time, may be

seen as the product of the velocity and the intensity; that is

v 1jAj2
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The reflected flux is

v 1jBj2

and the transmitted flux is

v 2 jC j2

Thus, the reflection coefficient, the ratio of reflected to incident flux is

R ¼ v 1 jB j2

v 1 jA j2
¼ ðk1 � k2Þ2

ðk1 þ k2Þ2

and the transmission coefficient, the ratio of transmitted to incident flux is

T ¼ v 2 jC j2

v 1 jA j2
¼ k2

k1

ð2k1Þ2

ðk1 þ k2Þ2
¼ 4k1k2

ðk1 þ k2Þ2

results which are similar to those for our classical waves in earlier chapters.

Note that R þ T ¼ 1 showing that the number of particles is conserved.

We have chosen here to apply R and T to a number of particles forming a beam. These

coefficients, when applied to identical particles forming the beam, measure the average

probability that an individual particle will be reflected or transmitted.

(Problem 13.17)

The Square Potential Well

Let us consider a particle with energy E < V moving in the square potential well of width a

in Figure 13.9. Within the well the potential is zero, and the value Vof the height of the well

V (x) = V

V (x) = 0

E < V

x = 0 x = a

ψ
3(x) ψ

1(x) ψ
2(x)

3 1 2

Figure 13.9 A particle with energy E < VðV ¼ the finite height of a square potential well of width
a) may take only the energy values E satisfying the equation

tan a

ffiffiffiffiffiffiffiffiffi
2mE

�h2

r
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðV � EÞ

p
2E � V

The wave functions in the three regions are matched at the boundaries x ¼ 0 and x ¼ a by the
conditions that  ðxÞ and @ ðxÞ=@x are continuous
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is finite. This potential approximates that of a finite range force which has no influence

beyond a limited distance. Outside the range of the force the potential may be considered

constant. From our discussion of the infinitely deep potential well ðV ¼ 1Þ and of the

potential step we can expect our wave function representation to have the form of an

integral number of de Broglie half wavelengths within the well, plus an exponentially

decaying penetration into the wall on either side.

Writing Schrödinger’s equation for each of the three regions, we have for region

1ð0 < x� aÞ

@ 2 1ðxÞ
@x2

þ 2mE

�h2
 1ðxÞ ¼ 0

with a solution, for k 2
1 ¼ 2mE=�h2 of

 1ðxÞ ¼ A eik 1x þ B e�ik 1x

¼ Aðcos k1x þ i sin k1xÞ þ Bðcos k1x � i sin k1xÞ
¼ A1 cos k1x þ B1 sin k1x

where A1 ¼ A þ B and B1 ¼ iðA � BÞ.
In region 2ðx� aÞ

@ 2 2ðxÞ
@x2

þ 2mðE � VÞ
�h2

 2ðxÞ ¼ 0

has the solution

 2ðxÞ ¼ A2 e�x þ B2 e��x

where

�2 ¼ 2m

�h2
ðV � EÞ

In region 3, ðx < 0Þ

@ 2 3ðxÞ
@x2

þ 2mðE � VÞ
�h2

 3ðxÞ ¼ 0

has the solution

 3ðxÞ ¼ A3 e�x þ B3 e��x

For  ðxÞ to remain finite as x ! �1 (normalization condition) A2 and B3 must be zero,

and the boundary conditions  ðxÞ and @ ðxÞ=@x continuous, must be satisfied at x ¼ 0 and

x ¼ a.
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At x ¼ 0,

 1ðxÞ ¼  3ðxÞ and
@ 1ðxÞ
@x

¼ @ 3ðxÞ
@x

give

A1 ¼ A3 ð13:1Þ

and

k1B1 ¼ �A3 ð13:2Þ

whilst at x ¼ a

 1ðxÞ ¼  2ðxÞ and
@ 1ðxÞ
@x

¼ @ 2ðxÞ
@x

give

A1 cos k1a þ B1 sin k1a ¼ B2 e��a ð13:3Þ

and

�k1A1 sin k1a þ k1B1 cos k1a ¼ ��B2 e��a ð13:4Þ

In order to satisfy equations (13.1), (13.2), (13.3) and (13.4) some conditions must be

imposed on k and �; that is, on the value of E, so only certain values of E are allowed.

Equations (13.1) and (13.2) give

A1

B1

¼ k1

�

and this equation with equations (13.3) and (13.4) yields

tan k1a ¼ 2k1�

k 2
1 � �2

or

tan a

ffiffiffiffiffiffiffiffiffi
2mE

�h2

r
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðV � EÞ

p
2E � V

Only those values of E which satisfy this relation are allowed energy states, but these

values must be found by numerical or graphical methods.

The wave functions for the first three allowed energy values are shown in Figure 13.10

and their general behaviour may be clarified by considering Schrödinger’s equation in the

form

@ 2 

@x2

.
 ¼ �ðþve constantÞðE � VÞ
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Now @ 2 =@x2 is the rate of change of the slope; that is, the curvature of the wave function

and when E > V both sides of the equation are negative and the  curve must everywhere

keep its concave side towards the x axis as it always does, for example, in sine and cosine

curves. The curvature increases with E so we shall expect more de Broglie half

wavelengths in the higher energy levels. This is consistent with the argument that an

increase in E increases the wave number k and reduces the de Broglie wavelength �.

In the lowest energy level the  curve is always without a node, the next level always has

one node, the third two nodes, etc. but the zeros will not be quite equally spaced and the  
amplitude will not be uniform across the well. In particular it will increase near the

potential walls as the particle is slowed down to give a higher probability of the particle

being found there. Where E < V the ratio

@ 2 =@x2

 

(x) for E3ψ

(x) for E2ψ

(x) for E1ψ

x = ax = 0

Figure 13.10 Wave functions for a particle in a square potential well with the lowest three allowed
energies E 1, E 2, E 3. Note the exponential decay of  ðxÞ outside the box
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will be positive and the  curve must keep its convex side towards the axis as in

exponential curves. The classical boundary E ¼ V must always mark the division where

the character of the  curve changes from one form to the other and the two parts of the

curve will only match for certain values of E.

The Harmonic Oscillator

As a final example to illustrate the fitting of  curves into a potential well we shall consider

the potential curve V ¼ 1
2

sx2 of the harmonic oscillator in Figure 13.11. The calculation of

the  curves is too complicated for this chapter but their essential features confirm what we

may expect from our earlier examples. Moreover, by purely classical arguments we shall

obtain a very good approximation to the wave mechanical results.

In 1901 Planck had postulated that the energy of such an oscillator could have the values

E ¼ nh� where n was an integer and � was the frequency. Schrödinger was able to derive

this result in 1926 but one essential difference arises from the Uncertainty Principle which

requires a minimum energy level or zero point energy of 1
2

h�.

For a classical oscillator the minimum energy E ¼ 0, point 0 in Figure 13.11 gives the

precise and simultaneous values x ¼ 0 and p ¼ 0; that is, a zero oscillation. The

Uncertainty Principle forbids this. If a0 is the smallest amplitude of the oscillator

compatible with the Uncertainty Principle, then

a0 � 1
2
�x

2 a

V

E

E4 =
9
2

hν

E3 =
7
2

hν

E2 =
5
2

hν

E1 =
3
2

hν

E0 =
1
2

hν

0
x

Figure 13.11 Potential energy curve V of a harmonic oscillator with allowed energy levels
En ¼ ðn þ 1

2Þh� . The energy E (with oscillator amplitude a) is shown in the text to define an average
value of the de Broglie wavelength � ¼ h=ð4

3 mEÞ 1=2
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If p0 is the maximum momentum of the oscillator with amplitude a0 it may be either in the

positive or negative direction so

p0 � 1
2
�p

The energy of a classical oscillator is given by

E ¼ 1
2

m!2a2
0 ¼ 1

2
!ða0Þðm!a0Þ ¼ 1

2
!a0p0

� 1
8
!�x�p � 1

8
h! � 1

2
�h! ¼ 1

2
h�

All other energy levels will therefore take integral steps of h� above this zero point energy.

Let us consider the energy level of the oscillator which has an amplitude a so that

E ¼ p2

2m
þ V ¼ p2

2m
þ 1

2
sx2 ¼ 1

2
sa2 ¼ 1

2
m!2a2

so that

2a ¼ 2

!

ffiffiffiffiffiffi
2E

m

r

The value of the kinetic energy of the oscillator averaged over the distance 2a between �a

may be writtenÐ a

�a
p2=2m dxÐ a

�a
dx

¼ 1

2a

ð a

�a

E � 1

2
m!2x2

� �
dx ¼ E � 1

6
m!2a2 ¼ 2

3
E

because

E ¼ 1
2

m!2a2

Thus, the average value of the kinetic energy

p2

2m
¼ 2

3
E

giving

p ¼ h

�
¼

ffiffiffiffiffiffiffiffiffi
4mE

3

r

This gives an average value for the de Broglie wavelength of

� ¼ hffiffiffiffiffiffiffiffiffi
4mE

3

r
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and we expect n half wavelengths to fit into the length 2a at energy E where

2a ¼ 2

!

ffiffiffiffiffiffi
2E

m

r

Thus

n
�

2
¼ nh

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mE=3

p ¼ 2

!

ffiffiffiffiffiffi
2E

m

r

Writing ! ¼ 2	� we have

E ¼ 	

4

ffiffiffi
3

2

r
nh� ¼ 0:96 nh�

which is a fairly close approximation to nh�. The correct result, however, must take into

account the zero point energy of 1
2

h� and the energy levels are given by

E ¼ ðn þ 1
2
Þh�; n ¼ 0; 1; 2; 3; etc:

The  curves for the first four energy levels are plotted in Figure 13.12 together with those

for j j2
.

We see that whilst a classical oscillator may never exceed its maximum amplitude a

particle obeying a wave mechanical description has a finite probability of being found

beyond this limit.

ψ2

ψ1

ψ0

ψ3

0 0

ψ3
2

ψ2
2

ψ1
2

ψ0
2

E3 =
7
2

hν

E2 =
5
2

hν

E1 =
3
2

hν

E0 =

E3 

E2 

E1 

E0 
1
2

hν

Figure 13.12 Wave functions  ðxÞ and probability densities j ðxÞj 2 for the first four energy levels
of the harmonic oscillator
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(Problems 13.18, 13.19)

Electron Waves in a Solid

Bloch Functions and the Kronig--Penney Model

When electrons move through a solid, e.g. a metal, they meet a series of potential barriers

generated by the atoms or ions located at the centre of the valleys between successive

barriers. Figure 13.13 shows such a one-dimensional lattice array of ions. The electron

wave function is derived via Bloch functions and the electron behaviour is demonstrated

using the Kronig–Penney Model which replaces Figure 13.13 in the first instance with a

periodic series of potential wells of finite depth as shown in Figure 13.14. An exact but

unwieldy solution can be found for the situation described by Figure 13.14, but Kronig and

Penney, by deepening the wells and reducing their separation, were able to show how the

electrons behaved and to demonstrate the restrictions imposed on their motion.

L

> l <

+ + + + + +

Figure 13.13 A one-dimensonal periodic array of poterntial barriers formed by ions or atoms
located along a crystal lattice

b

a x
l

V

V0

Figure 13.14 A series of finite potential wells used by Kronig and Penney as a first approximation
of Figure 13.13

Electron Waves in a Solid 441



In Figure 13.14 the space between the potential wells is a, the well thickness is b and its

height is V0. The problem is similar to that described on p. 435 where the total energy of

the electron is E � V0 so the wave equation is

@2 

@x2
þ 2m

�h2
ðE � V0Þ ¼ 0

Now, VðxÞ is periodic so Vx ¼ Vðx þ lÞ where l ¼ a þ b. Evidently, since the probability

of finding an electron at x or at x þ l is the same, we have

j ðxÞj2 ¼ j ðx þ lÞj2

Hence, we may write  ðx þ lÞ ¼ 
 ðxÞ where 

� ¼ j
j2 ¼ 1 (
� is the complex conjugate

of 
).

At this stage we could write 
 ¼ eikx, but this does not define k well enough to satisfy the

boundary conditions at each end of the crystal. For periodic functions the conventional

method to meet the boundary conditions is to form a ring of circumference of length

L ¼ Nl where L is the length of the crystal and N is the number of atoms along its length.

Note that in Figure 13.13 the potential barriers at each end of the crystal add l to its length.

Proceeding along the crystal (or around the ring) we have

 ðx þ 2lÞ ¼  ðx þ l þ lÞ ¼ 
 ðx þ lÞ ¼ 
2ð Þ

or for r integral steps

 ðx þ rlÞ ¼ 
r ðxÞ r ¼ ð0; 1; 2; 3 . . .N � 1Þ

Now r ¼ 0 and r ¼ N are identical positions (one complete circuit of the ring), so

 ðx þ NlÞ ¼ 
N ðxÞ ¼  ðxÞ

that is


N ¼ 1

We may now write


 ¼ ei2	r=N ðr ¼ 0; 1; 2; 3 . . .Þ

so that

 ðx þ lÞ ¼ 
 ðxÞ ¼ e i2	r=N ðxÞ

The Bloch function �kðxÞ is defined by

 ðxÞ ¼ �kðxÞeikx
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where

�kðxÞ ¼ �kðx þ lÞ

Here, k ¼ 2	r=lN and �kðxÞ has the periodicity of the potential. Since r changes by units as

we move along the crystal each step of r=N (for N large) is so small that k ¼ 2	r=lN may

be considered as varying continuously.

The Bloch functions satisfy all conditions because

 ðx þ lÞ ¼ eikðxþlÞ�kðx þ lÞ ¼ eikleikx�kðxÞ ¼ ei2	r
N  ðxÞ ¼ 
 ðxÞ

The wave equations of Figure 13.14 are

@2 1

@x2
þ �2 1 ¼ 0 0 < x < a ð13:5Þ

and

@2 2

@x2
� �2 2 ¼ 0 � b < x < 0 ð13:6Þ

where

�2 ¼ 2mE

�h2
and �2 ¼ 2m

�h2
ðV0 � EÞ

with

VðxÞ ¼ Vðx þ lÞ and l ¼ a þ b

The Bloch function �kðxÞ ¼ �kðx þ lÞ where l ¼ a þ b, so for x ¼ �b we have

�xðaÞ ¼ �kð�bÞ, which is evident from Figure 13.14.

Earlier examples in this chapter have shown that the boundary conditions require  ðxÞ
and its first derivative to be continuous across any potential change.

Applying  ðxÞ ¼ �kðxÞeikx to equations (13.5) and (13.6), we have

�1ðxÞ ¼ Aeið��kÞx þ Be�ið�þkÞx 0 < x < a

�2ðxÞ ¼ Ceð��ikÞx þ De�ð�þikÞx � b < x < 0

so that the boundary conditions are

�1ð0Þ ¼ �2ð0Þ with
@�1

@x

� �
x¼0

¼ @�2

@x

� �
x¼0

and

�1ðaÞ ¼ �2ð�bÞ with
@�1

@x

� �
x¼a

¼ @�2

@x

� �
x¼�b
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which give four homogenous equations.

Remember that

�ðxÞ ¼ �ðx þ lÞ

As with the rectangular well on p. 435 these boundary conditions determine the permitted

values of E (via a and b). Here, the boundary conditions require either

A ¼ B ¼ C ¼ D ¼ 0 or the determinant of their coefficients to be zero. Equating the

determinant of the coefficients to zero gives the unwieldy expression

�2 � �2

2��
sin�a sinh�b þ cos�a cosh�b ¼ cos kða þ bÞ ð13:7Þ

Kronig and Penney simplified this equation by allowing V0 to tend to infinity as b

approached zero in such a way that V0b remained constant. This has two important

implications. First, the potential wells become very deep so that Figure 13.14 approximates

Figure 13.13. Second, their separation is narrowed so that l ¼ a þ b � a and we may

rewrite equation(13.7) as

V0b
ma

�h2

� �
sin�a

�a
þ cos�a ¼ cos ka ð13:8Þ

The values of � ¼ ð2mE=�h2Þ
1
2 which satisfy this equation determine the permitted energy

values and wave functions of the electrons.

Note that when V0 ! 1 equation (13.8) requires sin�a ¼ 0 to remain valid, leaving

� ¼ � n	

a
ðn ¼ 1; 2; 3 . . .Þ

or

E ¼ 	2�h2n2

2ma2

which are the quantized energies of the tightly bound electron in the infinitely deep

potential of p. 420.

At the other extreme when V0 ¼ 0 equation (13.8) gives

� ¼ k ¼ 2mE

�h2

� �1
2

which allows E to take any positive value. This gives a free particle solution to the wave

equation (graphed as the dotted parabola in Figure 13.16).

Between these two extreme values of V0 the permitted values of the energy E are

displayed on the graph in Figure 13.15 where the left-hand side of equation (13.8) is plotted

against �a where �a is written w and V0bðma
�h2 Þ is written K.
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Now the limits of cos ka in equation (13.8) are �1 and these determine the allowed

values of w ¼ �a indicated by the heavy horizontal line on the w or �a axis. These in turn

denote the permitted ranges or bands of energy values which the electron may take. The

bands increase with w ¼ �a and between the bands are gaps where electron energies are

forbidden. The limits of each energy band are defined by cos ka ¼ �1 that is

k ¼ � n	

a
ðn ¼ 1; 2; 3; . . .Þ

and the regions in k space defining the energy bands are known as Brillouin zones. The

band for n ¼ 1 is called the first Brillouin zone, n ¼ 2 is the second Brillouin zone and so

on. Figure 13.15 can be displayed as the energy E versus k graph in Figure 13.16 where the

dotted parabola defines the free electron energy E ¼ �h2

2m
k2 and the heavy lines at the k

boundaries denote the permitted electron energies in a given band. The cosine curves

joining the zone boundaries are justified by Figure 5.15, which shows that no new

information is gained by extending the k range beyond �	=a � k � 	=a. This limited

range of k values defines the reduced zone scheme.

W = αa3π2ππ

Cos ka

−1

+1

0

Cos ka

K
Sin W

W
+ Cos W,

Figure 13.15 Allowed electron energy values are denoted by heavy horizontal lines which define
the Brillouin zones. These occur when the left-hand side of equation (13.8) has values between � 1.
The curve is symmetric about the axis w ¼ 0.
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The number of energy states (excluding spin) in each zone is determined by

k ¼ 2	r

lN
¼ 2	r

aN
ðr ¼ 0; 1; 2; 3 . . .N � 1Þ

for each k value represents an allowed energy state. Each value of r gives a different value

of k; there are N such values. Hence, in this range

�	

a
� k � 	

a
i:e:

2	

a
¼ 2	r

Na
where a � l

the number of energy levels is equal to the number of atoms.

As a þ b ¼ l ! 1 each band contracts to a single level which is N-fold degenerate

since the electron can be bound to any one of the atoms. For finite values of l this

degeneracy is removed and each discrete atomic level spreads into a band of N levels.

k
3π
a

− 3π
a

2π
a

− 2π
a

π
a

0− π
a

V1

V3

V2

B4

B3

B2

B1

Figure 13.16 Figure 13.15 displayed as allowed electron energies versus k. The dotted parabola
defines the free electron energy E ¼ �h2k2=2m and the allowed energy bands are the Brillouin zones
Bi. V1; V2; V3 are the energy gaps between the zones. The cosine curves joining the zone boundaries
are justified by Figure 5.15, i.e. all relevant information is contained in the region �	

a � k � 	
a

446 Wave Mechanics



Only free electrons will escape interaction with the ions in the crystal lattice; almost free

electrons will experience weak coupling to the lattice. Coupling which is strong enough to

reflect electron waves may be seen in terms of Bragg reflection, Figure 13.17. Here, waves

reflected by successive planes in a crystal which are separated by a distance a reinforce to

give maxima on reflection when 2a sin � ¼ n�.

When � ¼ 	=2 and the coupling is strong enough the electron waves will be reflected

from successive ions, Figure 13.18, giving a path difference of 2a. Reflection maxima

occur for

2a ¼ �n� ¼ �n
2	

k
; i:e: k ¼ � n	

a

Thus, Bragg reflections define the Brillouin zone boundaries.

θ θ

kk ′

a

Figure 13.17 Elastic Bragg reflection occurs when electron waves are scattered by atoms in planes
separated by a distance a. Principal maxima are formed when 2a sin ¼ n�

1

1′

2′

2

a a a a

Figure 13.18 When � ¼ 	=2 in Figure 13.17 Bragg scattering by electron--ion interactions gives
principal maxima when electron waves are reflected from ions separated by multiples of a. The
condition 2a ¼ n� defines the Brillouin zone boundaries for n ¼ 1; 2; 3; etc.
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Wave functions of electrons can be represented by travelling waves in both directions,

i.e. by e�ikx and for k ¼ � n	=a standing waves will be formed by the sum or difference of,

e.g.

ei	x=a and e�i	x=a

The sum of these terms creates

 even ¼ cos
	x

a

and their difference gives

 odd ¼ sin
	x

a

The energies associated with these two wave functions will differ when they interact with

the ions.  even ¼ cos	x=a has anti-nodes (maxima) at the site of each ion so the electron–

ion interaction is attractive and the energy corresponding to  even is lowered.

 odd ¼ sin	x=a has its anti-node midway between ion sites where the potential is

repulsive, Figure 13.19. The calculation of these energy shifts requires knowledge of the

effective potential, but it can be shown that for  even the energy change at a given Vn in

Figure 13.16, where Vn is the energy gap between bands, is �E ¼ � 1
2

Vn and for  odd the

energy change is �E ¼ 1
2

Vn (see Problem 13.21). Note that the band widths and gaps

increase with n.

The band structure may also be demonstrated by considering the effect of tunnelling.

Two widely separated equivalent potential wells may each contain a single electron

occupying identical energy levels. When the potential well separation becomes small

enough for the tunnelling of Figure 13.6 to be possible this symmetry is destroyed because

the wave function of an electron spreads right across both wells and their separating

potential barrier, Figure 13.20. There is a finite probability of finding an electron at any

ψ

Ψeven

Ψodd

a 2a 3a x

Figure 13.19 The wave function c (even) has an anti-node at an ion (atom) site. The anti-node for
c (odd) is located midway between sites. This governs the energy of interaction, which is different
for the two c values
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point x of its wave function  ðxÞ so the two electrons cannot occupy the same energy level

and the single state splits into two. The lowest lying energy levels split into a narrow band

of very closely spaced states since the barrier to tunnelling is very large for electrons in

these levels. Higher energy levels have a wider spread and it is even possible for bands to

overlap. The band structure helps to explain the difference between electrical conductors

and insulators.

Once an energy level is occupied by an electron it cannot accept another electron.

However, in a metal only the lower energy levels in a band or Brillouin zone are occupied

and an applied electric field can accelerate electrons which move to occupy higher

available energy states within the band. Insulators have completely filled energy bands so

the electrons cannot move under the influence of an electric field – there are no empty

neighbouring states.

−a −b b a

Ψ(x )

Ψ1

Ψ0

Figure 13.20 When an electron can tunnel between two potential wells (a, b) and � (a, b) it cannot
exist in a single energy state. The higher of the two resulting energy states has a greater curvature
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However, a very strong electric field can cause an electron to jump from the top of a band

across a gap to occupy an empty level immediately above the gap, so the insulator breaks

down. A spark can jump across an air gap between two terminals; lightning is such a spark

on a much larger scale. A semiconductor is basically an insulator with a very narrow

forbidden gap where even a small energy change will switch the insulator into a conductor.

Phonons

Pages 135 and 162 showed that the elastic field in a crystal could sustain transverse and

longitudinal modes of vibration along a chain of atoms acting as a series of coupled

oscillators. In a normal mode of angular frequency !i every atom performed simple

harmonic oscillations of !i. On p. 440 we saw that the energy of such oscillations at atomic

and sub-atomic levels was quantized with values of ðn þ 1=2Þ�h!.

The concept of photons as quanta of energy �h! associated with an electromagnetic field

allows the analogy of phonons as quanta of energy associated with the elastic field. In a

normal mode of angular frequency !i the energy of a phonon is �h!i so phonons can be seen

as exciting a mode to an energy state ðn þ 1
2
Þ�h!i. When n ¼ 0 the mode !i is left with the

zero-point energy 1
2
�h!i. A more detailed calculation of Debye’s theory of specific heats

(page 253) takes account of this quantization.

Normal modes are plane waves extending throughout the crystal and phonons are not

localized particles. The uncertainty principle prevents an exact determination of a phonon

position and it exists as a localized wave packet of combined modes with a small spread of

frequency and wavelength and a group velocity d!=k. The number of phonons, like that of

photons, is not conserved. They are created and absorbed by collisions and, like photons,

they obey Bose–Einstein statistics (appendix 1). However, unlike photons, they exist only

within the crystal. They contribute to the crystal momentum but do not carry momentum.

This is evident from Figure 5.15 where a lattice vibration has a wave number

k ¼ k � m	
a

ðm ¼ 1; 2; 3; . . .Þ so �hk has no precise meaning. Indeed, when the mode

oscillations are purely harmonic the equilibrium position is zero so phonon momentum is

zero.

Phonon–phonon collisions are usually three-phonon processes in which both transverse

and longitudinal waves are involved. They are characterized by energy conservation

�h!1 ¼ �h!2 þ �h!3

and by phonon wave vector conservation

q1 ¼ q2 þ q3

A phonon of wave vector q1 can separate into two phonons with wave vectors q2 and q3.

Alternatively, q2 can absorb q3 to form q1. Phonon–phonon collisions play a role in the

thermal conductivity of a crystal; neutron interactions with the crystal lattice also involve

the concept of phonons.

When particles, as waves, interact with crystal structures they create diffraction patterns

when the particle wavelength is of the order of atomic separation within the crystal,
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typically � 2 � 10�10 m. The waves of X-rays striking a crystal create principal maxima

on reflection to satisfy Braggs Law (p. 447) when the path difference

2a sin � ¼ n�

where a is the separation between the reflecting (diffracting) planes. If k is normal to the

particle wave fronts before striking the crystal and k0 is normal to the wave front leaving

the crystal the condition jkj ¼ jk0j defines the scattering as elastic, so Bragg scattering is

elastic. Knowing the plane separation of a nickel crystal, determined by X-rays, Davisson

and Germer were able to find the wavelength of electrons by Bragg elastic scattering (see

Problem 13.20).

Neutrons with � � 2 � 10�10 m have been used in non-elastic scattering experiments

where jkj 6¼ jk0j to probe the structure of crystals, that is, the atomic arrangements and

separation. Where X-rays interact chiefly with electrons surrounding the nucleus of an

atom, uncharged neutrons interact much more strongly with its nucleus; lattice vibrations

are set up so phonons play a role in the scattering.

Non-elastic scattering may be seen in terms of Figure 13.21 where waves in the wave

front normal to k are scattered by atoms 1 and 2 in a row where the atomic separation is a.

The phase lag of the wave incident on atom 2 is 2	
� a sin � with respect to that striking atom

1, but after scattering it leads the wave scattered by atom 1 by a phase 2	
�0 a sin�. A

diffraction maximum occurs when the phase difference

2	

�
a sin �� 2	

�0
a sin� ¼ ka sin �� k0a sin� ¼ l2	 ðl ¼ 1; 2; 3; . . .Þ

i.e.

aðk � k0Þ ¼ l2	

or

k � k0 ¼ l
2	

a

k k ′

a
21 a1 2

θ φ

Figure 13.21 When electrons are scattered from atoms separation a, in the same plane, the
scattering may be inelastic, i.e. jkj 6¼ jk0j. Here, the electron of wave number k ¼ 2	=� strikes atom
1 ahead in phase of that striking atom 2 by 2	=� a sin �, but after scattering it lags that from atom 2
by a phase difference 2	

�0 a sin�. Note that l need not ¼l0
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Note that k � k0 is a vector in diffraction space and �0 need not equal �. This is true for

every row of lattice points in the x direction.

The expression l2	=a represents a series of planes in k space with a separation 2	=a.

Crystal planes in a second dimension with separation b would form another series of planes

m 2	
b
ðm ¼ 1; 2; 3; . . .Þ with separation 2	

b
in k space having lines of intersection with the

series l. A set of crystal planes in a third dimension with separation c would form a final set

of planes n 2	
c
ðn ¼ 1; 2; 3; . . .Þ with separation 2	=c in k space. These three sets of planes

would meet in points ðl;m; nÞ in k space to form the reciprocal lattice. In three dimensions

the diffracted vector k � k0 would end on a reciprocal lattice point l;m; n. There is no

requirement for the directions a; b and c in the crystal to be mutually perpendicular, but a

symmetry exists between the crystal lattice and its reciprocal in that planes in the one are

perpendicular to rows of points in the other and the plane spacing in one is 2	 times the

reciprocal of the point spacing in the other.

When neutrons are diffracted from a crystal lattice in which a phonon of wave vector q
and frequency ! is already excited, more than one diffraction maximum can appear. This

first maximum will result from Bragg elastic scattering, i.e. jkj ¼ jk0j.
A second maximum occurs in a vector direction

g ¼ k � k0 þ q

or

k0 ¼ k þ q � g

This suggests that a neutron of wave vector k has absorbed a phonon of wave vector q to

become a neutron of wave vector k0. In the scattering, because the neutron is initially

outside the crystal, the crystal plus the phonon receives a momentum

�hðk � k0Þ ¼ �hðg � qÞ

Conventionally, the momentum �hg is associated with the whole lattice while �hq (associated

with the absorbed phonon) is known as the crystal or quasi-momentum of the phonon

because it acts as a momentum when absorbed by the neutron.

In pure phonon–phonon collisions two processes may occur. The three phonons involved

may begin and end in the same Brillouin Zone. this is called a normal process. In some

cases, however, the third phonon may finish outside the Brillouin zone. This is known as

the Umklapp process. This occurs when a phonon is Bragg reflected (at the edge of a

Brillouin zone) at the same time as it absorbs another phonon. We know, however, that a

phonon of wave vector q is identical with a phonon of wave vector q � 2	
a

, so the third

phonon may be considered as remaining within the Brillouin zone. Umklapp processes play

a role in the thermal conductivity of a crystal in the following way.

When the crystal lattice vibrations are purely harmonic the separation between adjacent

atoms during vibrations contributes an energy term / ðxi � xi�1Þ2
, where xi is the

displacement of an atom from its equilibrium position. In this case a phonon may travel
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along hundreds of atoms without hindrance. However, with increasing energy, i.e.

temperature, vibrations become anharmonic and cubic terms replace the squared term

above because separate normal modes become coupled. Effectively, a cubic term describes

the emission of a phonon by another phonon or the decay of a phonon into two phonons

and the energies of individual phonons are changed. The phonons constitute a gas where

the phonons have approximately constant speed (unlike in a real gas), but have a larger

number density and energy density at the hot end of the crystal. Heat flow is primarily by

phonon flow with phonons being created at the hot end and destroyed at the cold end. The

thermal resistance in an insulator is produced by collisions which reverse the group

velocity of the phonons, and the Umklapp process involving high-energy phonons at Bragg

reflection on the edge of the Brillouin zone is significant here.

(Problems 13.20, 13.21)

Problem 13.1
The energy of an electron mass m charge e circling a proton at radius r is

E ¼ p2

2m
� e2

4	" 0r

where p is its momentum.
Use Heisenberg’s Uncertainty Principle in the form �p�r � �h to show that the minimum energy

(H2 atom ground state) is

E0 ¼ �me4

8" 2
0 h2

at a Bohr radius

r ¼ " 0h2

	me2

Problem 13.2
The observation of a particle annihilates its mass m and its rest mass energy is converted to radiation.

Use the relations �p�x � h and E ¼ pc for photons to show that the short wavelength limit on

length measurement is the Compton wavelength

� ¼ h

mc

Show that this is 2:42 � 10�12 m for an electron.

Problem 13.3
When x and p vary simple harmonically it can be shown that the averaged values of the squares of

the uncertainties satisfy the relation

ð�x2Þð�p 2Þ � �h2

4
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If the energy of a simple harmonic oscillation at frequency ! is written

E ¼ p2

2m
þ 1

2
m! 2x2

show that its minimum energy is 1
2

h�.

Problem 13.4
An electron of momentum p and wavelength � ¼ h=p passes through a slit of width �x. Its

diffraction as a wave may be regarded in terms of a change of its momentum �p in a direction

parallel to the plane of the slit (its total momentum remaining constant). Show that the approximate

position of the first minimum of the diffraction pattern is in accordance with Heisenberg’s

uncertainty principle. (Note that the variation of the intensity of the principal maximum in the

pattern is a direct measure of the probability of the electron arriving at a point on the screen.)

Problem 13.5
A beam of electrons with a de Broglie wavelength of 10�5 m passes through a slit 10�4 m wide.

Show that the angular spread due to diffraction is 5�47 0.

Problem 13.6
Show that the de Broglie wavelength of an electron accelerated across a potential difference V is

given by

� ¼ h=ð2m eeVÞ 1=2 ¼ 1:29 � 10�9V �1=2 m

where V is measured in volts.

Problem 13.7
If atoms in a crystal are separated by 3 � 10�10 m (3 Å) show that an accelerating voltage of � 3 kV

would be required to produce electrons diffracted by the crystal.

Problem 13.8
Electromagnetic radiation consists of photons of zero rest mass. Show that the average momentum

per unit volume associated with an electromagnetic wave of electric field amplitude E0 is given by

p ¼ 1
2
"0E 2

0=c

(Verify the dimensions of this relation.)

Problem 13.9
Show that the average momentum carried by an electromagnetic wave develops a radiation pressure

P ¼ cp ¼ 1
2
" 0E 2

0

when the wave is normally incident on a perfect absorber and a pressure

P ¼ 2cp ¼ "0E 2
0
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when the wave is normally incident on a perfect reflector. (Radiation incident from all directions

within a solid angle of 2	 will introduce a factor of 1=3 in the expressions above.)

Problem 13.10
If the radiation energy from the sun incident upon the perfectly absorbing surface of the earth is

1.4 W m�2 and the radiation comes from all directions within a solid angle of 2	 show that the

radiation pressure is about 10�11 of the atmospheric pressure.

Problem 13.11
In a carbon molecule the two atoms oscillate with a frequency of 6:43 � 10�11 Hz. Show that the

zero point energy is 1:34 � 10�3 eV ð1 eV ¼ 1:6 � 10�19 JÞ.

Problem 13.12
A particle of mass m moves in an infinitely deep square well potential of width 2a defined by

VðxÞ ¼ 0 � a � x � þ a

VðxÞ ¼ 1 jxj > a

If it is described by the wave function

 ðxÞ ¼ 1ffiffiffi
a

p 1 � 	2x 2

8a2

� �
for jxj � a

¼ 0 jxj > a

show by calculating
Ð a

�a
j ðxÞj 2

dx that the probability of finding it in the box is 0.96.
Show that in its normalized ground state, it is represented by  ðxÞ ¼ ð1=

ffiffiffi
a

p
Þ cos ð	x=2aÞ and

expand this in powers of 	x=2a to compare it with the wave function above.

Problem 13.13
Show that the normalization constant for the wave function

 ðxyzÞ ¼ A sin
n1	x

a
sin

n2	y

b
sin

n3	z

c

describing an electron in a volume abc at the bottom of a deep potential well is equal to

ð8=abcÞ 1=2
.

Problem 13.14
A total of N electrons occupy a volume V in a solid at a very low temperature between the energy

levels 0 to EF the Fermi energy.

Show that their total energy

U ¼
ð

E dn ¼
ð E F

0

E
dn

dE
dE

¼ 3

5
NE F

giving an average energy per electron of 3
5

EF.

Phonons 455



Problem 13.15
Copper has one conduction electron per atom, a density of 9 and an atomic weight of 64. Show that

n0, the number of free electrons per unit volume is � 8 � 1028 m�3 and that the value of its Fermi

energy level is about 7 eV ð1 eV ¼ 1:6 � 10�19 JÞ.

Problem 13.16
The probability of a particle of mass m penetrating a distance x into a classically forbidden region is

proportional to e�2� x where

� 2 ¼ 2mðV � EÞ=�h2

If x is 2 � 10�10 m (2 Å) and ðV � EÞ is 1 eV ð1:6 � 10�19 JÞ show that

e�2� x ¼ 0:1 for an electron

¼ 10�43 for a proton

Problem 13.17
A particle of total energy E travels in a positive x direction in a region where the potential energy

V ¼ 0. The potential suddenly drops to a very large negative value. Show that, quantum

mechanically, the amplitude of the reflected wave tends to unity and that of the transmitted wave to

zero. Note that this implies non-classical total reflection.

Problem 13.18
Show that Schrödinger’s equation for a one dimensional simple harmonic oscillator of frequency ! is

given by

d2 

dx2
þ 2m

�h2
E � 1

2
m!2x2

� 

 ¼ 0

and verify that if a 2 ¼ m!=�h then

 0ðxÞ ¼ ða=
ffiffiffi
	

p
Þ1=2

e�a 2x 2=2

and

 1ðxÞ ¼ ða=2
ffiffiffi
	

p
Þ 1=2

2ax e�a 2x 2=2

are respectively the normalized wave functions for E0 ¼ 1
2
�h! (zero point energy) and E1 ¼ 3

2
�h!:

Problem 13.19
The normalized wave function for a one-dimensional harmonic oscillator with energy

En ¼ ðn þ 1
2
Þ�h! is

 n ¼ NnHnðaxÞ e�a 2x 2=2;

where

Nn ¼ ða=	 1=22nn!Þ 1=2

a2 ¼ m!=�h
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and

HðyÞ ¼ ð�1Þ n
e y 2 dn

dyn
e�y 2

Verify that  0ðxÞ and  1ðxÞ of Problem 13.18 satisfy the expression for  n and calculate  2ðxÞ and

 3ðxÞ.

Problem 13.20
Davisson and Germer (1927) fired electrons with an energy of 54 eV at a nickel crystal which had an

atomic plane separation of 0:91 � 10�10 m ð0:91�AÞ. Bragg reflection gave a diffraction maximum at

65�. Calculate the reflected electron momentum p and the kinetic energy to show that the difference

between the incident and scattered kinetic energies was within 3.9%.

Problem 13.21
The perturbed energies of c (odd) and c (even) due to electron–ion interactions are given by

�E ¼
Ð
 �V dxÐ
 � dx

where  � is the complex conjugate of  

If the zero of energy is taken as the mean value of the potential then the potential may be written as
a Fourier series in the form

V ¼ �
X1
n¼1

Vn cos 2	nx=a

where the Vn are the potential gaps in Figure 13.16. They are positive numbers for a potential with

strong negative peaks at the lattice sites. For travelling waves  ¼ e�ikx so  � ¼ 1, which gives

�E ¼ 0 in the above expression except for  ¼ sin kx or cos kx when k ¼ n	=a where a is the

periodicity of the lattice.
Show that for  ¼ sin ka

�E ¼ �
X1
n�1

Ð
sin 2kxVn cos 2	nx

a
dxÐ

sin 2kxdx

¼ 1

2
Vn for k ¼ n	=a

Show that  ¼ cos kx in the above expression gives �E ¼ � 1
2

Vn for k ¼ n	=a

Summary of Important Results

De Broglie Wavelength � ¼ h=p

Heisenberg’s Uncertainty Principle (Bandwidth Theorem)

�x�p � h

�E �t � h

determines zero point energy.
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Schrödinger’s time independent wave equation

d2 ðxÞ
dx2

þ 2mðE � VÞ
�h2

 ðxÞ ¼ 0

 ðxÞ ¼ A ei k x þ B e�i k x;

where

k 2 ¼ 2mðE � VÞ
�h2

E > V

 ðxÞ ¼ C e�x þ D e��x;

where

�2 ¼ 2mðV � EÞ
�h2

V > E

Probability per unit length of finding a particle at x

PðxÞ ¼ j ðxÞj2

Normalization ð
j ðxyzÞj2

dx dy dz ¼ 1

all space

Harmonic oscillator

Energy levels En ¼ ðn þ 1
2
Þh�
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14

Non-linear Oscillations and Chaos

The oscillations discussed in this book so far have all been restricted in amplitude to those

which satisfy the equation of motion where the restoring force is a linear function of the

displacement. This restriction was emphasized in Chapter 1 and from time to time its

limiting influence has required further discussion; for example, in Chapter 6 on acoustic

waves in a fluid. We now discuss some of the consequences when this restriction is lifted.

We begin with simple examples in mechanical, solid state and electrical oscillators.

More complicated behaviour associated with chaos in these oscillators is also examined

together with the appearance of chaos in biological and fluid mechanical systems.

Free Vibrations of an Anharmonic Oscillator -- Large Amplitude
Motion of a Simple Pendulum

In Figure 1.1 the equation of motion of the simple pendulum was written in terms of its

angular displacement as

d2�

dt 2
þ !2

0� ¼ 0

where !2
0 ¼ g=l. Here, an approximation was made by writing � for sin �; the equation is

valid for oscillation amplitudes within this limit. When �� 7� however, this validity is lost

and we must consider the more complicated equation

d2�

dt 2
þ !2

0 sin � ¼ 0

Multiplying this equation by 2d�=dt and integrating with respect to t gives ðd�=dtÞ2 ¼
2!2

0 cos �þ A, where A is the constant of integration. The velocity d�=dt is zero at the

maximum angular displacement � ¼ �0, giving A ¼ �2!2
0 cos �0 so that

d�

dt
¼ !0½2ðcos �� cos �0Þ	1=2
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or, upon integrating,

!0t ¼
ð

d�

f2½cos �� cos �0	g1=2

If � ¼ 0 at time t ¼ 0 and T is the new period of oscillation, then � ¼ �0 at t ¼ T=4, and

using half-angles we obtain

!0

T

4
¼
ð � 0

0

d�

2½sin2 �0=2 � sin2 �=2	1=2

If we now express � as a fraction of �0 by writing sin �=2 ¼ sin ð�0=2Þ sin�, where, of

course, �1 < sin� < 1, we have

1
2
ðcos �=2Þ�� ¼ ðsin �0=2Þ cos���

giving

�

2

T

T0

¼
ð �=2

0

d�

½1 � ðsin2 �0=2Þ sin2 �	1=2

where T0 ¼ 2�=!0.

Expansion and integration gives

T ¼ T0ð1 þ 1
4

sin2 �0=2 þ 9
64

sin4 �0=2 þ � � �

or approximately

T ¼ T0ð1 þ 1
4

sin2 �0=2Þ

(Problem 14.1)

Forced Oscillations -- Non-linear Restoring Force

When an oscillating force is driving an undamped oscillator the equation of motion for

such a system is given by

m€xx þ sðxÞ ¼ F0 cos!t

where sðxÞ is a non-linear function of x, which may be expressed in polynomial form:

sðxÞ ¼ s1x þ s2x2 þ s3x3 . . .

where the coefficients are constant. In many practical examples sðxÞ ¼ s1x þ s3x3, where

the cubic term ensures that the restoring force sðxÞ has the same value for positive and

negative displacements, so that the vibrations are symmetric about x ¼ 0. When s1 and s3

are both positive the restoring force for a given displacement is greater than in the linear

case and, if supplied by a spring, this case defines the spring as ‘hard’. If s3 is negative the
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restoring force is less than in the linear case and the spring is ‘soft’. In Figure 14.1 the

variation of restoring force is shown with displacement for s3 zero (linear), s3 positive

(hard) and s3 negative (soft). We see therefore that the large amplitude vibrations of the

pendulum of the previous section are soft-spring controlled because

sin � 
 �� 1
3
�3

Figure 14.2 shows a mass m attached to points D and D 0, a vertical distance 2a apart, by

two light elastic strings of constant stiffness s and subjected to a horizontal driving force

F0 cos!t. At zero displacement the tension in the strings is T0 and at a displacement x (not

limited in value) the tension is T ¼ T0 þ sðL � aÞ where L is the stretched string length.

The equation of motion (neglecting gravity) is

m€xx ¼ �2T sin �þ F0 cos!t

¼ �2½T0 þ sðL � aÞ	 x

L
þ F0 cos!t

R
es

to
rin

g 
fo

rc
e

b
a

c

b

a

c

displacement

Figure 14.1 Oscillator displacement versus restoring force for (a) linear restoring force, (b) non-
linear ‘hard’ spring, and (c) non-linear ‘soft’ spring

2a

F 0 cos wtx

L

D

D′

L

Figure 14.2 A mass m supported by elastic strings between two points D and D 0 vertically
separated by a distance 2a and subjected to a lateral force F 0 cos!t
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Inserting the value

L ¼ a 1 þ x

a

� �2
� �1=2

and expanding this expression in powers of x=a, we obtain by neglecting terms smaller than

ðx=aÞ3

m€xx ¼ � 2T0

a
x � ðsa � T0Þ

a3
x3 þ F0 cos!t

which we may write

€xx þ s1x þ s3x3 ¼ F0

m
cos!t

where

s1 ¼ 2T0

ma
and s3 ¼ sa � T0

ma3

If s3 is small we assume (as a first approximation) the solution x1 ¼ A cos!t, which yields

from the equation of motion

€xx1 ¼ �s1A cos!t � s3A3 cos3 !t þ F0

m
cos!t

Since cos3 !t ¼ 3
4

cos!t þ 1
4

cos 3!t, this becomes

€xx1 ¼ �ðs1A þ 3
4

s3 A3 � F0=mÞ cos!t � 1
4

s3 A3 cos 3!t

Integrating twice, where the constants become zero from initial boundary conditions, gives

as a second approximation to the equation

€xx þ s1x þ s3x3 ¼ F0

m
cos!t

the solution

x2 ¼ 1

!2
s1A þ 3

4
s3 A3 � F0

m

� �
cos!t þ s3 A3

36!2
cos 3!t

Thus, for s3 small we have a value of ! appropriate to a given amplitude A, and we can plot

a graph of amplitude versus driving frequency. Note that we have a third harmonic. We see

that for a system with a non-linear restoring force resonance does not exist in the same way

as in the linear case. In the example above, even when no damping is present, the amplitude

will not increase without limit for a driving force of a given frequency, for if ! is the natural

frequency at low amplitude it is no longer the natural frequency at high amplitude. For s3

positive (hard spring) the natural frequency increases with increasing amplitude and the
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amplitude versus frequency curve has a tilted maximum (Figure 14.3a). For a soft spring,

s3 is negative and the behaviour follows Figure 14.3b. It is possible for the tilt to become so

pronounced (Figure 14.3c) that the amplitude is not single valued for a given ! and shock

jumps in amplitude may occur at a given frequency (see the next chapter on the

development of a shock front in a high amplitude acoustic wave).

(Problems 14.2, 14.3)

Thermal Expansion of a Crystal

Chapter 1 showed that the curve of potential energy versus displacement for a linear

oscillator was parabolic. Small departures from this curve are consistent with anharmonic

oscillations. Consider the potential energy curve for a pair of neighbouring ions of opposite

charge � e in a crystal lattice such as that of KCl. If r is the separation of the ions the

mutual potential energy is given by

VðrÞ ¼ �e2

r
þ 	

r p

where � and 	 are positive constants and p ¼ 9. This is plotted in Figure 14.4, which shows

that the potential energy curve is no longer parabolic. The first term of VðrÞ is the energy

due to Coulomb attraction; the second is that of a repulsive force. The value of � depends

upon the presence of neighbouring ions and is about 0.3. The constant 	 can be found in

terms of � and the equilibrium separation r0 because, in equilibrium,

dV

dr

� �
r¼r 0

¼ �e2

r 2
0

� p	

r
pþ1
0

¼ 0

(a) (b) (c)

Shock
jumpA

m
pl

itu
de

w

Figure 14.3 Response curves of amplitude versus frequency for oscillators having (a) a ‘hard’ spring
restoring force, and (b) a ‘soft’ spring restoring force. In the extreme case (c) the tilt of the maximum
is sufficient to allow multi-valued amplitudes at a given frequency and ‘shock jumps’ may occur (See
Figure 15.1 for comparable behaviour in a high amplitude sound wave.)
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giving

	 ¼ �e2r
p�1
0

p

X-ray diffraction from such crystals gives r0 ¼ 3:12 Å for KCl, so that 	 may be found

numerically.

To consider small displacements from the equilibrium value r0 let us expand VðrÞ about

r ¼ r0 in a Taylor series to give

VðrÞ ¼ Vðr0Þ þ x
dV

dr

� �
r 0

þ x2

2!

d2V

dr 2

� �
r 0

þ x3

3!

d3V

dr 3

� �
r 0

where x ¼ r � r0. Since ðdV=drÞ r 0
¼ 0, we may write

VðrÞ � Vðr0Þ ¼ VðxÞ ¼ A
x2

2!
þ Bx3

3!

The quantity Ax2=2 is the quadratic term familiar in the linear oscillator, so that for very

small disturbances the bottom of the potential energy curve is parabolic, and a small gain in

energy causes the ion pair to oscillate symmetrically about r ¼ r0. An increase in the ion

pair energy involves the second term Bx3=6, and oscillations are no longer symmetric

about r0, because jr2 � r0j > jr1 � r0j in Figure 14.4. Hence the time average for r � r0 is

not zero as it is for a linear oscillator, and this time average rt > r0. If all ion pairs acquire

this amount of energy, for example by heating, the crystal expands. We may consider the

force between the two ions as

F ¼ � dV

dx
¼ �Ax � Bx2

2

Repulsive
potential
energy

P
ot

en
tia

l e
ne

rg
y

Attractive
coulomb
energy

0

V

r1 r0 r2 r

Figure 14.4 Non-parabolic curve of mutual potential energy between oppositely charged ions in
the lattice of an ionic crystal (NaCl or KCl). The combination of repulsive and attractive forces yields
an equilibrium separation r0. Very small energy increments give harmonic motion about r0 but
oscillations at higher energies are anharmonic, leading to thermal expansion of the crystal
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and note that the quadratic term here is responsible for the lack of symmetry in the motion.

If it were a cubic term as in the previous example the symmetry of motion about r0 would

still occur. The coefficient A in the force equation is the force constant in the discussion on

crystals in Chapters 5 and 6 and leads directly to Young’s modulus. The coefficient B gives

information on the coefficient of thermal expansion of the crystal.

(Problems 14.4, 14.5)

Non-linear Effects in Electrical Devices

A feature of the non-linearity in the mechanical devices discussed earlier was the

introduction of harmonics of the fundamental frequency of the driving force. It is

comparatively simple to avoid these effects of non-linearity in electronic systems by

choosing a small linear portion of the operating characteristic and amplifying the response

in stages. In an electromechanical device such as a piezoelectric crystal linearity is again

achieved by restricting all oscillations to small amplitudes and amplifying the response. In

electroacoustic devices such as microphones and loudspeakers the introduction of

harmonics often leads to severe distortion. In the loudspeaker of Figure 14.5 even if a

pure sinusoidal wave is delivered to the speech coil it is difficult to provide a mechanical

suspension for the cone which has a linear response. The cone acts as a piston radiating

acoustic power, and limitation of amplitude together with inevitable mismatching of

acoustic impedances reduces the efficiency of transforming electrical into acoustic power

to less than 10%. Fortunately the ear is a sensitive device.

Non-linear electrical oscillators are, however, often used, and Figure 14.6a shows a

‘relaxation oscillator’ circuit where a capacitance is discharged very rapidly through a

gaseous conductor such as a hydrogen tube. E is the constant charging potential and i is the

instantaneous value of the current which charges the capacitor through the resistor R to a

potential V s, the striking potential, at which the gas in the tube is ionized. The tube

Driving force F
α current in coil × magnetic field in gap

anharmonic output at high amplitude
S

N

S

Sinusoidal
input

Figure 14.5 A pure sinusoidal wave input to an electroacoustical device such as a loudspeaker will
lead to distorted sound output if the cone suspension has a non-linear stiffness at high amplitudes
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becomes highly conducting and discharges the capacitance in a negligibly short time to V e,

the extinction potential, at which the tube ceases to conduct. The capacitance charges again

to V s and the cycle is repeated. The variation of voltage across the capacitance with time is

shown in Figure 14.6b. Assume that at point A and time t the capacitance has just

discharged. If current i0 is flowing at time t ¼ 0 then

V e ¼ E � i0R e�t=RC

The capacitance charges to the potential V s in a time � so that

V s ¼ E � i0R e�ðtþ�Þ=RC

giving

V s � V e ¼ i0R ðe�t=RC � e�ðtþ�Þ=RCÞ
¼ i0R e�t=RC½1 � e��=RC	
¼ ðE � V eÞ½1 � e��=RC	

giving

e��=RC ¼ E � V s

E � V e

or

� ¼ RC loge

E � V e

E � V s

� �� �

(a)

(b)

C
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Gas filled
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V s

V output
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V

t t + T t + 2T

C
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Figure 14.6 Electrical circuit of a non-linear ‘relaxation oscillator’. A capacitance C is charged
through a resistance R to a potential V s < E, at which the gas-filled valve strikes and rapidly
discharges the condenser to an extinction potential V e, when the valve ceases to conduct and the
cycle is repeated
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The period of oscillation is therefore directly proportional to the charging time constant RC.

A more sophisticated circuit produces a linear charging system with a very short

discharge time so that the exponential voltage output becomes linear and gives a ‘sawtooth’

waveform. From Chapter 10 we know that this periodic function contains many harmonics.

A sawtooth voltage output applied to the time base of an oscilloscope produces a linear

sweep of the spot across the tube.

Electrical Relaxation Oscillators

Van der Pol and Chaos (1926--1927)

The work of Van der Pol continues to attract the attention of research workers in chaos

chiefly because of an equation he derived at that time. His relaxation oscillator was a

multivibrator, a two stage resistance-capacity coupled amplifier with the output of the

second triode fed back as input to the grid of the first. His analysis used the mechanical

form of the damped simple harmonic equation with a negative resistance term which

increased the amplitude, thus

€xx � �x þ !2x ¼ 0

with a solution

x ¼ C eþ�t=2 sin ½ð!2 � �2=4Þt þ �	

for � > 0 and �2=4 < !2.

He restricted the unlimited growth of x by replacing � with �� 3
=x2 where 
 is a

constant, writing !t ¼ t 0 and x ¼ ð�=3
Þ1=2v to give his equation the form

€vv � "ð1 � v 2Þ _vv þ v ¼ 0

where " ¼ �=! and _vv ¼ dv=dt 0.
It is this equation with a forcing term A sin!0t on the right hand side which is known as

Van der Pol’s equation and which has formed the basis of a number of studies in chaos, one

of which we shall meet later. Van der Pol found that as " increased his oscillator gradually

assumed the period � ¼ RC with the output for " ¼ 10 shown in Figure 14.7 (Van der Pol,

1926).

Even more interesting from the viewpoint of chaos was the oscillator by which he could

produce subharmonics of its natural frequency. Such a phenomenon, period doubling,

tripling, etc. is now recognized as an early sign of chaos, indeed Li and Yorke (1975) have

published a paper entitled ‘Period 3 implies Chaos’.

Van der Pol’s period doubling circuit is shown in Figure 14.8. With E0 ¼ 0 and

C ¼ 10�3 mF the relaxation frequency of the system was 103 cycles. Setting E0 sin!t at

7:5 sin 2�103t he was able, by increasing C through the range 5--40 � 10�3 mF to produce

subharmonics !=2; !=3 . . .!=40 . . .!=200. He registered the output on a pair of loosely

coupled telephone earpieces and his paper makes the interesting comment that ‘often an

irregular noise is heard in the telephone receivers before the frequency jumps, however this

is a subsidiary phenomenon’. In fact, such internally generated noise accompanied by

subharmonics is one of the early signs of chaos (Van der Pol and Van der Mark, 1927).
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V

Figure 14.7 Non-linear relaxation oscillations of period � ¼ RC for an unforced Van der Pol system

Neon gas tube

200V

~ MΩ

E 0 sin w t

Figure 14.8 Van der Pol’s period doubling circuit
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Chaos in Population Biology

Chronological accounts of a modern research topic rarely present the most coherent

picture. The significance of early developments is not always recognized until much later;

indeed the first recorded strange or chaotic attractor, that of Lorenz in 1963, comes at the

end of this account but only because of its level of sophistication. Even the simple example

with which we begin was not fully explained when it first appeared.

Despite its simplicity the example of population biology reveals many of the

characteristics displayed by chaotic systems. These are:

� The chaos is deterministic and not random; that is, the paths followed by trajectories are

governed by solutions to given non-linear equations.

� Trajectories from closely neighbouring starting points diverge with time.

� Trajectories can, according to the conditions, finish on a stable point attractor, they can

diverge to infinity from a repellor or at some stage they can orbit in what is known as a

limit cycle.

� Such a limit cycle can develop an infinite series of period doubling; odd number periods

may be generated, also completely aperiodic trajectories which still remain within a

bounded region of space.

� With the appearance of chaotic motion the sharp definition of these frequencies is

gradually overcome by a growing background of wide band noise which is internally

generated.

A number of equations dealing with population biology has been widely studied but we

consider the simplest, a quadratic equation discussed by May (1976) in a classic review.

This is known as the logistic map and is given by

xnþ1 ¼ 4�xnð1 � xnÞ

where the subscripts refer to the year in which the population was measured and � is a

parameter. Restricting the values of x and � to 0 < x < 1 and 0 < � < 1 is a scaling device

which keeps the dynamics within the limits of a diagram. Because it involves only the

coordinate x this logistic equation is known as a one-dimensional map.

Much of the behaviour of populations under this quadratic rule is shown by the

interaction of the parabola and the straight line bisector xnþ1 ¼ xn of gradient unity and

this behaviour is divided into three distinct categories by the � ranges 0 < � < 1
4
; 1

4
< � < 3

4

and 3
4
< � < 1.

To illustrate the general use of the bisector consider what happens to a population with a

constant reproduction rate; that is, the straight line xnþ1 ¼ 4�xn. Figure 14.9a shows the

line for � > 1
4

compared with the bisector xnþ1 ¼ xn. Taking x0 as the starting value of the

population gives x1 on the � > 1
4

line which then projects horizontally to the same value

ðx1Þ on the bisector. This gives the value x1 on the base line which projects vertically to

the � > 1
4

line to give x2 and the process is repeated. Evidently for � > 1
4

the population
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4

Figure 14.9 Change of population with constant reproduction rate given by xnþ1 ¼ 4�xn. (a) for
� > 1

4 the population ! 1 as the trajectories move away from the origin (a repellor). (b) For � < 1
4

the population is extinguished, all trajectories moving to the stable point attractor at zero. The
initial population at x0 gives x1 on the � > 1

4 line which projects horizontally to the same value on
the bisector xnþ1 ¼ xn. The value x1 projects vertically to x2 on the � > 1

4 line and the process
repeats itself. Similarly for � < 1

4
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increases without limit, the trajectories move to infinity from a repellor. For x < 1
4
, Fig-

ure 14.9b, the same process of horizontal and vertical projection produces x1 < x0 and the

population is extinguished, all trajectories moving to the stable point attractor at zero.

The method is equally applicable to the parabola

xnþ1 ¼ 4�xnð1 � xnÞ

For � > 1
4

we have Figure 14.10 and where the curve and the bisector intersect we have

xnþ1 ¼ xn corresponding to a fixed point in the iteration process. Writing this value as

xnþ1 ¼ xn ¼ x� we find from x� ¼ 4�x�ð1 � x�Þ the two roots x� ¼ 0 and x� ¼ 1 � 1
4�

each of which is a fixed point.

Restricting x and � to the values between 0 and 1 gives for � < 1
4

only the value x� ¼ 0

but for 1
4
< � < 1; x� may take both values. If x� is stable; that is, a fixed point to which

the end points of all trajectories become infinitely close, Figure 14.10, it is a point attractor

and this stability depends on the slope of the curve at x�. We write xnþ1 ¼
4�xnð1 � xnÞ ¼ f ðxnÞ and if �1 < f 0ðxÞ < 1 at x�, x� is stable. When the slope f 0ðxÞ
equals �1 stability is lost and x� bifurcates into two new values, each of which is stable.

This is called a pitchfork bifurcation and is the origin of the period doubling sequence in

the logistic map. Odd numbered periodic cycles arise at a later stage from bifurcations into

pairs of new values, only one of each pair being stable. These are called tangent

bifurcations.

x 0 x 1

x n + 1

x n + 1 = x n

x 2 x* = 1 – 1 x n

< λ <1
4

3
4

1
4λ

Figure 14.10 The logistic equation xnþ1 ¼ 4�xnð1 � xnÞ cut by the bisector xnþ1 ¼ xn at the
points x� ¼ 0 and x� ¼ 1 � 1

4�. When 1
4 < � < 3

4 the latter value of x� is a stable point attractor for
all trajectories as shown
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The dependence of stability upon f 0ðxÞ at the fixed point x� follows from Taylor’s

theorem for, with xnþ1 ¼ f ðxnÞ and xn ¼ x� þ "n where "n is a very small quantity, we have

xnþ1 ¼ f ðx� þ "nÞ 
 f ðx�Þ þ "n f 0ðx�Þ
¼ x� þ "n f 0ðx�Þ

because x� ¼ f ðx�Þ at this fixed point x�.

Now xnþ1 ¼ x� þ "nþ1, giving f 0ðx�Þ ¼ "nþ1="n and for n ! 1, "nþ1 ! 0 only if

�1 < f 0ðxÞ < 1.

Thus, x� ¼ 0 is a stable point attractor for all trajectories when � < 1
4

but becomes

unstable at � ¼ 1
4

while x� ¼ 1 � 1
4� is a stable point attractor for all trajectories when

1
4
< � < 3

4
. At � ¼ 3

4
the slope of f ðxÞ at x� ¼ 1 � 1

4� equals �1, stability is lost, x�
bifurcates and a stable oscillation between two new values x�1 and x�2 develops. We can see

this by studying the behaviour of xnþ2 versus xn, obtained by a double application of the

logistic equation.

We can express xnþ2 ¼ f ðxnþ1Þ ¼ ff ðxnÞ ¼ f 2ðxnÞ where the superscript defines the

double application. A graph of f 2ðxÞ, which is symmetric, is shown in Figure 14.11a where

the central minimum decreases as � increases. The bisector is now of course xnþ2 ¼ xn

and, as shown, it cuts f 2ðxÞ at three fixed points. The value of � is chosen so that x�1 is near

the minimum and x�2 is near a maximum. The slope of f 2ðxÞ (written f 20ðxÞÞ at x�1 and x�2
is therefore close to zero and x�1 and x�2 are stable fixed points of f 2ðxÞ. It is at this value of

� ¼ 3
4

that period doubling begins.

The third fixed point x� is clearly the original fixed point of f ðxÞ. This follows from

noting that the point x� ¼ xn ¼ xnþ1 ¼ xnþ2 falls on both f ðxÞ and f 2ðxÞ and on their

respective bisectors. In addition, the stability behaviour of x� is the same for f ðxÞ and

f 2ðxÞ. We can show this via the chain rule, for if

x2 ¼ f ðx1Þ ¼ f 2ðx0Þ where x1 ¼ f ðx0Þ

then

f 20ðxÞ ¼ f 0ðx1Þ ¼
d½ f ðx1Þ	

dx1

dx1

dx
¼ d f ðx1Þ

dx1

� �
f 0ðxÞ

where all derivatives are evaluated at x ¼ x0. This result holds for higher values of the

superscript n in f nðxÞ.
Taking x0 as the fixed point x� then

x� ¼ x0 ¼ x1 ¼ x2

and

f 20ðx�Þ ¼ f 0ðx�Þ f 0ðx�Þ ¼ ð f 0ðx�ÞÞ2:

Thus, if x� is stable (unstable) in f ðxÞ then it is stable (unstable) in f 2ðxÞ.
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x n + 2 x n + 2 = x n

x 2 x n

(a)

*x 1* x*

x n + 1 x n + 1 = x n

x n

λ = 0.751

x 2*x 1*

(b)

Figure 14.11 (a) x�1 and x�2 are two of the three fixed points formed by the intersection of
xnþ2 ¼ f 2ðxnÞ and its bisector xnþ2 ¼ xn. The third fixed point is the original fixed point
x� ¼ 1 � 1

4� of xnþ1 ¼ f ðxnÞ. (b) When the value of � is just greater than 3
4 period doubling begins

between two new fixed points x�1 and x�2
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The stable fixed points x�1 and x�2 of f 2ðxÞ for � > 3
4

are not fixed points of f ðxÞ. Clearly,

since these points lie on the bisector xnþ2 ¼ xn, each will return to itself every second

iteration. This can occur only when the expressions

x�1 ¼ f ðx�2 Þ and x�2 ¼ f ðx�1 Þ

jointly hold so a trajectory ends in the cycle x�1 !x�2 !x�1 !x�2 , Figure 14.11(b).

(Problem 14.6)
In the same way that x�1 and x�2 became the two stable points at �1 ¼ 3

4
they will become

simultaneously unstable for some larger value �2 when f 20ðx�Þ ¼ �1. At �2, x�1 and x�2
will each bifurcate to two stable points to give a stable 4-cycle period based on the stable

fixed points of f 4ðxÞ. As the period doubling sequence continues, via pitchfork bifurcations,

the values �1; �2; �3; �4 . . . for the cycles 2; 22; 23; 2n . . . converge geometrically and

Feigenbaum (1978) found that for this period doubling sequence the limit as n ! 1 is

given by

�n!1 ¼ �nþ1 � �n

�nþ2 � �nþ1

¼ 4:6692016

This result appears to be verified not only for the logistic map but for other non-linear

equations with a single maximum and many experiments, computer simulated and

otherwise, support Feigenbaum’s result.

The value of � at which the cycle 2nðn ! 1Þ is approached is given by �1 ¼ 0:8925.

This is illustrated in Figure 14.12 where the successive bifurcations of 2n cycles become

0.0
0.75 1.0λ ∞

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 14.12 Bifurcations at period doubling for the logistic map begin at � ¼ 3
4 and reach the

limit 21 at �1. Between �1 and � ¼ 1 chaotic behaviour is interspersed with regions or windows
at which odd numbered cycles of period k and their harmonics k2n appear. Some cycles are aperiodic
(Figure 14.13). (From Tabor, 1989)
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increasingly compressed in the � space. Between the values of �1 and � ¼ 1 a very rich

behaviour is observed; there is an infinite number of different periodicities and an

uncountable number of very long cycles of no measurable period but which remain

bounded within the system (Figure 14.13).

The order in which these cycles appear has been successfully predicted by Metropolis et

al. (1973). The first odd cycle appears at � ¼ 0:9196 and the first period 3 cycle appears at

� ¼ 0:9571. This is an important cycle because of the paper by Li and Yorke entitled

‘Period 3 implies Chaos’ (Li and Yorke, 1975).

We can examine the origin of the first period 3 cycle in Figure 14.14(a). At some value

�� the bisector xnþ3 ¼ xn is tangent to the curve xnþ3 ¼ f ðxnÞ at the three fixed points x�1 ,

x�2 , x�3 . The slope of f 3ðxnÞ at these points must equal þ1 and each of these three unstable

fixed points bifurcates into a pair of which one is stable and the other is unstable. This is the

tangent bifurcation. The period 3 cycle orbits between the three stable fixed points (one

from each bifurcation) and we can follow the bifurcation process by increasing � beyond

�� by a small quantity. This heightens the maxima and deepens the minima so that the

bisector now cuts f 3ðxnÞ in pairs of points one on each side of the tangent position. A

typical pair is shown in Figure 14.14(b) on a magnified scale. The tangent point T

splits into points A and B each of which moves along the curve from T as � increases.

Point A moves from a gradient position of þ1 around the curve maximum to a

gradient position of less than 1 and forms the stable fixed point of the bifurcated pair. Point

x n + 1

x n

< λ < 13
4

Figure 14.13 An aperiodic cycle which remains bounded within the system for 3
4
< � < 1
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x n + 3 x n + 3 = x n

x 2 x n

(a)

T

* x 3*x 1*

λ < 0.9571

x n + 3 = x n(b)

λ = 0.9571

A

T

B

Figure 14.14 (a) The first period 3 cycle appears at � ¼ 0:9571. Just below this value of � the
bisector xnþ3 ¼ xn is tangent to xnþ3 ¼ f 3ðxnÞ at three unstable fixed points (gradient ¼ þ1). A
small increase of � splits these points into pairs, one point of each pair becoming stable. (b)
Magnification at tangent point T which splits into a pair A and B with a small increase in �. At T the
gradient is þ1 (unstable), A is stable at a reduced gradient and B is unstable at an increased gradient
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B moves from T (gradient +1) along the curve to a steeper gradient position and remains

unstable.

Thus, to quote May, ‘the fundamental stable dynamical units are of basic period k which

arise by tangent bifurcation along with their associated cascade of harmonics of periods

k2n which arise by pitchfork bifurcation. The hierarchy of stable cycles of period 2n

(namely, k ¼ 1) is merely a special case albeit a conspicuously important one’.

The one dimensional logistic map has one profound limitation. Figure 14.15 shows that

it is symmetric about the point x ¼ 1
2

so that any xnþ1 can arise from one of two different

values xn and x 0
n. This fails an essential requirement in chaos theory, namely that all

trajectories may be traced uniquely backwards in time to their origins. This property is

known as ‘invertibility’ and clearly the logistic map is non-invertible.

Chaos in a Non-linear Electrical Oscillator

The development of the varactor has made it possible to display many features of the

preceding section on a cathode ray oscilloscope in a first year university laboratory

experiment. The varactor acts as a diode in the forward direction but behaves in the reverse

direction as a variable non-linear capacitance in a series LCR circuit. Testa et al. (1982)

confirmed not only many of the results above but, in addition, supported two predictions

made by Feigenbaum (1979). These were

1. That bifurcation at period doubling follows a distinct procedure—as a 2n cycle loses

stability after 2n iterations, a point of the attractor just misses duplicating itself with

duplication occurring only after another 2n iterations. Thus each element of the cycle

splits into closely spaced pairs with 2n iterations required to visit an element from its

x n + 1

x n + 1

1 x nx n 1
2

x n′

Figure 14.15 The one-dimensional logistic equation xnþ1 ¼ 4�xnð1 � xnÞ is non-invertible
because trajectories cannot be traced uniquely backwards to their origins. Each xnþ1 can arise from
two different values of xn
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adjacent neighbour. From one bifurcation to the next, separation of adjacent elements in

a pair is reduced by a universal factor � ¼ 2:5029 (Figure 14.16).

2. After a spectral component in the period doubling process has been generated, its

amplitude remains approximately constant during further bifurcation and each new

subharmonic of this frequency can be predicted as having its amplitude reduced by

10 log10� where

� ¼ 4�

ð2 þ 1
� 2Þ1=2

¼ 6:57

A typical varactor LCR circuit is shown in Figure 14.17 with the non-linear capacitance

given by

CðVÞ ¼ C0=ð1 þ V c=	Þ


where V c is the voltage across the varactor. In Testa’s experiment C0 ¼ 300 pF,

	 ¼ 0:6; 
 ¼ 0:5;L ¼ 10 mH and R ¼ 28�. For low values of V0 this gave a high Q

resonance circuit at a frequency of 93 kHz. With f fixed near the resonance frequency in the

driving voltage V0 sin 2�ft, V0 was varied and the varactor voltage VcðtÞ was measured.

Testa et al. assumed that V0 played the role of � in the logistic equation and that V c

corresponded to x. A real time display on a double beam CRO of VcðtÞ and V0ðtÞ clearly

revealed threshold values of V0n for bifurcations into subharmonics f=n where

n ¼ 2; 4; 8; 16. At n ¼ 4 (not shown by Testa) this would appear as Figure 14.18.

Figure 14.19 was obtained on the oscilloscope screen by Testa with a slow horizontal

scan of V0 versus the varactor voltage Vc which was magnified in selected steps of 10 mV.

The numbers on the horizontal axis indicate the generation of particular periods and

a

a –1

(a) (b)

b

a

c

Figure 14.16 In the period doubling process the separation of adjacent elements in a pair is
reduced by a universal factor � from one bifurcation to the next. For period doubling between 16 and
32 � ¼ a=b ¼ 2:35 and � ¼ c=a ¼ 2:61. Reproduced by permission of The American Physical Society
from Testa et al. (1982)
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bifurcations are clearly visible. The threshold values of V0 for these periods are shown in

Table 14.1. The first four threshold values V0n gave

�1 ¼ V02 � V01

V03 � V02

¼ 4:257 � 0:1

C

Varactor

L

R

V 0 sin 2 p f tV d (t )

V c (t )

>

>

Figure 14.17 Non-linear LCR series circuit where the non-linear element is the varactor C which
acts as a diode in the forward direction but becomes a variable non-linear capacitance in the reverse
direction

V 0 (t )

τ

4τ

V c (t )

Figure 14.18 Double beam oscilloscope showing driving voltage V0ðtÞ at frequency f and varactor
voltage V cðtÞ at frequency f=4. Values of V 0n for appearance of f=n are given in Table 14.1
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V y 

V 0

V 1

I.0.V.
6 5 7 3 6 12 139

V 2 M0

V c

V 3

Figure 14.19 Slow horizontal scan of V0 versus V c. The numbers on the horizontal axis indicate the
generation of particular periods. Bifurcations are clearly visible. Threshold values of V 0 for various
periods are shown in Table 14.1. Reproduced by permission of The American Physical Society from
Testa et al. (1982)

}
}

}

}

}

}

}

Table 14.1 Table of periods and the threshold values V0 at which they appear

Threshold V0

Period (rms volts) comments

2 0.639

4 1.567

8 1.785 Threshold for periodic bifurcation

16 1.836

32 1.853

Chaos 1.856 Onset of noise

12 1.901
Window

24 1.902

6 2.073
Window

12 2.074

5 2.353
Window

10 2.363

7 2.693
Window

14 2.696

3 3.081

6 3.338
Wide Window

12 3.711

24 3.821

9 4.145
Window

18 4.154

Reproduced by pemission of the American Physical Society from Testa et al. (1982)
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and

�2 ¼ V03 � V02

V04 � V03

¼ 4:275 � 0:1

in the Feigenbaum convergence series.

To test the first of Eigenbaum’s predictions the values of c, a and b in Figure 14.16 were

measured for the bifurcations between periods 16 and 32. These gave

� ¼ a

b
¼ 2:35 and � ¼ c

a
¼ 2:61

As periods doubled the power reduction in their frequency components was measured and

the results were consistent with Feigenbaum’s analysis.

Phase Space

One of the most vital concepts in the description of chaos is that of phase space. In one

dimension, e.g. the logistic equation, trajectories can be followed without introducing it. In

higher dimensions it is essential.

The idea of phase space has many applications in physical sciences. Students meet it

initially in the Maxwell–Boltzmann statistical distribution where the question is asked:

‘Given N gas particles at a temperature T occupying a volume V, what fraction of N will be

found in the velocity range v to v þ dv in the small volume range dV?’ We shall discuss this

application to statistical distributions in an appendix at the end of the book.

The number of dimensions of phase space is determined by the number of coordinates

required to define the complete physical state of the system. For each gas particle above we

need six dimensions, three for the v x; v y; v z components in velocity space and three for the

x y z components in the configuration space V.

Each point in phase space defines the complete physical state of the system (here a gas

particle) and trajectories in phase space follow the physical development of the system.

When the energy of an ensemble of systems (particles) is conserved the phase space or

volume associated with them remains constant, but if any energy is dissipated the phase

volume contracts. This contraction generates a sub-space, there is a reduction in the

number of coordinates required and their range is reduced.

Figures 14.20–14.23 show, in turn, the two dimensional phase space diagrams of

different oscillators using the coordinates _xx and x.

1. A linear simple harmonic oscillator (Figure 14.20).

2. a damped simple harmonic oscillator (Figure 14.21).

3. an undamped non-linear oscillator formed by a pendulum supported on a light rigid rod

(Figure 14.22)

4. (a) an undamped oscillator with a potential energy

V ¼ � 1
2

ax2 þ 1
4

bx4
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2 = E1
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2 = 1m w 
2

2E

Figure 14.20 Linear simple harmonic oscillator represented in the two dimensional phase space of
_xx and x. Each ellipse corresponds to a curve of constant energy and encloses a constant area of phase
space

x

x

Figure 14.21 The energy loss per cycle in a damped simple harmonic oscillator is shown in its
phase space diagram as a reduction of area with each cycle as its trajectory spirals to a stable point
attractor at the origin
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(b) the oscillator of 4(a) now lightly damped (Figure 14.23).

The features of each will now be described, introducing ideas which are frequently met in

chaotic systems.

1. The trajectory in _xxx phase space for a simple harmonic oscillator of constant energy is

an ellipse of constant area. Its potential energy curve is the familiar parabola of p. 10.

2. For a lightly damped simple harmonic oscillator where energy is dissipated the phase

space is an inward spiral on to the equilibrium zero position which is a stable point

attractor. As energy is lost each orbit of the spiral encloses a smaller element of phase

space than its predecessor, unlike (1).

3. Here we plot the phase portraits for a large range of pendulum energies E. The closed

curves represent those energy values up to the limit where the pendulum (rigid rod)

stands on its head with zero velocity and angular amplitude � ¼ �� measured from the

hanging rest position. Higher E values have open curves because their rotations are fast

enough to pass through the values of � ¼ ð2n þ 1Þ� with velocities _�� > �. The largest

closed curve has pointed ends, at maximum amplitude �, because _�� is small for changes

of � in that range. Each interval of 2� along the horizontal axis represents a complete

rotation.

The curves passing through � ¼ �� evidently separate those energies capable of

allowing complete rotations from those which cannot. Such a curve is called a

separatrix and the points � ¼ �� are called saddle points.

–3p 3p

q

q

–p p

Figure 14.22 Phase portraits for a non-linear pendulum on a light rod. The closed curves represent
energy values up to the limit _�� ¼ 0 at pendulum amplitude � ¼ � � ð� ¼ 0 is the hanging rest
position). The open curves represent fast rotations with energy values large enough for
_�� > 0 at � ¼ ð2n þ 1Þ�
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4. The potential energy curve V ¼ � 1
2

ax2 þ 1
4

bx4 is drawn together with the phase

portraits for the undamped and damped oscillators. For the undamped oscillator any

starting position with total energy less than VðxÞ ¼ 0 restricts the motion to one or other

of the potential wells. For any starting position greater than VðxÞ ¼ 0 the motion may

cross the potential barrier repeatedly. The trajectory associated with motion starting

from rest at any of the three VðxÞ ¼ 0 positions is the separatrix through the saddle

point.

If the oscillator now has a small damping term r _xx the final rest position is determined

exclusively by its starting values _xx and x. The saddle connection is broken and the two

equilibrium states are now competing point attractors. Starting positions of ð _xx; xÞ which

lie in the dotted regions of the phase space generate trajectories which will come to

(a)

(b)

V (x )

x

x

x

x

x

1

Figure 14.23 Potential energy curve V ¼ � 1
2 ax 2 þ 1

4 bx 4 with phase portraits for the damped and
undamped oscillators. For the undamped oscillator energies VðxÞ < 0 restrict the motion to that
potential well containing the _xxx starting position. (a) When the starting position is on the curve
VðxÞ > 0 the trajectories cross the potential barrier repeatedly. (b) For the damped oscillator
trajectories from a given range of _xxx starting positions will finish at the bottom of a particular
potential well (indicated by the shaded region known as the basin of attraction). The other basin of
attraction is unshaded. Reproduced by permission of John Wiley & Sons from Thompson and Stewart
(1986)
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equilibrium in the dotted attractor spiralling to rest at the minimum of the right hand

potential well. Similarly the clear region of phase space defines the starting positions

and trajectories which will finish at the minimum of the left hand potential well. Each of

these two phase space regions is called a basin of attraction.

Repellor and Limit Cycle

To illustrate the concepts of repellor and limit cycle in two dimensional phase space we

consider the damped non-linear oscillator governed by the equation

m€xx � r _xx þ d _xx3 þ sx ¼ 0

When x is very small we can neglect the d _xx3 term and if r is positive we have negative

damping giving outwardly spiralling trajectories from the central point which is therefore a

repellor. For large values of _xx; d _xx3 is the dominant term and the trajectories spiral inwards.

These competing effects are balanced at some boundary to form a steady state oscillation in

a stable limit cycle of fixed period, Figure 14.24.

The Torus in Three-dimensional ð _xx; x; t) Phase Space

Extending the ideas about phase space let us consider the generation of a torus by following

the trajectory of a particle (or system) subject to the influence of two perpendicular circular

simple harmonic motions of angular frequencies !0 and !1, where !0 traces a circle in the

azimuthal plane with a radius r0 while !1 causes the particle to spiral on the surface of a

torus of radius r1 (Figure 14.25). A cross section of the torus will be a circle of radius r1,

x

x

Figure 14.24 Repellor and limit cycle. Phase trajectories of an oscillator governed by the equation
m€xx � r _xx þ d _xx 3 þ sx ¼ 0. For x small and r positive, trajectories spiral outwards from the repellor at
the origin. For large _xx, the d _xx 3 term dominates and trajectories spiral inwards. These effects balance
at some boundary to form a stable limit cycle. Reproduced by permission of John Wiley & Sons from
Thompson and Stewart (1986)
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and the particle will register some point on the circumference of the circle each time it

passes the cross section. If !1 ¼ !0 this point will be identical for each period

�0 ¼ 2�=!0. However, if !1 6¼ !0 the particle will arrive at different points on the circle

circumference after each interval �0; for example, if !1 ¼ 3!0=4, the particle will travel

only 3
4

of the circumference for each �0 and will register the points A B C D of Figure 14.26

in that order.

Such a cross section is called a Poincaré section in phase space and is a vital tool in

describing the multiple excursions of trajectories in phase space associated with chaos. It is

always taken at some fixed interval of the system such as �0, a typical example, as we shall

see, is the period of the force driving an oscillator displaying chaotic motion.

The Poincaré section for a simple harmonic oscillator taken in the upper half plane

containing the _xx axis but normal to the x axis consists of only one spot at the maximum

value of _xx as the system passes through this position at intervals of �0. A similar section for

the damped oscillator will register a series of points between _xx maximum and the origin as

the trajectory spirals inwards.

A

ω0

ω1

r0

r1

f

Figure 14.25 Torus in ð _xxxtÞ phase space generated by a system subject to the influence of two per-
pendicular circular simple harmonic motions. The trajectory of the system spirals on the torus surface

A

C

B D

Figure 14.26 When !1 ¼ 3!0=4 in Figure 14.25, the system will register the points ABCD in that
order at a given cross section. This is an example of a Poincaré section in phase space
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If the motion associated with !1 is not circular the surface of the torus will be distorted.

We shall see that it can be pulled out, crinkled and folded back on itself so that its Poincaré

section will assume remarkable shapes. When the repeated excursions of trajectories are

located on such a surface it is called a manifold. The final state of such a distorted surface

represents the reduced phase space which follows the dissipation of energy. Within this space

is located the attractor to which the orbiting trajectories are bound.

Chaotic Response of a Forced Non-linear Mechanical Oscillator

Fifty years ago no engineer calculating the forced vibrations of a beam via the equation

€xx þ k _xx þ x3 ¼ B cos t

could have foreseen the complexity of response which computer simulated solutions have

uncovered. Ueda (1980) has found no fewer than 21 distinct regions of behaviour using a

range of B values (0–25) and k values (0–0.8) where the units are unspecified. Five of

these 21 regions display chaos, the others contain a variety of different attractors.

Thompson and Stewart (1986) have chosen particular B and k values from Ueda to

illustrate many basic features of chaotic oscillators and the use of Poincaré sections to

identify them. Even with the same B and k values the long term behaviour of the oscillator

is found to depend critically upon the starting values of _xx and x and Figure 14.27 shows the

phase trajectories and wave forms of five stable periodic motions around attractors for

B ¼ 0:2 and k ¼ 0:08 where the letter A denotes the starting point in each case.

We have already noted that one sign of impending chaos in a system is the divergence

with time of phase trajectories from almost identical starting positions even though their

behaviour is determined by the same equation. For a forced damped oscillator we saw on

p. 58 that this behaviour consists of two terms, a transient which decays with time leaving

the steady state component.

One of Ueda’s chaotic regimens lies in the B range (6–8) and the k range (0.03–0.1) and

Thompson and Stewart chose B ¼ 7:5 and k ¼ 0:05 for their illustration. Figure 14.28

shows phase trajectories of the oscillator for two almost identical starting positions labelled

A and a of ð _xx; xÞ. Because the vibration waveform of the oscillator is so irregular there is

only one way of registering the passage of time on this two-dimensional phase diagram and

that is by marking off the constant period �0 associated with cos t of the driving force. This

gives points B and b and the trajectory divergence is already evident. This divergence may

be traced over many periods of �0 and is found to be exponential with time. We can

associate the points B and b and their successors after each interval of �0 with the

formation of our Poincaré section of the torus on p. 489. Figure 14.29 shows the history of

the single phase trajectory which started at A marked off in alphabetical order over the first

nine periods of �0. Note that each letter represents a maximum of the driving force B cos t

and that all letters fall on the right hand side of the _xx axis, that is x positive.

Tracing this complicated trajectory on the three-dimensional ð _xxxtÞ phase surface of the

torus would separate that is time resolve, the apparent trajectory crossing points in the two-

dimensional picture. If now only the Poincaré section points A, B, C, D, etc. are plotted
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over a very large number of intervals of �0 they build up a shape of which that shown in

Figure 14.30 is typical.

Irrespective of any starting position or of the size and duration of any transients all long

term, steady state, Poincaré section points eventually settle to contribute to this pattern. It

bears the signature of a chaotic attractor for high resolution displays a fine structure known

as fractal. It is an example of the stretching and folding of an ensemble of steady state

trajectories in phase space during which the trajectories become thoroughly mixed; that is,

change from one set of close neighbours to another. The important point is that despite

mixing, the trajectories retain their distinct identities and never merge; their time histories

are invertible.

A Brief Review

We now review briefly the discussion so far in order to present a clearer picture of what we

shall expect to identify in following sections.

We saw on p. 474 how chaos could be approached via period doubling but that the

symmetry of the population biology equation created an ambiguity on the route to chaos, so
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x
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x

x

Ueda′s (a1) solution
Starts A (−0.21,0.2)
Small amplitude
n = 1 attractor

Ueda′s (a2) solution
Starts A (1.05,0.77)
Large amplitude
n = 1 attractor

Ueda′s (a3) solution
Starts A (−0.67,0.02)
First of
n = 2 pair

Ueda′s (a4) soln.
Starts A (−0.46,0.30)
Second of
n = 2 pair

Ueda′s (a5) solution
Starts A (−0.43,0.12)
n = 3 attractor

Figure 14.27 Phase trajectories for the oscillator €xx þ 0:08 _xx þ x 3 ¼ 0:2 cos t are seen to depend
critically upon the starting values of _xx and x. The letter A denotes each starting position. Reproduced
by permission of John Wiley & Sons from Thompson and Stewart (1986)
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that no final point on a trajectory could be uniquely time reversed back to its origin. This

essential time reversal arises from the continuity of unique solutions to the non-linear

equations governing the system. The solution at a given time defines the complete state of

the system and occupies a point in phase space so that, with time, the trajectory traces a

line in phase space. However, trajectories with close origins in a chaotic attractor system

diverge exponentially with time while the energy dissipation always associated with chaotic

attractors requires the phase space volume to contract. To reconcile these contradictory

features, phase space of at least three dimensions is required and the problem is resolved

essentially through stretching and folding this phase space. The distortion of phase space

on a torus surface is an example of this.

To illustrate this process of stretching and folding, which we shall discuss later in more

detail, we may consider two trajectories, originally close neighbours, which diverge as they

spiral outwards on a plane (Figure 14.31) leaving the plane only to fold over by attraction

and return back to the centre of the spiral. The divergence; that is, the sensitivity to initial

conditions results from the stretching process and the folding comes from the attraction.

The uniqueness of the trajectories in phase space ensures that they remain distinct, that they

never merge, no matter how complex the phase space structure becomes. This complexity

−7 −3 −2 −1 0 1 2 3
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Ueda′s solution(k)

A a

(3,4) (3.1,4.1)

B
b

x

x

Figure 14.28 Two phase trajectories from almost identical starting positions A and a for the
oscillator €xx þ 0:05 _xx þ x 3 ¼ 7:5 cos t. After one period of the driving force the trajectories have
diverged respectively to B and b. Reproduced by permission of John Wiley & Sons from Thompson and
Stewart (1986)
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is revealed by the fractal nature of the highly resolved Poincaré section of the chaotic

attractor in Figure 14.30.

We now explain what is meant by fractal structure and discuss how theories of phase

space distortion or mapping produce it.

Fractals

In topology a curve has a dimension of one and a surface a dimension of two. There are

higher integral dimensions. The word ‘fractal’ was coined by Mandelbrot in 1975 to

express the idea of a ‘shape’ with a non-integral dimension. He has since published books

on the subject containing many beautiful computer generated patterns. The essential

feature of all these fractal patterns is that they are self similar which means that,

irrespective of scale, they retain the same geometric appearance. A well known example is

the Koch snowflake.

Koch Snowflake

Figure 14.32 shows an equilateral triangle of side length 3l. On the central section of each

side is placed a similar triangle of side l and the process is repeated indefinitely to produce
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Figure 14.29 A single phase trajectory traced over the first nine periods of the driving force in
Figure 14.28. In three dimensional phase space the apparent crossing points would be separated by
time resolution. Reproduced by permission of John Wiley & Sons from Thompson and Stewart (1986)
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a curve of infinite length ð3l � 4
3
� 4

3
. . .Þ but which encloses a finite area less than that of

the circle surrounding the original triangle.

Mandelbrot was first led to the idea of fractals by studying noise on a transmission line.

He found that the pattern or the distribution of the noise remained the same whether taken

over a period of an hour, a minute or a second; that is, self similarity prevailed. He identified

the pattern as belonging to a Cantor set which dates from the nineteenth century and which

G. D. Birkhoff had suggested in the 1920s might be significant in dynamical systems.

Cantor Set

The Cantor set (Figure 14.33) is constructed by removing the centre part l of a line of

length 3l and repeating the process indefinitely. We define the total set of points lying on

Figure 14.30 Poincaré section for an oscillator similar to that of Figures 14.28 and 14.29. High
resolution displays a fractal fine structure. Reprinted with permission from ‘Steady motions exhibited
by Duffing’s equation: A picture book of regular and chaotic motions’, by Yoshisuke Ueda, published
in New Approaches to Nonlinear Problems in Dynamics, pp. 311--322. Copyright 1980 by the Society
for Industrial and Applied Mathematics, Philadelphia, Pennsylvania. All rights reserved
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the line segment l to be some function f ðlÞ and assume this total set to be preserved so that

f ð3lÞ ¼ 2f ðlÞ

If then f ðlÞ is considered to vary as some power � of l so that f ðlÞ � l � we have

f ð3lÞ ¼ 2f ðlÞ giving ð3lÞ � ¼ 2l � so that 3 � ¼ 2 and � ¼ log 2=log 3 ¼ 0:6309. This is the

non-integral fractal dimension of the Cantor set.

x

z

y

Figure 14.31 Trajectories around a chaotic attractor diverge yet remain within a bounded region.
This is achieved by the stretching and folding of phase space

Figure 14.32 The Koch snowflake has a fractal non-integral dimension. The final pattern has
infinite length but encloses a finite area less than that of the circle surrounding the original triangle
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(Problem 14.7)

The importance of the Cantor set is that the highly resolved Poincaré section of a chaotic

attractor such as that on p. 493 reveals a Cantor set-like structure. It results from stretching

the phase space and folding it closely into layers. It is the signature of a chaotic attractor

and we now look at how this may be achieved.

Smale Horseshoe

The mathematical process which describes the stretching and folding of phase space is

called mapping and a number of such maps have now been devised to produce this effect,

e.g. the Smale horseshoe (Smale, 1963).

In this example (Figure 14.34) a square is taken, stretched to double its length while its

width is reduced to form a rectangle of area less than the square. The square may be taken

as a cross section of a particular volume of phase space containing an ensemble or

collection of trajectories the ends of which are shown as dots within the square. The

reduction of area in the stretching process is equivalent to reducing the phase space by

energy dissipation; at the same time it separates trajectories from their neighbours. The

rectangle is then folded over into a horseshoe, the stretching and folding process is now

repeated with the horseshoe again and again, so that successive cross sections reveal a

Cantor set-like structure. The relative positions of the original trajectories are completely

changed in this process.

Figure 14.33 A Cantor set has a fractal non-integral dimension and is produced by removing the
central third of a line and repeating the process indefinitely with the remaining segments. Poincaré
sections of chaotic attractors have a Cantor set-like structure
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Chaos in Fluids

Turbulence in fluids is the most widely observed of all chaotic motions. Fast flowing water

from a tap or around a blunt obstacle loses its low speed coherence and flow symmetry. A

satisfactory description of the behaviour is made more difficult because:

� The theory of the liquid state is less well developed than that of gases and liquids.

� Experimental methods have until recently used probes which disturb the state of the

system being measured.

The second of these difficulties has now been overcome by the development of laser-

Doppler techniques combining the holographic system (p. 404) with the Doppler effect

(p. 141).

Typically, a laser beam of frequency �0 and wavelength �0 is split so that one half acts as

a reference beam while the other is focused on a small fluid element (� 0:1 mm diameter)

moving with a velocity u. This beam is scattered through an angle � with a frequency � s.

The relationship between �0 and � s is shown in Figure 14.35b. In Figure 14.35a the

scattered beam joins the reference beam which is now modulated to give a component at

the detector of the Doppler shift frequency �D ¼ � s � �0. If k0 and k s are the wave number

vectors associated respectively with �0 and � s then the component of the velocity u parallel

(c) (d)

(a) (b)

Figure 14.34 The Smale horseshoe takes a square cross section of phase space containing an
ensemble of trajectories (dotted ends), stretches the square to a rectangle of reduced area and folds
the rectangle into a horseshoe. The process is repeated continuously with successive cross sections
revealing a Cantor-set-like structure. The relative positions of the trajectories are changed in the
process as the trajectories are mixed
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to the vector k ¼ k0 � k s depends only upon �0, sin �=2 and �D. Velocities in the range of

10�6 to 103 ms�1 are capable of being measured by this system.

The frequency �D is so much greater than the frequencies associated with the fluid

motion that the measured uðtÞ gives an instantaneous velocity value. Continuous records of

uðtÞ over long periods may be Fourier analysed to show sharply defined frequency

components when the flow is periodic with the appearance of broad band noise when the

flow becomes chaotic.

Chaos in fluids has been studied chiefly in two systems:

1. Couette flow where the appropriate parameter is the dimensionless Reynolds number.

2. Rayleigh–Bénard convection where the parameter is the dimensionless Rayleigh

number. This system is the model used by Lorenz in finding the original strange attractor.

Couette Flow

This flow was completely defined in the classic paper of G. I. Taylor (1923). In its simplest

form it is produced in a fluid contained in the gap between two concentric cylinders with

Fluid element

Beamsplitter

Detector

Laser

Laser

nsksrs

n0k0r0

n0k0r0

nsksrs

nD = ns - n0

ns = n0

n0

q

u⋅(r0 − rs) n
c

1−

q(b)

(a)

Figure 14.35 (a) Scheme of the laser-Doppler technique for velocity measurements in a fluid. (b)
The vector relationship between the scattered frequency � s, the incident laser frequency �0 and the
fluid velocity u; r is a unit vector, n the refractive index of the fluid and c the velocity of light. The
Doppler shift frequency is �D ¼ � s � �0
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radii differing by about a centimetre. One of the cylinders is fixed while the others rotates

with an angular velocity ! although sometimes both cylinders may rotate with different

angular velocities. The outer cylinder is usually glass, allowing observation of the flow.

At low speeds of angular rotation the flow is symmetric in the azimuthal direction

(Figure 14.36a).

For flow in one dimension the relevant equation would read

�ux

@ux

@x
¼ �@p

@x
þ �@ 2ux

@x2

where � is the fluid density, ux is the velocity in the x direction, p is the pressure and � is

the fluid viscosity. Each term in the equation has the dimensions of force per unit volume;

the left hand side term may be considered as an inertial force and the last term may be seen

as the viscous force. Flow symmetry depends on the relative strengths of these forces and

the Reynolds number is written dimensionally as

Re ¼ inertial force

viscous force
¼ �u2

L

L2

�u
¼ uL

�

where � ¼ �=� is the kinematic viscosity and u and L are a characteristic velocity and

length of the system.

For Couette flow

Re ¼ r i!d

�

where r i is the radius of the inner cylinder and d is the width of the cylindrical gap.

For slow speeds, that is low Re, any departure from symmetry is overcome by the viscous

force restoring the system to equilibrium but as Re increases with increasing !, the inertial

effects of any departure from symmetric flow may be too great for the restoring viscous

force and purely azimuthal Couette flow is lost.

This loss of symmetry for high Re first shows itself as a series of vortices around each

azimuthal flow line, so that fluid elements follow a spiral path in the azimuthal direction

(Figure 14.36b). These vortices, called Taylor cells, are seen to arise as follows.

An elemental toroid of the fluid initially at radius r1, circulating at angular velocity ! r 1

is displaced to radius r2. If its angular momentum is conserved we have

! r 1
r 2

1 ¼ ! 0
r 1

r 2
2

where ! 0
r 1

is its new angular velocity. Its centrifugal force will exceed that of the fluid

originally at r2 circulating with angular velocity ! r 2
if

! 0
r 1

�� �� > ! r 2
j j

Hence an instability develops if ! r 1
r1j j2> ! r 2

r2j j2
for r2 > r1; that is, if

d

dr
j!r 2j < 0
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This is known as the Rayleigh criterion for the instability of Couette flow.

When the inner layers of the fluid are moving more rapidly than the outer layers they

tend to move outwards because the centrifugal force is greater than the pressure holding

them in place. A whole layer cannot move out uniformly because the outer layers are in the

way so it breaks into cells which circulate.

The rotational motion of a fluid element in a Taylor cell appears as a periodic velocity

variation in the z direction of Figure 14.36. Increasing Re that is the angular velocity of the

cylinder, now causes harmonic oscillations of the vortices in the z direction as transverse

waves travel around the azimuthal torus (Figure 14.36c). The frequency of these waves will

be registered via the velocity measurements and as Re increases still more, other

frequencies are generated and broad band noise begins to dominate with the appearance of

chaos (Figure 14.37).

Rayleigh--Bénard Convection

In this process heat provides the energy driving asymmetries in the flow. The incom-

pressible fluid is contained between two horizontal plates about a centimetre apart, the

lower of which is heated. For a small constant temperature difference between the plates

the thermal conductivity and viscosity of the fluid ensure that the heat is conducted

upwards in an orderly fashion (Figure 14.38a). When the temperature gradient is too steep

the effect of these forces in maintaining equilibrium is overcome, flow symmetry is

ω ω ωz

(a) (b) (c)

Re increasing

Figure 14.36 In Couette flow a liquid is contained in the gap between two concentric cylinders one
of which has an angular velocity ! with respect to the other. At low Reynolds number Re the flow is
azimuthal as in (a). As Re increases flow symmetry is lost and vortices develop (b). A further increase
of Re develops transverse waves along the lines of vortices (c)
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lost and convective rolls in both clockwise and anti-clockwise directions can develop

(Figure 14.38b).

This occurs at some critical value of the Rayleigh parameter which we derive from the

relevant equations. These are, in the positive z direction

�uz

@uz

@z
¼ � @p

@z
þ ��

@ 2uz

@z2
� �g��T

uz

dT

dz
¼ K

d2T

dz2

In the last term of the first equation g is the acceleration due to gravity, � is the thermal

expansion coefficient and �T is the constant temperature difference between the plates.

This term is the buoyancy force which drives the warmer, less dense, liquid upwards. In the

second equation K is the thermal diffusivity (p. 190) and equals k=�Cp where k is the

thermal conductivity and Cp is the specific heat at constant pressure.

Figure 14.37 The number of frequencies of the waves in Figure 14.36c increases with Re but broad
band noise begins to dominate with the appearance of chaos in the bottom figure. Reproduced by
permission of the American Institute of Physics from Swinney and Gollub (1978)
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In the first equation the buoyancy force responsible for upward motion is opposed by the

viscous term. If the strength of these forces is comparable, a low pressure gradient in the fluid

will keep the inertial force on the left hand side low enough for the flow to remain symmetric.

Comparable values of the buoyancy and viscous terms will give

�
@ 2uz

@z2

 g��T

to yield some characteristic velocity

U � g��TL2

�
ð14:1Þ

where L, a characteristic length, is usually the depth of the liquid.

The second equation determines the temperature distribution and the ratio

uzdT=dz

Kd2T=dz2
� UL

K
ð14:2Þ

tells us that for K large enough the thermal conductivity will distribute the heat rapidly

enough for the symmetric conduction process to prevail. Combining (14.1) and (14.2) using

the common factor U gives the Rayleigh number

Ra ¼ g��TL3

�K

When the Rayleigh number is small enough, � and K govern the conduction process. At

some critical Rayleigh number Ra c convective fluid motion driven by �T replaces pure

∆T

z

Heat
Ra

Rac

(a)

(b)

Figure 14.38 (a) at low Rayleigh numbers Ra fluid in a Rayleigh--Bénard cell conducts heat away
from the base in a symmetric fashion. At some critical value Ra c flow symmetry is lost (b) and
convective rolls develop in clockwise or anti-clockwise directions
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heat conduction, instabilities develop and the flow becomes asymmetric. At the critical

value Ra c convective rolls in the right or left handed direction begin to show, with a single

frequency and its harmonics appearing in the velocity flow spectrum. Increasing Ra beyond

Ra c introduces further frequency components which are followed by the onset of noise as

chaos sets in (Figure 14.39).

The Strange Attractor of Lorenz

Lorenz (1963) used the Rayleigh–Bénard process as the basis of his model of atmospheric

convection in assessing the possibility of long range weather forecasting. The physical

model is so restricted that it yields only the most rudimentary information about weather

patterns, enough however to show that long range forecasting is not feasible because phase

trajectories starting from almost identical positions diverge after a relatively short time.

The two-dimensional convection rolls which appear in the rectangular cross section of

Figure (14.38b) when Ra > Ra c can be described by two velocity components together

10−3

10−5

10−1

10−3

10−5

10−1

10−5

10−3

10–1

2f 1

f 1

f 1

f 1

f 2

f 2

0 0.05 0.10 0.15

CONVECTION

FREQUENCY f (Hz)

Figure 14.39 The development of frequencies in the velocity flow spectrum at the critical Rayleigh
number Ra c with the onset of noise as chaos sets in (bottom figure). Reproduced by permission of
the American Institute of Physics from Swinney and Gollub (1978)
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with the deviation of the temperature from the linear conduction profile of low Ra. These

three quantities, two of velocity and one of temperature, were expanded in two-

dimensional Fourier series with terms (modes) of the form AijðtÞ sin kix sin kjz (p. 248)

where the time dependence now appears in the amplitude coefficient. These expansions

were used in the hydrodynamic equations of the last section to produce an infinite set of

ordinary differential equations, but Lorenz reduced this number to three by considering

only the first three modes of the Fourier expansion.

The first mode XðtÞ determined by the velocity components gives a single convective roll

filling the rectangular cell (Figure 14.40). The second mode YðtÞ describes the temperature

differences between ascending and descending currents in the convective roll and the third

mode ZðtÞ represents the departure from linearity of the vertical temperature profile.

Each mode is a phase space coordinate and the modes XYZ represent the physical state of

the system at a given time.

The Lorenz equations take the form

_XX ¼ �ðY � XÞ
_YY ¼ rX � Y � XZ

_ZZ ¼ XY � bZ

where � is the ratio of the fluid viscosity to its thermal conductivity, r is the ratio Ra=Ra c

and b is a geometric factor governed by the ratio h=l (height/length) of the cell in

Figure 14.40. Lorenz took � ¼ 10 (the approximate value for water) and b ¼ 8=3.

To show that the volume of phase space containing the trajectories decreased with time,

Lorenz used a transport theorem of fluid dynamics relating the space rate of change of

vectors describing a flow integrated over a volume V to the time rate of change of the same

l

h

HEAT

Constant
∆T

Figure 14.40 The first mode XðtÞ in the Lorenz equations gives a single convective roll, clockwise
for X positive, anti-clockwise for X negative. Warm rising fluid in this mode indicates where X and Y
have the same sign. The ratio h=l determines the geometric factor b in the Lorenz equations
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volume. The vector in phase space may be written as Fð _XX; _YY ; _ZZÞ to give

d

dt
VðtÞ ¼

ð
V

div F dV

Div F from p. 203 is given by

@ _XX

@X
þ @ _YY

@Y
þ @ _ZZ

@Z

with a value of �ð�þ b þ 1Þ ¼ �13:67 in Lorenz’s equations, so dVðtÞ=dt is negative.

This reduction in phase space volume indicates that the trajectories will eventually be

confined to some limiting manifold.

The overall behaviour of the system can be conveniently divided into various ranges of

the value of r ¼ Ra=Ra c.

When

_XX ¼ _YY ¼ _ZZ ¼ 0

there are three solutions to the Lorenz equations. These are

ð1Þ X ¼ Y ¼ Z ¼ 0

ð2Þ X ¼ Y ¼ þ½bðr � 1Þ	1=2 : Z ¼ ðr � 1Þ
ð3Þ X ¼ Y ¼ �½bðr � 1Þ	1=2 : Z ¼ ðr � 1Þ

When r < 1 solution (1) corresponds to a steady process of pure conduction with no

convection, typical behaviour for small �T . Solutions (2) and (3) correspond to states of

steady convection which exist only when r > 1.

If there is now a small perturbation from the condition _XX ¼ _YY ¼ _ZZ ¼ 0 the behaviour of

(1) remains stable as pure conduction for r < 1, trajectories moving to the origin X ¼
Y ¼ Z ¼ 0 as a point attractor. As r increases beyond unity, steady convection will give

way to the right and left handed convective rolls of solutions (2) and (3) which now

correspond to separate stable attractors each with its own basin of attraction and set of

spiralling trajectories.

At r 
 13:9 the separation between the basins of attraction is lost and trajectories move

between (2) and (3) before settling on one or the other. At r 
 24:7 (2) and (3) lose their

stability as limit cycles and beyond this value of r the trajectories form two connecting

bands, one centred on (2), the other on (3). (2) and (3) are now chaotic attractors with

trajectories orbiting aperiodically around one before switching to the other.

Problem 14.1
If the period of a pendulum with large amplitude oscillations is given by

T ¼ T0 1 þ 1

4
sin2 � 0

2

� �
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where T0 is the period for small amplitude oscillations and �0 is the oscillation amplitude, show that

for � 0 not exceeding 30�, T and T 0 differ by only 2% and for � 0 ¼ 90� the difference is 12%.

Problem 14.2
The equation of motion of a free undamped non-linear oscillator is given by

m€xx ¼ �f ðxÞ

Show that for an amplitude x0 its period

� 0 ¼ 4

ffiffiffiffi
m

2

r ð x 0

0

dx

½Fðx0Þ � FðxÞ	 1=2
; where Fðx0Þ ¼

ð x 0

0

f ðxÞ dx

Problem 14.3
The equation of motion of a forced undamped non-linear oscillator of unit mass is given by

€xx ¼ sðxÞ ¼ F 0 cos!t

Writing sðxÞ ¼ s 1x þ s 3x3, where s 1 and s 3 are constant, choose the variable !t ¼ �, and for

s 3 � s 1 assume a solution

x ¼
X1
n¼1

an cos
n

3
�þ bn sin

n

3
�

� �

to show that all the sine terms and the even numbered cosine terms are zero, leaving the fundamental

frequency term and its third harmonic as the significant terms in the solution.

Problem 14.4
If the mutual interionic potential in a crystal is given by

V ¼ �V0 2
r 0

r

� � 6

� r 0

r

� �12
� �

where r 0 is the equilibrium value of the ion separation r, show by expanding V about V 0 that the ions

have small harmonic oscillations at a frequency given by ! 2 
 72 V0=mr 2
0, where m is the reduced

mass.

Problem 14.5
The potential energy of an oscillator is given by

VðxÞ ¼ 1
2

kx 2 � 1
3

ax3

where a is positive and � k.

Assume a solution x ¼ A cos!t þ B sin 2!t þ x1 to show that this is a good approximation at
!2

0 ¼ !2 ¼ k=m if x1 ¼ �A2=2!2
0 and B ¼ ��A2=6!2

0, where � ¼ a=m.

Problem 14.6
Prove that when � > 0:75 in Figure 14.11 then the slopes of f 2ðxÞ at x�1 and x�2 are the same.
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Problem 14.7
Use the arguments in the paragraph on the Cantor set (p. 495) to show that the Koch snowflake has a

fractal dimension of 1.2618.

Recommended Further Reading
Non-linear Dynamics and Chaos by Thompson, J. M. T. and Stewart, H. B., Wiley, New York (1986).
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15

Non-linear Waves, Shocks
and Solitons

Non-linear Effects in Acoustic Waves

The linearity of the longitudinal acoustic waves discussed in Chapter 6 required the

assumption of a constant bulk modulus

B ¼ � dP

dV=V

If the amplitude of the sound wave is too large this assumption is no longer valid and the

wave propagation assumes a new form. A given mass of gas undergoing an adiabatic

change obeys the relation

P

P0

¼ V0

V

� ��
¼ V0

V0ð1 þ �Þ

� ��

in the notation of Chapter 6, so that

@P

@x
¼ @p

@x
¼ ��P0ð1 þ �Þ�ð�þ1Þ @

2�

@x2

since � ¼ @�=@x.

Since ð1 þ �Þð1 þ sÞ ¼ 1, we may write

@p

@x
¼ ��P0ð1 þ sÞ�þ1 @

2�

@x2
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and from Newton’s second law we have

@p

@x
¼ ��0

@ 2�

@t 2

so that

@ 2�

@t 2
¼ c2

0ð1 þ sÞ�þ1 @
2�

@x2
; where c2

0 ¼ �P0

�0

ð15:1Þ

Physically this implies that the local velocity of sound, c0ð1 þ sÞð�þ1Þ=2
, depends upon

the condensation s, so that in a finite amplitude sound wave regions of higher density and

pressure will have a greater sound velocity, and local disturbances in these parts of the

wave will overtake those where the values of density pressure and temperature are lower.

A single sine wave of high amplitude can be formed by a close fitting piston in a tube

which is pushed forward rapidly and then returned to its original position. Figure 15.1a

shows the original shape of such a wave and 15.1b shows the distortion which follows as it

propagates down the tube. If the distortion continued the wave form would eventually

appear as in Figure 15.1c, where analytical solutions for pressure, density and temperature

would be multi valued, as in the case of the non-linear oscillator of Figure 14.3c. Before

this situation is reached, however, the wave form stabilizes into that of Figure 15.1d, where

at the vertical ‘shock front’ the rapid changes of particle density, velocity and temperature

produce the dissipating processes of diffusion, viscosity and thermal conductivity. The

velocity of this ‘shock front’ is always greater than the velocity of sound in the gas into

which it is moving, and across the ‘shock front’ there is always an increase in entropy. The

competing effects of dissipation and non-linearity produce a stable front as long as the

wave retains sufficient energy. The N-type wave of Figure 15.1d occurs naturally in

explosions (in spherical dimensions) where a blast is often followed by a rarefaction.

The growth of a shock front may also be seen as an extension of the Doppler effect

(p. 141), where the velocity of the moving source is now greater than that of the signal. In

Figure 15.2a as an aircraft moves from S to S 0 in a time t the air around it is displaced and

the disturbance moves away with the local velocity of sound v S. The circles show the

positions at time t of the sound wave fronts generated at various points along the path of the

aircraft but if the speed of the aircraft u is greater than the velocity of sound v S regions of

high density and pressure will develop, notably at the edges of the aircraft structure and

(a) (b) (c) (d)

Pressure

Figure 15.1 The local sound velocity in a high amplitude acoustic wave (a) is pressure and density
dependent. The wave distorts with time (b) as the crest overtakes the lower density regions. The
extreme situation of (c) is prevented by entropy-producing mechanisms and the wave stabilises to an
N type shock-wave (d) with a sharp leading edge
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along the conical surface tangent to the successive wavefronts which are generated at a

speed greater than sound and which build up to a high amplitude to form a shock. The

cone, whose axis is the aircraft path, has half angle 	 where

sin	 ¼ v S

u

It is known as the ‘Mach Cone’ and when it reaches the ground a ‘supersonic bang’ is heard.

The growth of the shock at the surface of the cone may be seen by considering the sound

waves in Figure 15.2(b) generated at points A (time tA) and B (time tB) along the path of

the aircraft, which travels the distance AB ¼ x ¼ u�t in the time interval �t ¼ tB � tA.

The sound waves from A will travel the distance r0 to reach the point P at a time

t0 ¼ tA þ r0

v S

Those from B will travel the distance r1 to P to arrive at a time

t1 ¼ tB þ r1

v S

S S′ S′′ S′′′

θ

θ

α

P
(a)

u ∆t

A

P

B

r1
r0

(b)

Figure 15.2 (a) The circles are the wavefronts generated at points S along the path of the aircraft,
velocity u > v S the velocity of sound. Wavefronts superpose on the surface of the Mach Cone (typical
point P) of half angle 	 ¼ sin�1 v S=u to form a shock front. (b) At point P sound waves arrive
simultaneously from positions A and B along the aircraft path when ðu=v SÞ cos � ¼ 1: ð�þ 	 ¼ 90�Þ
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If x is small relative to r0 and r1, we see that

r1 � r0 � x cos � ¼ u�t cos �

so the time interval

t1 � t0 ¼ tB � tA þ ðr1 � r0Þ
v S

¼ �t � u�t cos �

v S

¼ �t 1 � u cos �

v S

� �

For the aircraft speed u < v S, t1 � t0 is always positive and the sound waves arrive at P in

the order in which they were generated.

For u > v S this time sequence depends on � and when

u

v S

cos � ¼ 1

t1 ¼ t0 and the sound waves arrive simultaneously at P to build up a shock.

Now the angles � and 	 are complementary so the condition

cos � ¼ v S

u

defines

sin	 ¼ v S

u

so that all points P lie on the surface of the Mach Cone.

A similar situation may arise when a charged particle q emitting electromagnetic

waves moves in a medium of refractive index greater than unity with a velocity v q which

may be greater than that of the phase velocity v of the electromagnetic waves in the

medium ðv < cÞ. A Mach Cone for electromagnetic waves is formed with a half angle	where

sin	 ¼ v

v q

And the resulting ‘shock wave’ is called Cerenkov radiation. Measuring the effective

direction of propagation of the Cerenkov radiation is one way of finding the velocity of the

charged particle.

Shock Front Thickness

The extent of the region over which the gas properties change, the shock front thickness,

may be only a few mean free paths in a monatomic gas because only a few collisions

between atoms are necessary to exchange the energy required to raise them from the
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equilibrium conditions ahead of the shock to those behind it. In a polyatomic gas the

collisions are effective in producing a rapid increase in translational and rotational

mode energies, but vibrational modes take much longer to reach their new equilibrium, so

that the shock front thickness is very much greater.

Within the shock front thickness the state of the gas is not easily found, but the state of

the gas on one side of the shock may be calculated from the state of the gas on the other

side by means of the conservation equations of mass, momentum and energy.

Equations of Conservation

In a laboratory, shock waves are produced in a tube which is divided by a diaphragm into a

short high-pressure section and a much longer low-pressure section. When the diaphragm

bursts the expanding high pressure gas behaves as a very fast low-inertia piston which

compresses the low pressure gas on the other side of the diaphragm and drives a shock

wave down the tube. The profile of this shock wave is the step function shown as the dotted

line in Figure 15.3, and the gas into which the shock is propagating is considered to be

at rest. This simplifies the analysis, for we can consider the situation in Figure 15.3 as it

appears to an observer O travelling with the shock front velocity u1 into the stationary gas.

The shock front is located within the region bounded by the surfaces A and B of unit area,

each of which remains fixed with respect to the observer. The stationary gas which moves

through the shock front from surface B acquires a flow velocity u < u1 and a velocity

relative to the shock front of u2 ¼ u1 � u. From the observer’s viewpoint the quantity of

gas flowing into unit area of the region AB per unit time is �1u1, where �1 is the density of

Observer on shock front

Shock front velocity u1

Shocked gas
Density r2
Pressure P2
Flow velocity u
Relative velocity
u2 = u1−u

Stationary gas
Density r1
Pressure P1
Relative velocity
         u1

Unshocked
gas at rest

x

A B

P
re

ss
ur

e

Figure 15.3 The pressure ‘step profile’ of a shock wave developed in a shock tube is shown by the
dotted line. The plane cross-sections at A and B remain fixed with respect to the observer O moving
with the shock front at velocity u1 into unshocked gas at rest of pressure p 1 and density � 1. The
shocked gas has a pressure p2, a density � 2 and a velocity u, with a relative velocity u2 ¼ u 1 � u
with respect to the shock front. The states of the gas at A and B are related by the conservation
equations of mass, momentum and energy across the shock front. Experimental measurement of the
shock velocity u 1 is sufficient to determine the unknown parameters if the stationary gas parameters
are known

Equations of Conservation 509



the gas ahead of the shock. The quantity leaving unit area of AB per unit time is

�2ðu1 � uÞ ¼ �2u2, where �2 is the density of the shocked gas.

Conservation of mass yields �1u1 ¼ �2u2 ¼ m (a constant mass). The force per unit area

acting across the region AB is p2 � p1, which equals the rate of change of momentum of

the gas within the unit element, which is mðu1 � u2Þ. The conservation of momentum is

therefore given by

p1 þ �1u2
1 ¼ p2 þ �2u2

2:

The work done on unit area of the region per unit time is p1u1 � p2u2, and this equals the

rate of increase of the kinetic and internal energy of the gas passing through unit area of the

shock wave.

The difference

p1u1 � p2u2 ¼ p1

�1

m � p2

�2

m

so that if the internal energy per unit mass of the gas is written eð p; �Þ, then the equation of

conservation of energy per unit mass becomes

1

2
u2

1 þ e1 þ
p1

�1

¼ 1

2
u2

2 þ e2 þ
p2

�2

where for an ideal gas p=� ¼ RT and e ¼ cvT ¼ ð1=� � 1Þp=�, where T is the absolute

temperature, cv is the specific heat per gram at constant volume and � ¼ cp=cv, where cp is

the specific heat per gram at constant pressure.

These three conservation equations

�1u1 ¼ �2u2 ¼ m ðmassÞ
p1 þ �1u2

1 ¼ p2 þ �2u2
2 ðmomentumÞ

and

1

2
u2

1 þ e1 þ
p1

�1

¼ 1

2
u2

2 þ e2 þ
p2

�2

ðenergyÞ

together with the internal energy relation eð p; �Þ completely define the properties of an ideal

gas behind a shock wave in terms of the stationary gas ahead of it.

In an experiment the properties of the gas ahead of the shock are usually known, leaving

five unknowns in the four equations, which are the shock front velocity u1, the density of

the shocked gas �2, the relative flow velocity behind the shock u2, the shocked gas pressure

p2 and its internal energy e2. In practice the shock front velocity u1 is measured and the

other four properties may then be calculated.

Mach Number

A significant parameter in shock wave theory is the Mach number. It is a local parameter

defined as the ratio of the flow velocity to the local velocity of sound. The Mach number of
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the shock front is therefore M s ¼ u1=c1, where u1 is the velocity of the shock front

propagating into a gas whose velocity of sound is c1.

The Mach number of the gas flow behind the shock front is defined as Mf ¼ u=c2, where

u is the flow velocity of the gas behind the shock front ðu < u1Þ and c2 is the local velocity

of sound behind the shock front. There is always an increase of temperature across the

shock front, so that c2 > c1 and M s > Mf . The physical significance of the Mach number

is seen by writing M 2 ¼ u2=c2, which indicates the ratio of the kinetic flow energy,
1
2

u2 mol�1, to the thermal energy, c2 ¼ �RT mol�1. The higher the proportion of the total

gas energy to be found as kinetic energy of flow the greater is the Mach number.

Ratios of Gas Properties Across a Shock Front

A shock wave may be defined in terms of the shock Mach number M s, the density or

compression ratio across the shock front 
 ¼ �2=�1, the temperature ratio across the shock

T2=T1 and the compression ratio or shock strength y ¼ p2=p1.

Given the shock strength, y ¼ p2=p1, the conservation equations are easily solved to

yield

M s ¼
u1

c1

¼ y þ 	

1 þ 	

� �1=2

where

	 ¼ � � 1

� þ 1


 ¼ �2

�1

¼ 	þ y

1 þ 	y

and

T2

T1

¼ y
1 þ 	y

	þ y

� �

Alternatively these may be written in terms of the experimentally measured parameter M s as

p2

p1

¼ y ¼ M 2
s ð1 þ 	Þ � 	

�2

�1

¼ 
 ¼ M 2
s

1 � 	þ 	M 2
s

and

T2

T1

¼ ½	ðM 2
s � 1Þ þ M 2

s 
½	ðM 2
s � 1Þ þ 1


M 2
s

For weak shocks (where p2=p1 is just greater than 1) 
, T2=T1 and M s are also just greater

than unity, and the shock wave moves with the speed of sound.
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Strong Shocks

The ratio p2=p1 � 1 defines a strong shock, in which case

M 2
s ! ð� þ 1Þ

2�
y

and


 ¼ �2

�1

! � þ 1

� � 1

� �

a limit of 6 for air and 4 for a monatomic gas for a constant �. The flow velocity

u ¼ u1 � u2 ! 2u1

ð� þ 1Þ

and the temperature ration

T2

T1

¼ c2

c1

� �2

! ð� � 1Þ
ð� þ 1Þ y

The temperature increase across strong shocks is of great experimental interest. The

physical reason for this increase may be seen by rewriting the equation of energy

conservation as 1
2

u2
1 þ h1 ¼ 1

2
u2

2 þ h2, where h ¼ ðe þ p=�Þ is the total heat energy or

enthalpy per unit mass. For strong shocks h2 � h1 of the cold stationary gas and u1 � u2,

so that the energy equation reduces to h2 � 1
2

u2
1, which states that the relative kinetic

energy of a stationary gas element just ahead of the shock front is converted into thermal

energy when the shock wave moves over that element. The energy of the gas which has

been subjected to a very strong shock wave is almost equally divided between its kinetic

energy and its thermal or internal energy. This may be shown by considering the initial

values of the internal energy e1 and pressure p1 of the cold stationary gas to be negligible

quantities in the conservation equations, giving the kinetic energy per unit mass behind the

shock as

1
2

u2 ¼ 1
2
ðu1 � u2Þ2 ¼ e2

the internal energy per unit mass of the shocked gas.

In principle, the temperature behind very strong shock waves should reach millions of

degrees. In practice, real gas effects prevent this. In a monatomic gas high translational

energies increase the temperature until ionization occurs and this process then absorbs

energy which otherwise would increase the temperature still further. In a polyatomic gas

the total energy is divided amongst the various modes (translational, rotational and

vibrational) and the temperatures reached are much lower than in the case of the

monatomic gas. The reduction of � due to these processes is significant, since with
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increasing ionization � ! 1, and the temperature ratio depends upon the factor

ð� � 1Þ=ð� þ 1Þ which becomes very small.

(Problems 15.1, 15.2, 15.3, 15.4, 15.5, 15.6)

Solitons

We have seen that a pulse, limited in space, is also limited in time. Fourier analysis shows

that a pulse is the superposition of a large number of components with different frequencies

and that the high frequency components contribute to the vertical edges of the pulse Fig-

ure 10.3. The superposition of these components changes as phase differences develop;

different frequencies will have different phase velocities and the pulse disperses.

It is surprising, therefore, that high amplitude solitary waves or solitons are known to

exist. The first recorded observation of a soliton is that of Scott–Russel (1844) who saw a

single wave about 40 cm high travelling along a canal in Scotland. Rayleigh (1876)

developed an expression for the shape of this soliton based on the hydrodynamics of waves

in shallow water.

That expression, the bell-shaped Figure 15.4 is given by

� ¼ a sech2	ðx � x0Þ

where

	 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a

h2ðh þ aÞ

s
:

x
x0

h

= a sec h2a (x − x0)h

h

a

Figure 15.4 The solitary wave (soliton) on a shallow canal seen by Scott--Russel (1844) was
described as a sech2 bell-shaped function by Rayleigh (1876). The canal depth is h, the soliton
amplitude is a and � measures a displacement on the soliton curve. The soliton is centred at x0 and 	
is a function of a and h
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�, a, h and x0 are all shown in Figure 15.4. The coordinate x0 about which the static figure

is centred is replaced by ct when the soliton is moving; c is the soliton velocity and t is the

time. We shall see that c is related to the height of the soliton. Larger amplitude solitons

move faster.

Further sightings of solitons on Dutch canals led to a thorough discussion of waves with

finite amplitude in shallow water by Korteweg and de Vries (1895). Their equation

describing soliton behaviour is known as the KdV equation and is now taken as the basis of

soliton theory. We shall not pursue the relevant fluid dynamics necessary to obtain the KdV

equation but we shall obtain its mathematical form by a method which may lack formal

rigour but which provides a good working model. It also emphasizes the physical

characteristics which produce a soliton.

The underlying physics of solitons is the competition between two processes. One of

these causes a high amplitude or non-linear wave to break; we have seen this in the

formation of a shock wave in Figure 15.1c. This results from the increased phase velocities

of the high amplitude non-linear components of the wave.

In a soliton this is opposed by the dispersion of the wave components in such a way that

a stable profile is maintained.

We shall derive the form of the KdV equation and then discuss the following topics:


 Solitons, Schrödinger’s equation and elementary particles.


 Solitons in optical fibres. Telecommunications..

A list of references is given at the end of the chapter.

Non-Linearity

Equation (15.1) shows that the higher amplitude components of an acoustic wave

propagate with a phase velocity

v ¼ @x

@t
¼ c0ð1 þ sÞ�þ1=2

where c0 is the phase velocity of a small amplitude linear wave and s, the condensation, is a

measure of the compression in the wave.

We may expand this, to a first order, to give

v ¼ @x

@t
¼ c0 1 þ � þ 1

2
s . . .

� �
ð15:2Þ

In a linear, low-amplitude, right-going wave we have

� ¼ �m e ið!t�kxÞ
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So, denoting @�=@t as � t and @�=@x as � x we have

� t=�x ¼
�!
k

¼ �c0

or

� t þ c0� x ¼ 0 ð15:3Þ

Throughout this chapter we shall indicate partial differentiation with respect to a variable

by writing that variable as a subscript. Thus, � t ¼ @�=@t; �x ¼ @�=@x; � tt ¼ @ 2�=@t 2 and

� xx ¼ @ 2�=@x2. Replacing c0 in equation (15.3) by v in equation (15.2) gives

� t þ c0 1 þ � þ 1

2

� �
s

� �
� x ¼ 0

which, because s ¼ k � is in phase with � t (Figure 6.2), becomes

� t þ c0 1 þ � þ 1

2

� �
k�

� �
� x ¼ � t þ c0�x þ c0

� þ 1

2

� �
k�� x ¼ 0 ð15:4Þ

We are interested in non-linear effects and after removing the linear contribution of

equation (15.4) we are left with the non-linear expression

� t þ b�� x ¼ 0 ð15:5Þ

where

b ¼ c0

� þ 1

2

� �
k

Equation (15.5) provides the first two terms of the KdV equation. We now consider the

third, the dispersion term, which competes with the non-linear b��x term.

Dispersion and the Form of the KdV Equation A typical dispersion equation is that for

transverse and longitudinal waves in a periodic structure given by equation (5.12) as

v ¼ !

k
¼ c0

sin ka=2

ka=2

� �

where k is the wave number and a is the particle separation. For small k, long �, we may

expand the sine term to give

v ¼ !

k
¼ c0

ka=2

ka

2
� ka

2

� �3

� � � þ
" #
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or

! ¼ c0k 1 � ka

2

� �2
" #

¼ c0k � dk 3 ð15:5aÞ

where

d ¼ c0a2=4

Writing a linear wave in the form

� ¼ �m e ið!t�kxÞ

gives

� t ¼ i!�; � x ¼ �ik� and � x x x ¼ ik 3�

which, with equation (15.5a), gives

� t þ c0� x þ d� x x x ¼ 0

Again, the contribution � t þ c0� x applies only to linear waves and replacing this for non-

linear waves by equation 15.5

� t þ b�� x

gives

� t þ b�� x þ d� x x x ¼ 0 ð15:6Þ

where b and d are constant coefficients. This is the form of the KdV equation which

describes soliton behaviour. The coefficients b and d depend upon the particular soliton

under discussion.

We gain an insight into the effect of the dispersion term by considering the following.

Let us write a right-going linear wave in the form

� ¼ �m eið!t�kxÞ ¼ �m eikðc 0t�xÞ

where

! ¼ c0k

The effect of dispersion, from the previous section, changes ! ¼ c0k to

! ¼ c0k 1 � ka

2

� �2
" #

so we have

� ¼ �m exp ik c0 1 � ka

2

� �2
( )

t � x

" # !
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and dispersion has the effect of shifting the wave. Note that in this case of normal

dispersion the shift retards the higher k, shorter wavelength terms.

Mathematically, this dispersive shift is used to offset the steepening, wave breaking

effects of non-linearity. The technique, known as a Gardner–Morikawa transformation, is

to choose a coordinate system which moves with the velocity c0, the pulse rides on this

moving coordinate so that dispersion relative to c0 is much reduced. In addition, because

any dispersive change is now so much slower, a much longer time scale � > t is chosen and

the final aim is to show that changes in the soliton profile are negligible in the � time scale.

The Elements of the KdV Equation Although we derived the form of the KdV equation

using the amplitude �, the equation is most often written in terms of a quantity u which

may represent any property of the wave which varies with distance and time.

In their paper ‘The Discovery of the Soliton’ (1965) Zabusky and Kruskal used the

equation in the form

ut þ uux þ � 2ux x x ¼ 0 ð15:7Þ

where � � 1.

Their experiment was made by computer simulation. In the absence of the third

dispersive term the non-linear equation

ut þ uux ¼ 0 ð15:8Þ

describes the development of the shock wave of Figure 15.1. The positive pulses of Figure

15.1a, b and c are superposed in Figure 15.5 with u plotted against x. It is evident that ut

increases with higher values of u and equation (15.8) retains a single valued solution only

as long as the gradient ux of the leading edge becomes increasingly negative as the pulse

steepens.

Now equation (15.8) is satisfied by any function u ¼ f ðx � utÞ—see Problem 15.7—and

ux ¼ ð1 � uxtÞ f 0 ð15:9Þ

u a b c

x

Figure 15.5 Figs. 15.1 (a), (b) and (c) superimposed to show breaking of a non-linear wave
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where

f 0 ¼ @f=@ðx � utÞ

Taking the pulse profile at t ¼ 0 as u ¼ f ðxÞ ¼ cos�x equation (15.9) shows that

ux ¼ �1 at u � 0 (the foot of the pulse) when x ¼ 0:5 and t ¼ 1=�. At this point the wave

becomes infinitely steep and breaks. This behaviour was observed by Zabusky and Kruskal.

When Zabusky and Kruskal added the third dispersion term in their computer experiment

to give the KdV equation

ut þ uux þ � 2ux x x ¼ 0

they found that after a time t ¼ 1=� the solution broke into a train of solitary waves

(solitons) of successively larger amplitudes with the larger waves travelling faster than the

smaller ones. Even more important from the point of view of optical solitons, after one

soliton had overtaken another, each soliton retained its unique identity (Figure 15.6).

Solitons are transparent to each other and are unaffected by mutual collisions.

(Problems 15.7, 15.8)

Two Important Forms of the KdV Equation

1. The KdV equation for shallow water waves may be written in the form

ut þ 6uux þ ux x x ¼ 0 ð15:10Þ
with a solution

uðx; tÞ ¼ 2	2sech2 	ðx � ctÞ

¼ 2
@ 2

@x2
log ½1 þ e2	ðx�ctÞ


or

uðx; tÞ ¼ 2
@ 2

@x2
log ½1 þ e�2	ðx�ctÞ


A A′

B

v1 v2 < v1 v1

Figure 15.6 The velocity of a soliton increases with its magnitude and solitons are transparent in
mutual collisions, each retaining its own identity. A large soliton A overtakes a smaller soliton B to
emerge as A 0 with B unaffected
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Note that the exponents in the log solutions may be positive or negative.

The sech2 form of the solution may be seen to fit equation (15.10) with a soliton

velocity c ¼ 4	2 (twice the maximum value of u) by showing that

ut ¼ 2	uc tanh�; where � ¼ 	ðx � ctÞ
uux ¼ �2	u2 tanh�

and

ux x x ¼ �8	3u tanh�þ 12	u2 tanh�

The sech2 shape of the soliton is shown in Figure 15.7. Its peak value is

u ¼ 2	2

(Problems 15.9, 15.10)

2. The second important form of the KdV equation is

ut � 6uux þ ux x x ¼ 0 ð15:11Þ

(the shallow water wave form with a negative second term). This has a time

independent soliton solution of

uðxÞ ¼ �2	2 sech2ðx � x0Þ

where x0 locates the centre of the soliton. This solution may be shown to satisfy

equation (15.11) by calculating ux and ux x x as for equation (15.10).

A graph of this soliton, Figure 15.8, shows its minimum to have a value of �2	2. Its

importance is its connection with Schrödinger’s equation, which we now discuss.

2α2

x

Figure 15.7 The KdV equation ut þ 6uux þ ux x x ¼ 0 has a soliton solution uðx; tÞ ¼
2	2 sech2 	ðx � ctÞ with a maximum value of 2	 2

Solitons 519



(Problem 15.11)

Solitons, Schrödinger’s Equation and Elementary Particles

In 1968, Miura found a remarkable connection between equation (15.11) and the equation

v t þ 6v 2v þ v x x x ¼ 0 ð15:12Þ

which itself has a soliton solution.

Miura showed that if v 2 þ v x ¼ u then

@

@x
þ 2v

� �
ðv t � 6v 2v x þ v x x xÞ ¼ ut � 6uux þ ux x x ð15:13Þ

(Problem 15.12)

So if v satisfies equation (15.12) with the sign of its second term changed, then u satisfies

equation (15.11). Now Miura’s transformation with

v 2 þ vx ¼ uðxÞ and v ¼  x= 

yields

 xx � uðxÞ ¼ 0 ð15:14Þ

(Problem 15.13)

If uðxÞ is now transformed to uðxÞ � �, where � is a constant, then equation (15.14)

becomes Schrödinger’s equation

 xx þ ð�� uðxÞÞ ¼ 0

with � as an eigenvalue.

x0

-a 
2

-2a 
2

Figure 15.8 The KdV equation ut � 6uux þ ux x x ¼ 0 has a time independent solution uðxÞ ¼
�2	 2 sech2 	ðx � x 0Þ with a minimum value of �2	 2. This equation is related via Miura’s
transformation to Schrödinger’s equation which has an eigenvalue of � ¼ �	 2
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So Miura’s transformation has related the KdV equation

ut � 6uux þ ux x x ¼ 0 ð15:11Þ

to Schrödinger’s equation

 x x þ ð�� uðxÞÞ ¼ 0 ð15:15Þ

Using the soliton solution

u ¼ �2	2 sech2 	ðx � x0Þ

of equation (15.11) we can show that the wave function

 ¼ A sech	ðx � x0Þ; where A is a constant ð15:16Þ

satisfies equation (15.15) when the eigenvalue � ¼ �	2 which is half the value of the

minimum of the soliton with which it is associated (Figure 15.8) (See Gardner et al., 1967).

(Problems 15.14, 15.15, 15.16)

Since � is negative this represents a bound state in wave mechanics.

Other values of � > 0 may be associated with solitons but these are not bound states and

are related to progressive waves.

The fact that solitons may be associated with Schrödinger’s equation and retain their

unique identities in mutual collisions has led physicists to postulate that solitons may

appear as massive elementary particles much heavier than the proton.

Solitons may enter particle physics in another way, confined not only in space but in

time. In this case they are called instantons. Instantons have already been used to explain a

pattern of particle masses which had posed a long-standing puzzle.

There are four ways of making quark–antiquark mesons from light quarks. Three of

these mesons have been known for many years: the negative, positive and neutral pi

mesons (pions) with masses equivalent to about 140 MeV (an electron equivalent mass is

� 0:5 MeV).

The fourth meson has never been found but the eta meson has all the required properties

except its mass which is about 550 MeV. Instantons explain this mass anomaly—they

appear as energy excitations, located in space, in the field which binds the quarks together.

They change the mass distribution among the mesons because they affect the various quark

combinations in different ways (see Rebbi, 1979).

Optical Solitons

At the time of this writing the most practical use of solitons is in telecommunications.

Optical fibres act as wave guides to microwaves and higher frequency electromagnetic

waves and optical solitons are able to carry information along single mode silica fibres at

multigigabit rates for distances greater than 9000 km, the width of the Pacific Ocean, with
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a bit error rate (BER) < 10�9, the international standard. Modern fibres have a very low

loss rate of < 1 dB km�1 and an effective area of � 30mm2. The electrical power involved

is very low and a total optical system is feasible including the amplifiers spaced along the

cable. This permits a simpler, faster and more easily maintained system than that using

conventional electronics. Research on optical solitons is world-wide but, for the English

reader, the work of Linn Mollenauer and his colleagues at the A. T. & T. Bell Labs, New

Jersey is the most accessible (see references).

Optical solitons have the normal sech2 intensity profile and their amplitudes are given by

sech wave function solutions to a non-linear Schrödinger equation (see Appendix, p. 555).

As with all solitons, optical solitons are produced by a balance between the competing

effects of dispersion and non-linearity but the non-linearity of optical fibres is a very

special case which contributes in a remarkable way to the maintenance of the soliton

profile.

The Kerr Optical Effect and Self-phase Modulation In some materials, including silica

fibres, the index of refraction for light of a given wavelength varies with the intensity of the

light. This is the Kerr optical effect, which is expressed by

n � n0 ¼ n2I

where n is the index of refraction for a light wave of intensity I (large enough for non-

linearity), n0 is the refractive index for a low amplitude wave of the same frequency and n2

is a constant equal to 3:2 � 10�16 cm2 W�1. The value of n2 is small but the area of a

single mode optical fibre � 10�6 cm2, so we must think in terms of megawatts per square

metre. Moreover, the effects of non-linearity build up over fibre distances of many

kilometres.

Since n2I is positive we have

n � n0 ¼ c
1

v
� 1

v 0

� �
> 0

so the phase velocity v of a high amplitude wave is less than v 0, the phase velocity of a low

amplitude linear wave of the same wavelength.

At a given wavelength this creates a phase retardation between the two amplitudes of

�� ¼ 2�

�
L n2 I

over a length L of the fibre. This phase retardation is obviously greater for the short

wavelength high frequency components of the pulse, Figure 15.9, than for the lower

frequencies and so in the high intensity central section of the pulse the higher frequencies

are shifted towards the tail of the pulse while the lower frequencies advance to the front.

This process is opposed by the dispersive properties of the fibre because at the

wavelength at which the solitons are centred; that is, � � 1:5 mm (1500 nm) the dispersion

is negative (anomalous) so that @v g=@� < 0, where v g is the group velocity.

Negative dispersion advances the trailing higher frequencies and retards the lower

frequencies, both in a direction towards the centre of the pulse, so the pulse sharpens
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towards a soliton sech2 shape, Figure 15.10, and in a loss-free perfect silica fibre the soliton

would maintain this shape indefinitely. In practice, the wavelength � � 1:5 mm is close to

the minimum of the loss versus wavelength behaviour of the fibre, which accounts for low

loss fibres of < 1 dB km�1. Optical amplifiers, which we shall discuss shortly, maintain the

shape of the soliton over very long distances but even without amplification a soliton can

travel several hundred kilometres along the fibre without changing its amplitude or shape.

This distance is called the soliton period, Figure 15.11, and is given by

z0 ¼ 0:322
�2c� 2

�2
vacD

¼ 0:39
� 2

D
at � � 1:55mm

where c is the velocity of light in free space, �vac is the wavelength in free space, � is the

full width at half the maximum value of the soliton and D is the group velocity dispersion

parameter of the fibre; that is, the change in pulse delay with change in wavelength per unit

of fibre length.

The units of � are picoseconds and experimental solitons are produced in the range 1–

50 ps. The units of D are picoseconds per nanometre per kilometre and experimental values

of D are � 10 ps nm�1 km�1. At D � 1 ps nm�1 km�1 a 50 ps pulse has a soliton period

z0 � 930 km.

high
frequencies
lag

low
frequencies
lag

Figure 15.9 In the Kerr optical effect the velocity of light at a given wavelength depends upon its
intensity. The high frequencies in the high intensity region of a soliton travelling in an optical fibre
suffer a phase retardation; the low frequencies are advanced

high
frequency
advance

low
frequency
lag

Figure 15.10 The effects of Figure 15.9 are reversed by the negative (anomalous) dispersion of the
optical fibre at the wavelength on which the soliton is centred. This sharpens the soliton pulse
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Experimental Aspects Experimentally, the solitons are produced by a mode locked laser

with an additional fibre arm in the feedback loop. As the laser builds up from noise the

initially broad pulses are considerably narrowed by passing through the fibre arm and then

reinjected back into the laser cavity, forcing the laser itself to produce narrower pulses.

This process is repeated until the pulses become solitons and are ready for injection, via

coupling, into the transmission system. The laboratory cable is a fibre spool � 75 km long

and the solitons are recirculated through this loop to travel distances > 10 000 km if

required.

A typical laser soliton source produces pulses of � 50 ps with a power � 0:5 mW at a

repetition rate of 2.5 GHz.

The Raman Effect This plays a very important role in optical soliton transmission. It

arises when molecules in a material absorb radiation and it involves the vibrational and

sometimes the rotational energy levels of the molecules. Figure 15.12 shows the vibrational

Soliton
period

c z0

Figure 15.11 A soliton can travel several hundred kilometres in an optical fibre without being
degraded in any way. This distance z0, is called the soliton period

∆υ

∆υ

υυ υ υυ−∆υ υ−∆υ

Virtual
state

Rayleigh
scattering

Raman effect
Stokes line

Raman effect
Anti-Stokes line

2

1

0

Figure 15.12 The Raman effect can degrade a soliton by transferring energy from its higher
frequency to its lower frequency components. Vibrational energy levels in the optical fibre absorb
higher frequency radiation � from the soliton which reabsorbs it at a lower frequency � ��� (Stokes
line). There are three possible processes. In Rayleigh scattering a photon returns to its original
vibrational energy level, the Raman effect provides a frequency change �� ¼ �1, where �� is the
frequency interval between vibrational energy levels
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energy levels in a molecule with 0 as the ground state. Suppose initially that the molecule is

in the energy level 1 and absorbs a photon of frequency � which raises it to an excited level

which may not be a stationary state. If the photon drops back to its original level the re-

radiated photon of frequency � is called Rayleigh scattering. However, selection rules also

allow vibrational level changes �� ¼ �1, where �� is the vibrational energy level

interval, so the photon may drop back into level 2 or 0. The re-radiated or scattered photon

will then appear at the frequencies � ��� (Stokes line) or � þ�� (anti-Stokes line).

The Raman effect can ‘degrade’ a single soliton via a process known as the ‘self-

frequency shift’. Here the vibrational levels of the silica fibre molecules absorb energy

from the higher frequencies in the soliton pulse and the scattered radiation acts as a Raman

pump for the lower frequencies in the pulse because the fibre provides a Raman acceptance

band over a broad frequency spectrum.

Indeed, although a power of 0.5 mW provides a stable single soliton, early experiments

showed that solitons with powers >1 W suffered from ‘self-frequency shift’ to such an

extent that the soliton initially narrowed but then formed smaller satellite solitons.

The Raman Effect and Optical Amplification Solitons can gain energy via the Raman

effect as well as lose it and this is the basis of amplification along an optical transmission

line. One method results in the line acting as its own distributed amplifier. Laser pumps

coupled into the line at regular intervals maintain the shape of a soliton by feeding in a

frequency higher than that of the soliton, the energy difference being very close to the

broad peak of the Raman gain band of the silica fibre. In Figure 15.13 the soliton

wavelength is � ¼ 1:5 mm and the lasers pump energy at � � 1:4 mm. The pumps can also

inject radiation in the counter-propagating direction, which helps to average out any effect

of pump fluctuations; the penetration of the amplifying beam along the fibre is also

enhanced. The intervals between the laser pumps are � 30 km which is a small fraction of

the soliton period z0 (� several hundred kilometres). In this way, the gain per interval is

kept low enough to avoid excessive amplification of noise.

A second method, Figure 15.14 uses lumped amplifiers in the form of short lengths

� 3 m of optically pumped fibres doped with a rare earth such as Erbium. Again, the

interval between these lumped amplifiers is � z0 the soliton period to keep the noise

amplification low. The lumped amplifiers are energized by laser diode chips and for an

input of � 10 mW a gain of 30–40 dB is obtained at the useful wavelengths. The power of

L X XL L

RGP    Raman Gain Pump

1470 nm−l ~

1560 nm−l ~

RGP

Figure 15.13 The transmission line acts as its own distributed amplifier when solitons accept
higher energy photons via the Raman effect from optical pumps located at short intervals (distances
� z 0, the soliton period). Excessive noise production is avoided by frequent low gain amplification
(see Mollenauer et al., 1986)
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these amplifiers is useful in multiplexing, the subject of the next section (see Desurvire,

1992).

Multiplexing This refers to the possibility of sending more than one channel of

information down a single fibre. In current transmission systems, non-linear interaction

causes severe interchannel interference but solitons are transparent to each other. They are

unaffected by collisions and do not interfere with each other.

In multiplexing, two channels along a single fibre are provided by solitons which are

polarized in planes perpendicular to each other.

Even more channels are possible with wavelength division multiplexing. Solitons of

different wavelengths have different velocities and analysis shows that in a system using a

chain of lumped amplifiers, adjacent WDM (wavelength division multiplexed) solitons

interact just as in a lossless fibre so long as the collision length (twice the length of a

soliton) is two or three times the amplifier spacing (Figure 15.15).

This implies that several multigigabit per second WDM channels spanning a wavelength

separation of 1 or 2 nm may be used in a single fibre.

   A—Erbium-doped amplifying fiber
OP—optical pump (l = 1480 nm)
   C—coils of transmission line

l = 1532 nm OP A A A

CCC

OP25 km 25 km 25 km

Figure 15.14 Solitons are now maintained by lumped amplifiers in the form of � 3 m lengths of
optically pumped fibres doped with the rare earth Erbium separating 25 km lengths of transmission
line. The interval between the low gain amplifiers � z0 (the soliton period) to avoid noise
amplification

A A A A

Collision length

A      Amplifier
         location

Figure 15.15 Wavelength division multiplexing is possible with solitons of different wavelengths
and velocities. These solitons do not interfere with each other so long as the collision length (twice a
soliton length) is two or three times the lumped amplifier spacing (see Mollenauer et al., 1990)
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In a conventional transmission line each channel must be isolated at the regenerative

amplifiers and separately processed but one amplifier can handle all soliton channels and

Erbium-doped amplifiers are powerful enough to do this.

Random Noise Effects and the Frequency Sliding Guiding Filter There are two main

sources of error which affect an optical soliton transmission system: fluctuations of pulse

energy and arrival time at the receiver. Spontaneous emission (noise) always accompanies

coherent Raman gain and at each amplifier, amplified spontaneous emission (ASE noise) is

added to a soliton which can change its energy and its central frequency in a random way.

The change of energy may affect the amplitude of a soliton and the accumulated effect may

reduce a soliton to such an extent that its intended arrival as a ONE in the bit system is

registered as a ZERO. Alternatively, amplified noise may register a ONE in a ZERO space.

This contributes to the bit error rate (BER) which must be kept below the international

standard of < 10�9.

The ASE change in the frequency of the soliton changes its velocity and therefore affects

its arrival time, throwing the pulse out of its proper time slot.

Amplitude and time jitter may be reduced by narrowing the bandwidth of the

transmission line (Mollenauer, 1994), using a narrow band filter at each amplifier. Each

filter is a low-finesse Fabry–Perot etalon ( p. 343), centred on the true frequency peak of

the soliton (Figure 15.16). A soliton whose frequency has been shifted from the filter peak

suffers a loss across the spectrum provided by the filter. This, together with the non-linear

effect which generates new frequencies, pushes the soliton back towards the filter peak. In

this way, the noise-induced frequency shift is returned to zero rather than being maintained

as it would in a broad-band transmission line.

Amplitude jitter is damped because a pulse with excess energy will narrow in time and

broaden in spectrum more than the average and will suffer a greater loss at each filter.

However, the soliton loss at each filter must be replaced at each amplifier by an excess gain

with a resulting growth in noise.

Mollenauer et al. (1994), found that even when the soliton source laser was not tuned

exactly to the filter peak frequency, the soliton was still guided rapidly on to the filter peak.

The filter peak frequencies were therefore gradually slid with distance so that the soliton

frequency followed the filters while the noise remained in its original frequency band and

Etalon filter

R = 9%

R > 9%

R = 9%

R > 9%

Soliton

Figure 15.16 Noise effects in an optical transmission line are reduced using a narrow band Fabry--
Perot etalon filter at each amplifier. The low finesse, R � 9%, of fixed frequency filters can be
increased, R > 9%, if the frequency of the filters is gradually shifted with distance along the line.
The soliton frequency has no difficulty in adjusting itself to this shift and noise is progressively
reduced (see Mollenauer et al., 1994)
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its growth was inhibited. This noise reduction allowed the etalon filters to be strengthened

to a higher finesse. Experiments with a soliton pulse width of � � 16 ps, D �
0:5 ps nm�1 km�1, amplifier spacing ¼ 26 km with one filter per amplifier, and a frequency

sliding rate of 7 GHz 10�3 km gave a net frequency shift over 9000 km (trans-Pacific

distance) of a few soliton bandwidths, i.e. 0.5 nm at � ¼ 1557 nm. Such a series of sliding

frequency etalon filters can operate over a range of wavelengths wide enough to allow

several channels of wavelength division multiplexing.

Problem 15.1
The properties of a stationary gas at temperature T 0 in a large reservoir are defined by c0, the

velocity of sound, h0 ¼ c pT 0, the enthalpy per unit mass, and �, the constant value of the specific

heat ratio. If a ruptured diaphragm allows the gas to flow along a tube with velocity u, use the

equation of conservation of energy to prove that

c2
0

� � 1
¼ � þ 1

2ð� � 1Þ c�2

where c� is the velocity at which the flow velocity equals the local sound velocity.

Hence show that if u1=c� ¼ M� and u1=c1 ¼ M s, then

M�2 ¼ ð� þ 1ÞM 2
s

ð� � 1ÞM 2
s þ 2

Problem 15.2
Using a coordinate system which moves with a shock front of velocity u 1, show from the

conservation equations that c� in Problem 15.1 is given by

c�2 ¼ u1u2

where u2 is the relative flow velocity behind the shock front.

Problem 15.3
Use the conservation equations to prove that the pressure ratio across a shock front in a gas of

constant � is given by

p2

p1

¼ 
 � 	

1 � 
	

where 
 ¼ � 2=� 1, the density ratio, and 	 ¼ ð� � 1Þ=ð� þ 1Þ.

Problem 15.4
Use the results of Problems 15.1 and 15.2 with the equation of momentum conservation to prove that

the shock front Mach number is given by

M s ¼
u1

c1

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
y þ 	

1 þ 	

r

where y ¼ p 2=p1, the pressure ratio across the shock and 	 ¼ ð� � 1Þ=ð� þ 1Þ. Hence show that the

flow velocity behind the shock is given by

u ¼ c1ð1 � 	Þðy � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ð1 þ 	Þðy þ 	Þ

p
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Problem 15.5
The diagrams show (a) a shock wave of pressure p2 and flow velocity u propagating into a stationary

gas, pressure p1, and (b) after reflexion at a rigid wall the reflected wave of pressure p3 moving back

into the gas behind the incident shock still at pressure p 2. Use the result at the end of Problem 15.4 to

show that the flow velocity ur behind the reflected wave is given by

ur

c2

¼ ð1 � 	Þð p3=p2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ 	Þð p3=p2 þ 	Þ

p
and since u þ ur ¼ 0 at the rigid wall, use this result together with the ratio for c2=c1 ¼ ðT 2=T 1Þ 1=2

to prove that

p3

p2

¼ ð2	þ 1Þy � 	

	y þ 1

where y ¼ p2=p1 and 	 ¼ ð� � 1Þ=ð� þ 1Þ.

Rigid
wall

Rigid
wall

p3

Ur

p2

p1

p2

u u

(a) (b)

Problem 15.6
Use Problem 15.5 to prove that the ratio

p3 � p 1

p2 � p 1

! 2 þ 1

	

in the limit of very strong shocks. (Note that this value is 8 for � ¼ 1:4 and 6 for � ¼ 5=3; compared

with the normal acoustic pressure jump of 2 upon reflexion.)

Problem 15.7
Equation (15.9) evaluates ux for u ¼ f ðx � utÞ. Obtain u t in a similar way and use this with equation

(15.9) to prove equation (15.8).

Problem 15.8
Burger’s equation u t þ uux � �ux x ¼ 0 where � > 0 is a special case. It has a second-order

dispersion term and is directly integrable. Show that u ¼ �2� x= transforms Burger’s equation

into the diffusion equation

@ 2 

@t 2
¼ �

@ 2 

@x2

For fluids, � is a measure of viscosity which dissipates excess momentum in non-linear waves.
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Problem 15.9
Show that uðx; tÞ ¼ 2	 2 sech2 	ðx � ctÞ is a soliton solution of the KdV equation

u t þ 6uu x þ ux x x ¼ 0 after calculating u t; ux and ux x x as shown in the text.

Problem 15.10
For small values of q, log ð1 þ qÞ � q. Show that values of uðx; tÞ near the base of Figure 15.5(a)

where uu x � 0 may be written

uðx; tÞ � 2
@ 2

@x2
e�2	ðx�ctÞ

and that this satisfies the dispersion equation u t þ ux x x ¼ 0 if c ¼ 4	 2.

Problem 15.11
Use the method of Problem 15.9 to show that uðxÞ ¼ �2	2 sech 2 	ðx � x0Þ is a solution of the KdV

equation u t � 6uux þ ux x x ¼ 0.

Problem 15.12
Prove equation (15.13) if u ¼ v 2 þ v x:

Problem 15.13
Verify equation (15.14) for uðxÞ ¼ v x þ v 2 and v ¼  x= .

Problem 15.14
Show that the wave function  ¼ A sech	ðx � x 0Þ where A is a constant satisfies Schrödinger’s

equation (15.15) when � ¼ �	2.

Problem 15.15
KdV equations are invariant to a Galilean transformation. Show that the transformations u ! u � �
where � is constant together with x ! x þ 6�t returns u t þ 6uu x þ ux x x ¼ 0 to its original form.

Problem 15.16
At time t ¼ 0 a high amplitude signal has a profile y ¼ a sin�x with @y=@t ¼ 0. Thereafter, it

propagates according to the non-linear wave equation

@ 2y

@t 2
¼ c2

0 1 þ "
@y

@x

� �
@ 2y

@x2

where " is a small positive constant.
Show that the time required for the leading edge of a positive signal to become infinitely steep is

given by

t ¼ 4=c 0"a�
2

Hint: Rayleigh’s method (Rayleigh, Theory of Sound, Vol. 2, Dover Press p. 35), shows the required

time to be the reciprocal of the maximum value of jdu=dxj where du is the relative phase velocity

between two points on the leading edge of a positive signal separated by a horizontal distance dx.

Note that waves propagate in the positive and negative x-directions.
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Appendix 1: Normal Modes, Phase
Space and Statistical Physics

The last line of the introduction to the first edition states that ‘it is the wide validity of

relatively few principles which this book seeks to demonstrate’. Here we apply that concept

to the relationship between normal modes which feature in most of the book, phase space

of the final chapter, and statistical physics.

Firstly, we wish to show that the expression for the number of normal modes per unit

volume in the frequency range � to � þ d� given on p. 253 as

dn ¼ 4�� 2d�

c3

is nothing more than the number of ‘cells’ of phase space per unit volume in the same range

� to � þ d� available to particles in a statistical distribution.

Moreover, we can easily convert this expression in the frequency � to one in the velocity

v, the momentum p ¼ mv or the energy E.

The particle may be a molecule in the classical Maxwell–Boltzmann distribution

(M–B), a fermion of half integral spin in the quantum Fermi–Dirac distribution (F–D) or

a boson or any other particle of integral spin in the quantum Bose–Einstein distribution

(B–E). Bosons are the messengers of the force fields in physics, e.g. the photon in the

electromagnetic field.

We shall see that each of these distributions is nothing more than the statement that

ni ¼ gi � probable occupation of the phase space cell.

Here ni is a number of particles in the distribution and gi is our expression 4�� 2 d�=c3 (or

its equivalent).

The expression for gi is common to all three types of distribution but the occupation

factor or relative probability of occupation depends on the way in which the particles are

allowed to distribute themselves.

Firstly, let us examine the various equivalent forms of gi. We write

gi ¼ gið�Þ d� ¼ 4�� 2 d�=c3
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as the number of phase space cells per unit volume in the frequency range � to � þ d�. For

a quantum particle (p. 415) the momentum p ¼ �hk ¼ h�=c where h is Planck’s constant, k

is the particle wave number ¼ 2�=� and c is the velocity of light, so

gi ¼ gið pÞ dp ¼ 4�p2dp=h3

is the number of phase space cells per unit volume in the momentum range p to p þ dp.

Note that 4�p2dp is the volume of the shell in momentum space between spheres of radius

p and p þ dp.

All particles in statistical distributions are required to be free particles, that is having

only kinetic energy with no potential energy interaction terms.

Thus, the energy of a particle E ¼ 1
2

mv 2 ¼ p2=2m where p ¼ mv, m is the particle mass

and v is its velocity. Now

p2 dp ¼ ð2m3Þ1=2
E 1=2 dE ¼ m2v 2m dv ¼ m3v 2 dv

so

gi ¼ giðEÞ dE ¼ 4�ð2m3Þ1=2
E 1=2 dE=h3

is the number of phase space cells per unit volume in the energy range E to E þ dE and

gi ¼ giðvÞ dv ¼ 4�m3v 2 dv=h3

is the number of phase space cells per unit volume in the velocity range v to v þ dv.

Although we used the phase space of _xx or v with x in our discussion of chaos, the phase

space of mv or p with x is much more commonly used in physics. The phase space of ð p; xÞ
reveals the significance of h3 in the denominators of gi. Consider the expression

4�p2 dpV=h3

where V is the total volume (not the unit volume) so that the numerator expresses the phase

space over the momentum range p to p þ dp and the volume V ¼ xyz of the system.

Heisenberg’s Uncertainty Principle, p. 416, tells us that �x�p � h, so we may write

ð�x�pxÞð�y�pyÞð�z�pzÞ as h3; that is, the ‘volume’ of a cell in ð p;VÞ phase space.

This volume is the smallest acceptable volume which a particle may occupy for it defines

the volume associated with a particle as

h

�p

� �3

� �3
DB

where �DB is the de Broglie wavelength of the particle (p. 412).

So gi measures the number of phase space cells each of ‘volume’ h3 per unit volume in

the range p to p þ dp. Each of these cells may or may not be occupied by a particle.

We now examine what we mean by a statistical distribution in order to find the probable

occupation of a cell. This occupation factor is different for each of the three distributions

M–B, F–D and B–E.
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We consider a system, say a gas, of N particles occupying a volume V and having a total

internal energy E. The macroscopic parameters E, V, N define a macrostate. The energy E

may be partitioned in many different ways among the N particles subject only to the

restrictions that E ¼
P

ni" i and N ¼
P

ni remain constant where " i represents the

energy levels available to the particles. The probability of a system being found in a

particular partition is proportional to W the number of ways of distributing the energy

among the particles to achieve that partition.

Each different way is called a microstate and each microstate has a priori the same

probability. Each microstate contributes to the statistical weight of a partition so that the

particular partition reached by the greatest number of ways has the greatest statistical

weight and is therefore the most probable. The most probable partition with W (maximum)

defines the equilibrium of the macrostate and is written � (EVN ).

It is here that we relate � (EVN) to the concept of entropy S. Entropy is a measure of the

disorder of a system which increases as the system tends to equilibrium. At constant

temperature and volume the internal energy E of the system may be written

E ¼ F þ TS

where T is the temperature, S is the entropy and the product TS is a measure of the energy

of the system locked in the disorder amongst the particles and not available for work. F is

defined as the Helmholtz free energy and measures the work which can be done by the

system at constant temperature. At best, in an ideal reversible thermodynamic process

the disorder energy TS remains constant, but in a natural or thermodynamically irreversible

process TS increases at the expense of F as E remains constant.

An isolated system in equilibrium with the most probable partition of its energy among

its particles represents a maximum of its entropy S and Boltzmann related S and � through

his expression S ¼ k log� where k is Boltzmann’s constant. Fluctuations from the

equilibrium position are very small indeed and log� is a very sharply defined function.

Calculating the value of W the statistical weight of a partition in order to find W

(maximum) ¼ � (EVN) for each of the three distributions is a mathematical exercise which

is straightforward and a little tedious but which fails to reveal the underlying physics.

We shall make these calculations at the end of this appendix but we adopt the procedure

of quoting the results below together with the forms in which we usually meet them. This

will raise questions the answers to which are not evident in the mathematical derivation

(Table A1.1).

For all three distributions the particles are identical and indistinguishable, the total

energy E and number of particles N are constant. There are no restrictions on the number of

particles having a particular energy in the M–B and B–E distributions but in the F–D

distribution, Pauli’s exclusion principle allows only one fermion per energy level (or two if

we include spin).

Note firstly that the occupation factor or relative probability of occupation for each

distribution includes the term e�þ�" i , where � and � arise as multipliers in the

mathematical derivation. The index of the exponential requires � to be the inverse of an

energy and the relevant term in the normal form of the Fermi–Dirac distribution suggests

that � is the ratio of two energies.
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In comparing the two columns of the table several questions arise:

1. Is � ¼ 1=kT?

2. What has happened to the � term in the normal form of M–B?

3. What is the physical significance of the � term?

4. What has happened to the � term in Planck’s radiation law?

In question 1 let us integrate by parts the expressionð
e��" dp ¼ ½ pe��"
p¼þ1

p¼�1 þ �

ð
p
@"

@p
e��" dp

where

" ¼ p2=2m

For "! 1 as p ! 
1 the first term on the right hand side equals zero, leaving

1

�
¼

ð
p
@"

@p
e��" dpð

e��" dp

¼ p
@"

@p

the average value of

p
@"

@p

Table A1.1 The mathematical derivation for each statistical distribution in the left hand column is
compared with its more familiar form on the right

n i ¼ g i � occupation
factor Normal form

M–B n i ¼ g i �
1

e�þ�" i

n

N
¼ 4�p2dp

ð2�mkTÞ 3=2
e�p 2=2mkT

¼ g i e����" i ð p ¼ mvÞ

F–D n i ¼ g i �
1

e�þ�" i þ 1
nðEÞ dE ¼ 2:4�Vð2m3Þ1=2

E 1=2

h3
� 1

e ð" i�" FÞ=kT þ 1

B–E nð�Þ d� h� ¼ Eð�Þ d�

n i ¼ g i �
1

e�þ�" i � 1
¼ 2:4�� 2 d�h�

c3
� 1

eh�=kT � 1

Planck’s radiation law
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From the equipartition of energy

p
@"

@p
¼ p2

m
¼ kT ¼ 1

�

where kT is the average energy per particle.

In question 2 we note that the term e�� in M–B has been replaced by N=ð2�mkTÞ3=2

and that h3 has been lost from the denominator of gið pÞ dp. To explain this and its

consequences let us write not n per unit volume but np in the range p to p þ dp over all

V ¼ xyz as

np ¼ V4�p2 dp e�p 2=2mkT

h3

Then

N ¼
X

np ¼ V

ð1
0

4�p2 dp e�p 2=2mkT

h3

where the standard definite integral is well known to have a value of ð2�mkTÞ3=2
.

Thus

N ¼ Vð2�mkTÞ3=2=h3

Now the average particle momentum �pp ¼ m�vv where 1
2

m�vv 2 ¼ kT ð�vv is the most probable

velocity).

Hence

ð2�mkTÞ3=2 � �pp3

Thus, ðV=NÞ�pp3 replaces e�h3 and

e� ¼ V

N

�pp3

h3
¼ V

N

1

�3
DB

¼ Volume available to each particle

Volume associated with the thermal de Broglie wavelength of the particle

The value of e� ¼ 0:026 m3=2T 5=2 at a pressure of one atmosphere, where m is measured in

a.m.u. (O16 ¼ 16).

For air at STP e� � 106 so for the Maxwell–Boltzmann distribution

gi

n i

¼ e�þ�" i � 106 e" i=kT � 1

This states that there are many more states or cells available for occupation than there are

particles to fill them, so the probable occupation of each cell is very small. This defines a

classical distribution.
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For the Bose–Einstein gas He4 at 4 K and one atmosphere pressure e� � 7:5 so the gas

is not safely classical.

Although it is not strictly applicable, for electrons in a metal at 300 K, e� � 10�4 so the

classical description for the Fermi–Dirac case is totally invalid.

A distribution which is not classical is said to be degenerate. Note that for high enough

energies (temperatures) all three distributions become classical.

Before we examine the origin of � and its physical meaning let us note that a factor 2

appears in both the F–D and B–E distributions where each particle has two spin states for

each energy level which must be accounted for. In Planck’s radiation law these spin states

are equivalent to the polarization states of electromagnetic waves. Note also in Planck’s law

that Eð�Þ d�, the energy per unit volume in the frequency range � to � þ d�, is nð�Þ d�h�
where h� is the photon energy.

Turning to question (iii) on the significance of � we again use the expression S ¼ k log�
or � ¼ eS=k. Consider a system in contact with a large reservoir at constant temperature,

Figure A1.1, able to exchange both energy and particles with the reservoir. The

combination of reservoir and system is isolated and its energy E, volume V and total

number of particles N are all fixed and constant.

We ask ‘What is the probability of finding the system in a particular microstate with nj

particles having total energy " j?’ This will be proportional to the number of microstates in

the reservoir after nj and " j are supplied to the system.

The entropy equation with subscript R for reservoir becomes

SRðE � " j;N � njÞ ¼ SRðE;NÞ � " j

@S

@E

� �
NV

�nj

@S

@N

� �
EV

where we neglect higher terms in the expansion.

Elementary thermodynamics shows that

@S

@E

� �
NV

¼ 1

T
and

@S

@N

� �
EV

¼ ��
T

system

reservoir

T

Figure A1.1 When a system, surrounded by a large reservoir with constant N, V and E receives n j

particles and total energy " j from the reservoir, the entropy change of the reservoir is �S ¼
ðn j�� " jÞ=T where � is the chemical potential
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where � is called the chemical potential. The chemical potential � is the free energy per

particle lost when the entropy S is increased in the relation E ¼ F þ TS where E is

constant. Thus, the entropy change may be written

�S ¼ SRðE � " j;N � njÞ � SRðE;NÞ ¼ � " j

T
þ nj�

T

Because the statistical weight � (EVN) represents the probability of a partition, the

probability of the combination of two partitions may be written as the product of their

statistical weights so we have

�ðE � " j;N � njÞ ¼ �ðE;NÞ�ð" j; njÞ
¼ �ðE;NÞ e�S=k

¼ �ðE;NÞ e ðn j��" jÞ=kT

In order to show the relation between � and ��=kT , we take as an example a system of

four fermions available to occupy any of four single particle energy states "1, "2, "3, "4

(Table A1.2). The particles and energies are supplied by the reservoir and each energy level

may be filled or empty. The numbers of possible microstates of the system using 0, 1, 2, 3

or 4 particles are shown below together with their relative probabilities.

For any microstate in which a particular energy level is filled we can find another which

differs only in having that energy level empty.

Table A1.2 Distribution of four fermions among four single particle energy states with numbers of
possible microstates and their relative probabilities

No One Two Three Four
particles particle particles particles particles

Number of
microstates 1 4 6 4 1

Energy
level " 4 0 0 0 0 1

Energy
level " 3 0 0 0 1 1

Energy
level " 2 0 0 1 1 1

Energy
level " 1 0 1 1 1 1

n j¼0 n j¼1 n j¼2 n j¼3 n j¼4
" j¼0 " j¼" 1 " j¼" 1þ" 2 " j¼" 1þ" 2þ" 3 " j¼" 1þ" 2þ" 3þ " 4

Relative
probability
of micro-
state e ð0�0Þ=kT e ð��" 1Þ=kT e ½2��ð" 1þ" 2Þ
=kT e ½3��ð" 1þ" 2þ" 3Þ
=kT e ½4��ð" 1þ" 2þ" 3þ" 4Þ
=kT
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Thus, for example

Relative probability of finding "3 filled

Relative probability of finding "3 empty
¼ p

1 � p

¼ e ½3��ð" 1þ" 2þ" 3Þ
=kT

e ½2��ð" 1þ" 2Þ
=kT

¼ e ð��" 3Þ=kT

More generally

p

1 � p
¼ e ð��" iÞ=kT

so

p ¼ 1

e ð" i��Þ=kT þ 1
¼ ni

where ni ¼ gi�nni and �nni or the relative probability is the average occupation of a cell.

This is the Fermi–Dirac occupation factor and we can identify � ¼ ��=kT (the ratio of

two energies) where � is the chemical potential. For the Fermi–Dirac distribution �nni � 1

and Figure A1.2 shows �nni versus " for electrons in a metal at T ¼ 0 K.

Each energy level is occupied by one electron until the top energy level "F the Fermi

energy level is reached. At T ¼ 0 K the electron with "F is the only one capable of moving

to change the entropy of the system and we identify its free energy with that of the

chemical potential �. Note that, at "F for T > 0, �nni ¼ 1
2

and this is indicated by the dotted

curve at "F in the �nni versus " graph.

We may apply a similar procedure to particles obeying Bose–Einstein statistics where

there is no restriction on the number of particles ni in the energy level " i. If ni can take any

value, three identical bosons available to three energy levels ð"1; "2; "3Þ can form the

1

ni

F

∋ ∋

½

Figure A1.2 Occupation number �nn i versus energy " for electrons in a metal at T ¼ 0 K (solid line).
A slight increase in T permits the electrons near " F to move to higher energy levels (dotted curve)
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microstates (3, 0, 0) (0, 3, 0) (0, 0, 3) (2, 1, 0) (0, 2, 1) (1, 0, 2) (0, 1, 2) (2, 0, 1) (1, 2, 0)

(1, 1, 1). The energy of each microstate is given by " j ¼
P

ni" i with nj ¼
P

ni. Suppose,

as before, a large reservoir at temperature T surrounds a system to which it can supply

particles and energy.

We consider a particular microstate of the system with n1; n2; n3 . . . ni particles in the

various energy levels to have a probability p when ni ¼ 0.

If the system now takes ni particles each of energy " i from the reservoir the probability

of the microstate (now with ni 6¼ 0) is given by

p en ið��" iÞ=kT ¼ p en ix

where x ¼ ð�� " iÞ=kT .

The total probability for the microstate with ni ¼ 0; 1; 2; 3; . . . is

1 ¼
Xn i ¼1

n i ¼0

p en ix ¼ p

ð1 � e xÞ

because
P

en ix is a geometric progression.

Hence

p ¼ ð1 � e xÞ

The average value

�nni ¼
Xn i ¼1

n i ¼0

ni p en ix

But

X
ni en ix ¼ d

dx

X
en ix ¼ d

dx

1

ð1 � e xÞ ¼
e x

ð1 � e xÞ2

Therefore

�nni ¼
p e x

ð1 � e xÞ2
¼ ð1 � e xÞe x

ð1 � e xÞ2
¼ e x

ð1 � e xÞ

¼ 1

e�x � 1
¼ 1

e ð" i��Þ=kT � 1

The general expression for the Bose–Einstein distribution is therefore

ni ¼ gi�nni ¼ gi �
1

e ð" i��Þ=kT � 1

Finally we discuss the absence of � or ��=kT in Planck’s radiation law, noting that this is a

special case and that ��=kT is retained in other applications of Bose–Einstein statistics.
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Black body radiation is an equilibrium process, so that the system or cavity of a box of

photons is in equilibrium with the reservoir at temperature T, the entropy S is a maximum

and this process results from the continual emission and absorption of photons by the walls

of the cavity. The number of photons in the cavity is not conserved, the energy requirement

could be satisfied by a few high energy photons in the 
-ray region or by many photons in

the low energy infrared frequencies. This means that the occupation numbers are not

subject to the constraint which specifies the total number of particles in the gas.

Since N is not fixed, the entropy S of the reservoir is not affected by the nj photons in the

exponent nj� of the occupation factor for a given microstate; nj has no role and nj� ¼ 0

giving � ¼ 0.

The graph of the entropy S versus N, the total number of particles, gives low S values,

that is few microstates or particle arrangements at low N (
-rays) and also at high N

(infrared) photons.

A typical microstate for 
-rays occupying the energy levels " i would read

n1 ¼ 0; n2 ¼ 0; n3 ¼ 0 with n!1 6¼ 0

and for infrared photons a typical microstate would read

n1 6¼ 0 n2 ¼ 0 n3 ¼ 0

Both of these are extremely unlikely and would contribute to partitions of low statistical

weight.

At equilibrium the maximum of the S versus N curve occurs at that value of N providing

the greatest number of microstates and here

@S

@N

� �
EV

¼ ��
T

¼ 0

again giving � ¼ 0.

Mathematical Derivation of the Statistical Distributions

The particles are identical but distinguishable by labels. All energy " states are equally

accessible and have the same a priori probability of being occupied. The statistical weight

or probability of a particular partition is proportional to the number of different ways of

distributing particles to obtain that partition.

Maxwell--Boltzmann Statistics

We start by filling the "1 states with n1 particles from the constant total of N particles. We

can do this in

N!

n1!ðN � n1Þ!
different and distinguishable ways.
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We now fill the "2 state with n2 particles from the N � n1 remaining particles. This

gives

ðN � n1Þ!=n2!ðN � n1 � n2Þ!

different and distinguishable ways.

Proceeding in this way for all remaining energy states we have

W ¼ N!

n1!n2!n3! . . .

as the number of different and distinguishable ways of choosing n1; n2; n3; . . . from the N

particles. Particles with the same " i may have gi differing amounts of angular momentum,

etc. This will give gi cells associated with " i in each of which a particle with " i may be

located. If gi is the probability of having one particle in the " i range of cells then

gi � gi ¼ g2
i is the probability of two particles in that range and gn i

i is the probability of ni

particles with " i being in that range.

Hence the total number of different distinguishable ways is

W ¼ N!gn 1

1 gn 2

2 gn 3

3 . . .

n1!n2!n3! . . .

The particles are distinguished by labels and if we now remove the labels and the condition

of distinguishable particles, we cannot recognize the difference in the partition when

particles are exchanged. Therefore all N! permutations among the particles occupying the

different states give the same partition with the total number of ways

W ¼ gn 1

1 gn 2

2 gn 3

3 . . .

n1!n2!n3! . . .

We now maximize log W with the constraints that

1. The number of particles N ¼
P

ni ¼ constant so that dN ¼
P

dni ¼ 0.

2. The energy E ¼
P

ni" i ¼ constant so that dE ¼
P

" i dni ¼ 0.

log W ¼
X

i

ðni log gi � log ni!Þ

where for large ni Stirling’s formula gives

log ni! ¼ ni log ni � ni

Hence

log W ¼
X

ni log
gi

n i

þ
X

ni
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and

d ðlog WÞ ¼
X

dni log
gi

ni

� �
þ
X

ni d log
gi

n i

� �
þ
X

d ni

¼
X

dni log
gi

ni

� �
�
X

ni

dni

n i

ðbecause gi is constant and
X

dni ¼ 0Þ

¼
X

dni log
gi

ni

� �

If
P

dni ¼ 0 then ��
P

dni ¼ 0 and

if
P

" i dni ¼ 0 then ��
P

" i dni ¼ 0

where � and � are called Lagrange multipliers.

Adding these constraint conditions to d(log W) gives

d ðlog WÞ ¼
X

dni log
gi

ni

� �
� �� �" i

� �

Maximizing W gives d(log W)¼ 0 which, since all the coefficients dni are arbitrary and

independent, leaves

log
gi

ni

� �
� �� �" i ¼ 0

for each ni.

At Wmax we have therefore

ni ¼ gi �
1

e�þ�" i

Fermi--Dirac Statistics

We begin again with labelled identical particles. Here the Pauli exclusion principle

operates and no two particles may occupy the same state. The gi are quantum states, e.g.

spin gives a factor 2 to each gi. Also gi gives the maximum number of particles with " i so

ni � gi.

To fill the " i states with ni particles we put one particle in a gi cell and the next particle

in any of the ðgi � 1Þ remaining cells. We can do this in giðgi � 1Þ ways so the total

number of ways of filling the states of energy " i with ni particles is

giðgi � 1Þ . . . ðgi � ni þ 1Þ

¼ gi!

ðgi � niÞ!
If now the labels are removed and the particles become indistinguishable we reduce the

total of different distinguishable arrangements to gi!=n1!ðgi � niÞ!.

544 Appendix 1: Normal Modes, Phase Space and Statistical Physics



Applying this to all gi gives the total number of different distinguishable ways as

W ¼ g1!

n1!ðg1 � n1Þ!
g2!

n2!ðg2 � n2Þ!
g3!

n3!ðg3 � n3Þ!

Maximizing log W with
P

dni ¼
P

" i dni ¼ 0 we proceed as with the Maxwell–

Boltzmann example to obtain for W (max) the condition that

log
gi

ni

� 1

� �
� �� �" i ¼ 0

to give

ni ¼ gi �
1

e�þ�" i þ 1

Bose--Einstein Statistics

Here there is no exclusion principle and we begin again with labelled identical particles.

The number of distinguishable arrangements of ni particles in the gi cells of energy " i

equals the number of ways of putting ni objects in gi boxes with any number allowed in a

box. This means putting ni particles in a row separated by gi � 1 walls so that the number

of ways is the number of permutations of ðni þ gi � 1Þ objects, i.e. particles and walls.

This gives ðni þ gi � 1Þ! ways. If we now remove the particle labels to make them

indistinguishable we reduce the number of ways by a factor of n! to give ðni þ gi � 1Þ!=ni!
ways.

However, all permutations of the gi � 1 dividing walls among the ni particles give the

same physical state, so the number of different distinguishable ways is given by

ðni þ gi � 1Þ!=ni!ðgi � 1Þ! and for all particles we have the number of ways

W ¼ ðn1 � g1 � 1Þ
n1!ðg1 � 1Þ

ðn2 þ g2 � 1Þ
n2!ðg2 � 1Þ � � � etc:

Maximizing log W as for the other two distributions gives d(log W)¼ 0 when

log
gi

ni

þ 1

� �
� �� �" i ¼ 0

that is, when

ni ¼ gi

1

e�þ�" i � 1
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Appendix 2: Kirchhoff’s Integral
Theorem

Kirchhoff’s Integral Theorem is valid for any solution E of the scalar time independent

Helmholtz equation (3), p. 187, that is

@ 2E

@x2
þ k 2E ¼ 0

For the radial direction r in a spherical coordinate system this becomes

@ 2E

@r 2
þ 2

r

@E

@r
¼ 0

which is satisfied by

E ¼ E0

r
eikr

where E0=r is the amplitude at a distance r from the origin O of a spherical

electromagnetic wave. We note that the amplitude of such a wave decays as 1=r where

r is the distance from O.

Kirchhoff’s Theorem states that the complex amplitude EP at a point P is related to the

complex amplitude E on a surface S enclosing P by

EP ¼ 1

4�

ðð
S

E
@

@n

e ikR

R
� eikR

R

@E

@n

� �
dS

where R is the distance from P to the surface element dS and n is the direction normal to dS
(Figure A2.1).

If r is the distance from O to dS, then

E ¼ E0

r
eikr
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and

@E

@n
¼ E0

r
eikr ik � 1

r

� �
cos ðn; rÞ

The term ðik � 1=rÞ shows that inside S there is a phase shift of �=2 rad and an amplitude

factor 1=r. However, for r ¼ m�, where m is large, then

k ¼ 2�

�
� 1

r
¼ 1

m�

so that 1=r may be neglected for distances much greater than �.

Similar arguments hold for

@

@n

eikR

R

Thus, if P and O are many wavelengths from S, Kirchhoff’s integral becomes

EP ¼ �i

�

ðð
E0

e ikðrþRÞ

rR

ðcos n;R � cos n; rÞ
2

dS

where the cosine terms generate an inclination factor Kð�Þ and cosðn;RÞ ¼ cos�.

The problem of showing that Huygens wavelets on an unobstructed wavefront do not

propagate backwards reduces to that of demonstrating that Kð�Þ can be zero. This occurs

where

cos ðn;RÞ ¼ cos� ¼ �1

R

P

S

ds
rn

R

r

0

Figure A2.1 O is the origin of an electromagnetic wave. Kirchoff’s Theorem relates its complex
amplitude EP at a point P to the complex amplitude E on a surface S enclosing P
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and

cos ðn; rÞ ¼ cos� ¼ �1

This is achieved in the following way.

The surface S designated S2 now encloses a spherical wavefront surface S1 centre O. S1

and S2 are said to be doubly connected and the surface integral now includes S1 and S2

(Figure A2.2). At S1 the normal n to dS on S2 now points towards O and if the outer

surface of S2 is allowed to expand to infinity its contribution to the integral becomes zero.

This leaves only the integral over the surface where S1 and S2 coincide. The singularity

E0=r at O is excluded from the integral.

If P is now located on r, at P 0, that is in the direction of backward propagation of

Huygens wavelets, then

cos ðn;RÞ ¼ cos� ¼ �1

and

cos ðn; rÞ ¼ cos� ¼ �1

Kð�Þ is then equal to zero. Any other position for P gives

Kð�Þ ¼ cos�� cos ðn; rÞ
2

¼ 1 þ cos�

2

S1
S2

S2

R

r

n

0

P

P ′

Figure A2.2 When P 0 is located on r within the surface of the spherical wavefront S 1, situated
within S, EP 0 is reduced to zero proving that Huygens wavelets do not propagate backwards
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Appendix 3:
Non-Linear Schrödinger Equation

This equation describes phenomena in non-linear media with strong dispersion. It appears

in several forms. For optical soliton purposes, Mollenauer et al. (1982) derive it from the

equation

i
@u

@z
þ k1

@u

@t

� �
¼ �k2

2

@ 2u

@t 2
þ �juj2

u ðA3:1Þ

where

k1 ¼ @k

@!
; k2 ¼ @ 2k

@!2
; and � ¼ 1

2
k0

n2

n0

n2 and n0 appear in the Kerr Optical Equation n � n0 ¼ n2I.

Equation (A3.1) is satisfied by a pulse of the form

Eðz; tÞ ¼ uðz; tÞ e ið! 0t�k 0zÞ

Using the transformation of Mollenauer et al. (1980), (A3.1) assumes the dimensionless form

�i
@v

@�
¼ 1

2

@ 2v

@s2
þ jvj2v ðA3:2Þ

which has a soliton solution uð�; sÞ ¼ sech ðsÞei�=2 where

s ¼ T �1ðt � k1zÞ � ¼ jk2jT �2 z

and

v ¼ T
�

j k2 j

� �1=2

u

where T is a measure of the width of the input optical pulse.

The first term on the right hand of equation (A3.2) describes the effects of dispersion

which may be seen as the kinetic energy term in the linear Schrödinger equation, while the

second term corresponds to the energy of a self-trapping potential proportional to juj2

arising from the non-linear refractive index which may be interpreted in probability terms.
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Index

Absorption of wave energy, 185, 191, 209

Acoustic waves, 151

finite amplitude, 505

Airy disc, 385

Anharmonic oscillations, 459

Attenuation coefficient, 185, 209

Band Theory, 445, 448

Bandwidth Theorem, 132, 285, 376

Beats, 14, 83, 130

Bessel’s functions, 381

Bloch functions, 441

Bragg reflection, 447

Brewster angle, 220

Brillouin zone, 137, 445

Bulk modulus, 152

Cerenkov radiation, 508

Chaos,

attractors (chaotic),

Lorentz, 500

Ueda, 487

basin of attraction, 485

Cantor set, 491

Couette flow, 495

electrical oscillator

non-linear, 477

relaxation, 467

Feigenbaum limit, 474

fractal, 490

in fluids, 494

Koch snowflake, 490

laser–Doppler technique, 495

limit cycle, 469, 485

logistic equation, 469

manifold, 487

period doubling, 469

pitchfork bifurcation, 471

phase space, 481, 533

Poincaré section, 486

population biology, 469

Rayleigh–Bénard convection, 497

Rayleigh criterion (flow instability),

497

Rayleigh number, 499

repellor, 469, 485

Reynolds number, 496

saddlepoint, 483

separatrix, 483

Smale horseshoe, 493

stable point attractor, 469

Taylor cell, 496

Van der Pol equation, 467

varactor, 477

Complex number notation, 26, 53

Convolution, 292

Array Theorem, 388

Theorem, 297

Cornu spiral, 396

Coupled oscillations, 79

electrical, 87

on a loaded string, 90

spring-coupled pendulums, 79

wave motion as the limit of, 95
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Criterion for dielectric-conductor

behaviour, 212

Cut off frequency, 95, 244, 355

Damped simple harmonic motion, 37, 41

critical damping, 40

dead beat damping, 39

logarithmic decrement, 44

oscillations, 41

rate of energy dissipation, 47

relaxation time, 45

De Broglie wavelength, 412, 534, 537

Debye theory of specific heats, 253

Decibel, 158

Degeneracy, 250, 425

Deviation by a prism, 312

by a lens system, 317, 322

Diffraction, Fraunhofer, 367

circular aperture, 379

far field, 383

rectangular aperture, 377

single narrow slit, 367

transmission grating, 373

Diffraction, Fresnel, 395

circular aperture, 401

Cornu spiral, 396

slit, 395

straight edge, 395

zone plate, 402

Diffusion equation, 187

added to wave equation, 190, 209

Dipole radiation, 362

Dirac d function, 292

Fourier transform, 292

sifting property, 292

Dispersion,

anomalous, 131, 522

normal, 130, 515

Displacement current, 201

Doppler effect, 141

shock waves, 506

Earthquake, 161

Eigenfrequencies, 86, 125, 245, 418

Eigenfunctions, 418

Electromagnetic waves, 199

in a conductor, 208

in a dielectric, 202

in the ionosphere, 227

in plasma, 223

Electron waves in solids, 441

Energy,

density in an electromagnetic wave, 208

distribution in a sound wave, 155

distribution in a velocity pulse, 278

in harmonic mode of a vibrating

string, 126

Evanescent wave, 256

Exponential series, 25

Fabry–Perot interferometer, 341

central spot scanning, 346

filter, 527

finesse, 345

free spectral range, 345

resolving power, 343

Fermat’s Principle, 307

Fermi energy level, 426, 540

Forced oscillator,

electrical, 55

mechanical, 57

power supplied to, 68

steady state behaviour, 58

string as a forced oscillator, 115

transient behaviour, 58, 74

Fourier Integral, 283

Fourier Series, 267

application to plucked string, 275

application to velocity pulse, 278

frequency spectrum of, 281

Fourier Transform, 285

application to Gaussian function, 289

application to optical diffraction (one

dimension), 287

application to optical diffraction (two

dimensions), 378, 379

application to slit function, 286

Fraunhofer diffraction, 367

Fraunhofer far field diffraction, 383

Fresnel diffraction, 395

Fresnel’s equations, 220

Group,

many components, 132

two components, 128

velocity, 109, 130

wave group, 128
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Heisenberg’s Uncertainty Principle, 135, 414

Helmholtz equation, 187

Helmholtz equation (optical), 313, 321

Holography, 403

Huygens wavelets, 305, 547

Impedance

characteristic of string, 117

characteristic of transmission line

(lossless), 175

characteristic of transmission line

(real), 186

conductor, 215

connection with refractive index, 220

dielectric, 207

forced oscillator (electrical), 55

forced oscillator (mechanical), 57

quarter wave matching, 124

specific acoustic, 158

Instantons, 521

Intensity of sound waves, 157

Interference,

amplitude division, 333, 334

dipole radiation, 362

linear array of N sources, 363

missing orders, 373

spatial coherence criterion, 360

two sources, 355, 357

Young’s slit experiment, 357

wavefront division, 333, 355

Interference fringes, 358

of constant inclination, 335

of constant thickness, 336, 355

Newton’s Rings, 337

visibility, 360

Interferometer

Fabry–Perot, 341

Michelson’s Spectral, 338

Resolving power, 343

structure of spectral lines, 340

Ionic crystal

infrared absorption in, 140

thermal expansion in, 463

wave propagation in, 138

Ionosphere, 227

Kerr optical effect, 522

Kirchhoff Integral Theorem, 547

Kronig – Penney model, 441

Lamé’s elastic constants, 159

Laser cavity, 347

Line spread function, 392

Lissajous figures, 19

Logarithmic decrement, 44

Mach Cone, 507

Mach number, 510

Magnification by spherical surface,

316

Magnifying glass, problem 328

Matrix applications

coupled oscillations, 86

lens systems, 325

multilayer dielectric films, 350

Maxwell’s equations, 202

Michelson’s spectral interferometer, 338

Michelson’s stellar interferometer, 386

Microscope, problem, 330

Modulation transfer function, 391

Multiplexing, 526

Newton’s optical equation, 320

Newton’s Rings, 337

Non-linear oscillations, 459

restoring force, 460

Non-linear waves, 505, 514, 515

Normal coordinates, 81

Normal frequencies, 81, 86

Normal modes, 81

one dimension, 81, 125

three dimensions, 250

two dimensions, 246

Normalization of wave functions, 423

Optical fibre wave guide, 353

Optical Helmholtz equation, 313, 321

Optical reflection and refraction,

217, 254, 307

Optical system, 313

Optical transfer function, 391

Oscillations

anharmonic, 459

coupled, 79

damped simple harmonic, 41

electrical relaxation, 465

finite amplitude, 459, 505

non-linear, 459

simple harmonic, 1
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Paraxial rays, 313

Partial differentiation (notation), 96,

107

Particle velocity, 109

Phase transfer function, 391

Phonons, 450

Pinch effect, 226

Planck’s Radiation Law, 251, 536, 541

problem, 262

Plasma, 223

Point spread function, 391

Poisson’s ratio, 159

Polarization, 17

Power (optical),

of one spherical surface, 314

of thin lens, 318

of two spherical surfaces, 317

Poynting’s vector, 206

Propagation constant, 185

Quality factor Q, 45

connection with Resolving Power, 377

of an oscillator, 70, 71

Radio transmission and reception, 229, 362,

366

Raman effect, 524

Reciprocal lattice, 452

Reduced zone scheme, 445

Reflection and transmission of waves at

a boundary

acoustic, 163

electromagnetic by a conductor

(normal incidence), 222

electromagnetic by a dielectric (normal

incidence), 217

electromagnetic by a dielectric

(oblique incidence), 218

electromagnetic (optical laws),

254, 307

electromagnetic (total internal), 256

on a string, 117

on a transmission line, 177

quantum particles at a potential

barrier, 419, 427

summary (table), 546

three-dimensional, 254

two-dimensional, 242

Relaxation time, 45, 214

medium, 214

oscillator, 45

Resolving Power

Bandwidth Theorem, 376

diffraction grating, 374

Fabry–Perot interferometer, 343

Rayleigh’s Criterion (optical

resolution), 375

Scattering

elastic, 447, 451

inelastic, 451

Schrödinger’s wave equation, 417

Separation of variables (method of),

245

Shock waves, 506

Simple harmonic motion, 1

Skin depth, 211

Snell’s Law, 256, 309

Solitons, 513

instantons, 521

KdV equation, 515, 517, 518

Kerr optical effect, 522

Miura’s transformation, 520

multiplexing, 526

non-linear waves, 514

optical, 521

Raman effect, 524

Rayleigh’s solution, 513

Schrödinger’s equation, 520

shallow water waves, 513

transparency in collisions, 518

Sound waves, 151

Spatial coherence criterion for

interference, 360

Standing wave,

energy in harmonic mode, 127

equation, 124

on a string, 124

ratio, 128

Statistical Physics, 533

black body radiation, 536

boson, 533

chemical potential, 539

distributions,

Bose–Einstein, 533, 536, 545

classical, 537
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degenerate, 538

Fermi–Dirac, 533, 536, 544

Maxwell–Boltzmann, 533, 536, 542

entropy, 535

equipartition of energy, 537

Fermi energy level, 540

fermion, 533

Helmholtz free energy, 535, 539

macrostate, 535

microstate, 535

phase space, 533, 534

Planck’s radiation law, 536

statistical weight, 535

Structure of spectral lines, 340

Superposition

many simple harmonic motions, 20

two perpendicular simple harmonic

motions, 15

two simple harmonic motions (one

dimension), 12

Telescope, problem 329

Telescope resolution of double star, 385

Thick lens, 320, 322

Thin lens, 318

Total internal reflection, 256

Transient effect in a forced oscillator, 58, 74

Transmission line, 171

as a Filter, 179

lossless, 173

real, 183

Umklapp process, 452

Uncertainty Principle, 414

Vector operator i, 53

Velocity

group, 109, 130

particle, 109

wave, 109, 114

Vibration insulator, 64

Visibility of interference fringes, 360

Wave, 108

current, 172, 174

dispersion of, 131

electromagnetic, 199

electron in solids, 441

energy density in, 126, 157

equation, 97, 110

evanescent, 256

function, 418

group

many components, 132

two components, 128

guide, 242, 353

in a periodic structure, 135, 162

intensity, 120, 157, 208

length, 113

longitudinal, 151, 159

mechanics, 411

non-linear, 505, 513, 514

plane, 109

progressive, 108

reflection at a boundary, 117, 163, 177, 217,

254, 546

standing, 124, 348

three-dimensional, 247

transmission at a boundary, 117, 163, 217,

254, 546

transverse, 108

two-dimensional, 240

velocity, 109, 113

voltage, 174, 175

Wave mechanics,

atomic clock, 431

electron waves in solids, 441

Fermi energy level, 426

harmonic oscillator, 438

one-dimensional potential well, 419

penetration of potential barrier, 430

potential step, 426

reflection and transmission of

quantum particles, 420, 427

Schrödinger’s wave equation, 417

square potential well, 434

three-dimensional box, 424

wave function, 418

zero point energy, 422, 438

Young’s modulus, 159

Zero point energy, 422, 438

Zone plate, 403
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