Series of exercises

3 Octobre 2024

Exercise 1 Solve in \mathbb{R} the following equations:

1.
$$\cos(x) = \frac{\sqrt{2}}{2}$$
, $\sin(x) = \frac{1}{2}$, $\cos(3x + \frac{\pi}{4}) = \cos(x + \frac{\pi}{3})$ and $\cos(2x) = \sin(3x)$.
2. $2\cos^2(x) = 1$, $2\cos^2(x) = \sin^2(x) - 1$, $\cos^2(x) - \sin^2(2x) = 0$ and $\cos^2(x) - \sin^2(2x) = 0$.

- 3. $\sin(x) + \sin(3x) = \cos(x)$.
- 4. $\cos(x) + \cos(5x) = \cos(3x) + \cos(7x)$.

Exercise 2 Solve in \mathbb{R} and plot on a trigonometric circle the solutions within the range 0 to 2π :

1.
$$\cos(x) > \frac{\sqrt{3}}{2}$$
, $3\tan(x) - \frac{\sqrt{3}}{3} > 0$ and $1 - 3\sin(x) > 0$.
2. $2\sin(3x) + 1 < 0$, $\tan\left(\frac{3\pi}{5}\right) - \tan(2x) < 0$ and $\sin^2(x) - \frac{3}{4} > 0$.

Determine the domain of definition and the set of roots of the functions $f : \mathbb{R} \to \mathbb{R}$.

1.
$$f(x) = \tan(3x + \frac{\pi}{4}).$$

2. $f(x) = \frac{\sin^2(2x) - 1}{\tan(2x)}.$

Exercise 3 Consider the real-valued function f defined by $f(x) = 2x - \sin(x)$.

1) Show that for all real x, $2x - 1 \le f(x) \le 2x + 1$.

2) Deduce the limits of f as x tends to $+\infty$ and as x tends to $-\infty$.

Exercise 4 Conversion Between Polar and Cartesian Coordinates.

1. Part A: Convert the following Cartesian coordinates to polar coordinates:

(a) (3,4), $(-2,2\sqrt{3})$ and (0,-5).

- 2. Part B: Convert the following polar coordinates to Cartesian coordinates:
 - (a) $(6, \frac{\pi}{3})$ and $(-6, \frac{5\pi}{3})$.
 - (b) $(2, \frac{5\pi}{6})$ and $(-2, -\frac{\pi}{6})$.
 - (c) $(3,\pi)$ and $(3,-\pi)$.

Exercise 5 Conversion Between Cylindrical and Cartesian Coordinates.

- 1. Part A: Convert the following Cartesian coordinates to cylindrical coordinates:
 - (a) (3,4,5), (-2,-2,2) and (0,0,7).
- 2. Part B: Convert the following polar coordinates to Cartesian coordinates:

(a) $(2, \frac{\pi}{4}, 6), (3, \frac{3\pi}{2}, -1)$ and (4, 0, 0).

Exercise 6 Conversion Between Spherical and Cartesian Coordinates

- Part A: Convert the following Cartesian coordinates to spherical coordinates:
 (a) (3,4,5), (-2,-2,2) and (0,0,7).
- 2. Part B: Convert the following spherical coordinates to Cartesian coordinates:
 (a) (2, π/4, π/3), (3, 3π/2, -π/6) and (4, π/2, 0).