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Chapter 2: Lagrangian Formalism 

2-1. Generalized Coordinates: 

Let us consider a mechanical system consisting of N particles moving in three dimensions. The 

positions of these particles will be denoted as r⃗I (for i=1,2,..., ,N). Each position vector has 

three components, so 3N coordinates are required to fully specify the configuration of the entire 

system. Furthermore, let us assume that these 3N coordinates are not independent, meaning 

they cannot evolve independently, but rather are linked by a certain number K of constraints, 

which can be expressed as a set of explicit mathematical relations: 

Cα(r⃗1,...,r⃗N,t)=0 (𝛼 = 1,2, . . . , 𝐾) 

We define n=3N−K as the number of degrees of freedom of the mechanical system under study. 

The n variables qα ,  α = 1, 2, ..., n,  which are sufficient to describe the system, are called 

generalized coordinates. 

The variables qα  are, in principle, known functions of the particle coordinates and, possibly, 

of time: 

qα=qα(r⃗1,...,r⃗N,t);   (α=1,2,...,n) 

These are the transformation relations between the generalized coordinates qα  and the r⃗i. 

Example 1: Simple Pendulum 

 

Simple Pendulum                                                  double Pendulum 

 

Consider a mass m suspended from a point P (taken as the origin) by a rigid rod of length l and 

negligible mass. 

Writing the constraint equations: 

From the setup, the two constraints are: 
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1. 𝑧 =  0 (since the motion is restricted to a plane) 

2. 𝑥2 + 𝑦2 = 𝑙2 (the distance between the mass and the origin is constant) 

Determining the number of degrees of freedom: 

The number of degrees of freedom is: 𝑛 = 3 × 1 − 2 = 1 , Thus, there is only 1 degree of 

freedom. 

Generalized Coordinates and Transformation Relations: 

We can express the position coordinates x and y as: 

𝑥 = 𝑙. 𝑠𝑖𝑛𝜑 

𝑦 = 𝑙. 𝑐𝑜𝑠𝜑 

Knowing the angle φ is enough to determine x and y. 

Hence, the generalized coordinate is φ. 

The transformation relation is written as: 𝑞 = 𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑥/𝑦) 

Example 2: Double Pendulum 

Now, let's add a second mass m2, suspended from the mass m1 of the simple pendulum by 

another rigid rod of length l2 and negligible mass, also constrained to move in the xy-plane. Let 

φ2 represent the angle made by the second rod relative to the vertical (with φ1 for the first rod 

of length l1). 

Let (x1,y1,z1) and (x2,y2,z2) be the Cartesian coordinates of the two masses. 

Writing the constraint equations: 

The four constraints are: 

1. z1=0 (motion of mass 1 is in the plane) 

2. z2=0 (motion of mass 2 is in the plane) 

3. x1
2+y1

2=l1
2 (mass 1 is at a constant distance from the origin) 

4. (x2−x1)
2+(y2−y1)

2=l2
2 (mass 2 is at a constant distance from mass 1) 

Determining the number of degrees of freedom: 

The number of degrees of freedom is: 𝑛 = 3 × 2 − 4 = 2 Thus, there are 2 degrees of 

freedom. 

Generalized Coordinates and Transformation Relations: 
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We can express the Cartesian coordinates of both masses as follows: 

𝑥1 = 𝑙1𝑠𝑖𝑛𝜑1 

𝑦 = 𝑙1𝑐𝑜𝑠𝜑1 

𝑥2 = 𝑙1𝑠𝑖𝑛 𝜑1 + 𝑙2𝑠𝑖𝑛𝜑2 

𝑦2 = 𝑙1𝑐𝑜𝑠𝜑1 + 𝑙2𝑐𝑜𝑠𝜑2 

Knowing φ1 and φ2 is enough to determine 𝑥1, 𝑦1, 𝑥2, and 𝑦2. The transformation relations are 

written as: 

𝑞1 = 𝜑1 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑥1/𝑦1) 

𝑞2 = 𝜑2 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑥2 − 𝑥1
𝑦2 − 𝑦1

) 

 

2-2. Functional Variation: 

Real Differentials:  

Let 𝑓(𝑞𝑖, 𝑡) be a function where 𝑖 = 1,2, … , 𝑛. Its real differential is: 

𝑑𝑓 =∑
𝜕𝑓

𝜕𝑞𝑖
𝑖

𝑑𝑞𝑖 + 
𝜕𝑓

𝜕𝑡
𝑑𝑡 

where 𝑑𝑞𝑖 and dt are the differentials of 𝑞𝑖 and t. 

Virtual Differentials (Variation):  

The variations of the coordinates𝑞𝑖 follow laws 𝑞𝑖 =𝑞𝑖 (t),  making f ultimately a function of 

time through the variables𝑞𝑖. 

By definition, the virtual differential of 𝑓 at time 𝑡 is expressed as: 

𝛿𝑓 =∑
𝜕𝑓

𝜕𝑞𝑖
𝑖

𝑑𝑞𝑖 

with time held constant, 𝑑𝑡 = 0. 

Let 𝑑𝑊  e the work done by force �⃗�  during an infinitesimal displacement 𝑑𝑟⃗⃗⃗⃗⃗: 

𝑑𝑊 =∑�⃗�𝑖.

𝑁

𝑖=1

𝑑𝑟𝑖⃗⃗⃗ = ∑{∑ �⃗�𝑖 .
𝜕𝑟𝑖⃗⃗⃗

𝜕𝑞𝛼

𝑛

𝛼=1

}

𝑁

𝑖=1

𝑑𝑞𝛼 
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𝑑𝑊 =∑�⃗�𝑖.

𝑁

𝑖=1

𝑑𝑟𝑖⃗⃗⃗ = ∑𝛼.

𝑛

𝛼=1

𝑑𝑞𝛼 

where 𝛼 is called the generalized force.𝛼 = ∑ �⃗�𝑖  .
𝜕𝑟𝑖⃗⃗⃗ ⃗

𝜕𝑞𝛼

𝑛
𝛼=1  

𝛼 =
𝜕𝑊

𝜕𝑞𝛼
 

Important Relations: 

1. 
𝜕𝑟𝑖⃗⃗⃗ ⃗

𝜕𝑞𝛼
=

𝜕 𝑟𝑖⃗⃗⃗ ⃗

𝜕𝑞�̇�

̇
 

Proof: 

Given 𝑟𝑖⃗⃗⃗ =𝑟𝑖⃗⃗⃗  (𝑞1,…, 𝑞𝛼,…, 𝑞𝑛) , we can write the differential of 𝑟𝑖⃗⃗⃗   as: 

𝑑𝑟𝑖⃗⃗⃗ =
𝜕𝑟𝑖⃗⃗⃗

𝜕𝑞1
𝑑𝑞1 +⋯+

𝜕𝑟𝑖⃗⃗⃗

𝜕𝑞𝛼
𝑑𝑞𝛼 +⋯+

𝜕𝑟𝑖⃗⃗⃗

𝜕𝑞𝑛
𝑑𝑞𝑛 

   

𝑑𝑟𝑖⃗⃗⃗

𝑑𝑡
=
𝜕𝑟𝑖⃗⃗⃗

𝜕𝑞1

𝑑𝑞1
𝑑𝑡
+ ⋯+

𝜕𝑟𝑖⃗⃗⃗

𝜕𝑞𝛼

𝑑𝑞𝛼
𝑑𝑡

+ ⋯+
𝜕𝑟𝑖⃗⃗⃗

𝜕𝑞𝑛

𝑑𝑞𝑛
𝑑𝑡

 

Thus, 

                                    

𝑑𝑟𝑖⃗⃗⃗

𝑑𝑡
=
𝜕𝑟𝑖⃗⃗⃗

𝜕𝑞1
�̇�1 +⋯+

𝜕𝑟𝑖⃗⃗⃗

𝜕𝑞𝛼
�̇�𝛼 +⋯+

𝜕𝑟𝑖⃗⃗⃗

𝜕𝑞𝑛
�̇�𝑛 

Therefore, we conclude that: 

𝜕𝑟𝑖⃗⃗⃗

𝜕𝑞𝛼
=
𝜕 𝑟𝑖⃗⃗⃗

𝜕𝑞�̇�

̇
 

2. 
𝑑

𝑑𝑡
(
𝜕𝑟𝑖⃗⃗⃗ ⃗

𝜕𝑞𝛼
) =

𝜕 𝑟𝑖⃗⃗⃗ ⃗

𝜕𝑞𝛼

̇
 

Proof: 

Since 

𝑑

𝑑𝑡
(
𝜕𝑟𝑖⃗⃗⃗

𝜕𝑞𝛼
) =

𝜕

𝜕𝑞𝛼
(
𝑑𝑟𝑖⃗⃗⃗

𝑑𝑡
) =

𝜕 𝑟𝑖⃗⃗⃗

𝜕𝑞𝛼

̇
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2-3. Lagrange's Equation: 

Let �⃗�𝑖 be the external force acting on the i-th particle in a system of N particles with n degrees 

of freedom: 

We have: 

  𝑚𝑖 𝑟𝑖⃗⃗⃗ ̈ = �⃗�𝑖 

Multiplying both sides by  
𝜕𝑟𝑖⃗⃗⃗ ⃗

 𝜕𝑞𝛼
, we get: 

𝑚𝑖 𝑟𝑖⃗⃗⃗ ̈
𝜕𝑟𝑖⃗⃗⃗ ⃗

𝜕𝑞𝛼
= �⃗�𝑖

𝜕𝑟𝑖⃗⃗⃗ ⃗

𝜕𝑞𝛼
                 (1) 

 

On the other hand, we also have: 

𝑑

𝑑𝑡
( 𝑟𝑖⃗⃗⃗ ̇

𝜕𝑟𝑖⃗⃗⃗

𝜕𝑞𝛼
) =  𝑟𝑖⃗⃗⃗ ̈

𝜕𝑟𝑖⃗⃗⃗

𝜕𝑞𝛼
+  𝑟𝑖⃗⃗⃗ ̇  

𝑑

𝑑𝑡
(
𝜕𝑟𝑖⃗⃗⃗

𝜕𝑞𝛼
) 

which implies: 

 𝑟𝑖⃗⃗⃗ ̈
𝜕𝑟𝑖⃗⃗⃗ ⃗

𝜕𝑞𝛼
=

𝑑

𝑑𝑡
( 𝑟𝑖⃗⃗⃗ ̇

𝜕𝑟𝑖⃗⃗⃗ ⃗

𝜕𝑞𝛼
) −  𝑟𝑖⃗⃗⃗ ̇  

𝑑

𝑑𝑡
(
𝜕𝑟𝑖⃗⃗⃗ ⃗

𝜕𝑞𝛼
)      (2) 

Multiplying Equation (2) by 𝑚𝑖 

𝑚𝑖 𝑟𝑖⃗⃗⃗ ̈
𝜕𝑟𝑖⃗⃗⃗ ⃗

𝜕𝑞𝛼
= 𝑚𝑖

𝑑

𝑑𝑡
( 𝑟𝑖⃗⃗⃗ ̇

𝜕𝑟𝑖⃗⃗⃗ ⃗

𝜕𝑞𝛼
) − 𝑚𝑖 𝑟𝑖⃗⃗⃗ ̇  

𝑑

𝑑𝑡
(
𝜕𝑟𝑖⃗⃗⃗ ⃗

𝜕𝑞𝛼
) = �⃗�𝑖

𝜕𝑟𝑖⃗⃗⃗ ⃗

𝜕𝑞𝛼
         (3) 

Let 𝐸𝑐  be the kinetic energy of a system of N particles: 

𝐸𝑐 =
1

2
∑𝑚𝑖

𝑁

𝑖=1

 𝑟𝑖⃗⃗⃗ ̇
2
 

For the partial derivative of 𝐸𝑐  with respect to 𝑞𝛼: 

𝜕𝐸𝑐

𝜕𝑞𝛼
= ∑ 𝑚𝑖

𝑁
𝑖=1  𝑟𝑖⃗⃗⃗ ̇ .

𝜕 𝑟𝑖⃗⃗⃗ ⃗
̇

𝜕𝑞𝛼
              (4) 

And for the partial derivative of 𝐸𝑐 with respect to 𝑞�̇� : 

𝜕𝐸𝑐

𝜕�̇�𝛼
= ∑ 𝑚𝑖

𝑁
𝑖=1  𝑟𝑖⃗⃗⃗ ̇ .

𝜕 𝑟𝑖⃗⃗⃗ ⃗
̇

𝜕�̇�𝛼
= ∑ 𝑚𝑖

𝑁
𝑖=1  𝑟𝑖⃗⃗⃗ ̇  .

𝜕𝑟𝑖⃗⃗⃗ ⃗

𝜕𝑞𝛼
       (5) 
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Substituting Equations (4) and (5) into Equation (3) gives: 

                  
𝑑

𝑑𝑡
(
𝜕𝐸𝑐
𝜕�̇�𝛼

) −
𝜕𝐸𝑐
𝜕𝑞𝛼

= 𝛼                                 (6) 

 

Equation (6) is the Lagrange equation. There is one Lagrange equation for each generalized 

coordinate 𝑞𝛼 . Thus, for a system with n degrees of freedom, we have a system of n Lagrange 

equations. 

2-4. Generalized Momentum: 

The quantity 𝑝𝛼  defined as: 

𝑝𝛼 =
𝜕𝐸𝑐
𝜕𝑞𝛼

 

is called the generalized momentum associated with the generalized coordinate 𝑞𝛼. 

2-5. The Lagrangian: 

In conservative systems, the applied force on the system derives from a potential U, which 

gives: 

𝛷𝛼 = −
𝜕𝑈

𝜕𝑞𝛼
 

 

Thus, the Lagrange equation becomes: 

𝑑

𝑑𝑡
(
𝜕𝐸𝑐
𝜕�̇�𝛼

) −
𝜕𝐸𝑐
𝜕𝑞𝛼

= −
𝜕𝑈

𝜕𝑞𝛼
 

or equivalently: 

𝑑

𝑑𝑡
(
𝜕(𝐸𝑐 − 𝑈)

𝜕�̇�𝛼
) −

𝜕(𝐸𝑐 −𝑈)

𝜕𝑞𝛼
= 0 

We define the Lagrangian function 𝐿 as: 

𝐿 = 𝐸𝑐 − 𝑈 

where 𝐿  is known as the Lagrangian of the system. 
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Therefore, the Lagrange equation for a conservative system is: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝛼
) −

𝜕𝐿

𝜕𝑞𝛼
= 0 

2-6. Curvilinear Coordinate System: 

Unlike the Cartesian coordinate system, the reference frame of a curvilinear coordinate system 

is not fixed but depends on the position of a point in space. 

A curvilinear coordinate system is called an orthogonal system if the coordinate lines are 

orthogonal to each other at every point M in space. The three base vectors are tangent to the 

coordinate lines at M, resulting in these vectors being orthogonal to each other at every point 

in space. 

Examples of curvilinear coordinate systems: 

 Cylindrical coordinates 

 Spherical coordinates 

Kinetic energy of a particle of mass m in curvilinear coordinates: 

𝐸𝑐 =
1

2
𝑚(
𝑑𝑠

𝑑𝑡
)
2

 

Where 𝑠 is the curvilinear abscissa, defined such that : 𝑑𝑠2 = 𝑑𝑟. 𝑑𝑟 

In Cartesian coordinates: 𝑑𝑟 = 𝑑𝑥𝑖 + 𝑑𝑦𝑗 + 𝑑𝑧 𝑘⃗⃗⃗ ⃗ 

𝑑𝑠2 = (𝑑𝑥𝑖 + 𝑑𝑦𝑗 + 𝑑𝑧 𝑘⃗⃗⃗ ⃗). (𝑑𝑥𝑖 + 𝑑𝑦𝑗 + 𝑑𝑧 𝑘⃗⃗⃗ ⃗) = (𝑑𝑥)2 + (𝑑𝑦)2 + (𝑑𝑧)2 

In cylindrical coordinates (see Chapter 1): 

𝑟 = 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝜌𝑒𝜌⃗⃗ ⃗⃗ + 𝑧�⃗⃗� ⇒ 𝑑𝑟 = 𝑑𝜌𝑒𝜌⃗⃗ ⃗⃗ + 𝜌𝑑𝑒𝜌⃗⃗ ⃗⃗ + 𝑑𝑧�⃗⃗� = 𝑑𝜌𝑒𝜌⃗⃗ ⃗⃗ + 𝜌𝑑𝜑𝑒𝜑 + 𝑑𝑧�⃗⃗� 

Thus: 

𝑑𝑟 =  𝑑𝜌𝑒𝜌⃗⃗ ⃗⃗ + 𝜌𝑑𝜑𝑒𝜑 + 𝑑𝑧�⃗⃗� 

𝑑𝑠2 =  𝑑𝑟. 𝑑𝑟 =  (𝑑𝜌𝑒𝜌⃗⃗ ⃗⃗ + 𝜌𝑑𝜑𝑒𝜑 + 𝑑𝑧�⃗⃗�). ( 𝑑𝜌𝑒𝜌⃗⃗ ⃗⃗ + 𝜌𝑑𝜑𝑒𝜑 + 𝑑𝑧�⃗⃗�) 

= (𝑑𝜌)2 + (𝜌𝑑𝜑)2 + (𝑑𝑧)2 

In spherical coordinates (see Chapter 1): 

𝑟 = 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗=𝑟𝑒𝑟 ⇒ 𝑑𝑟 = 𝑑𝑟𝑒𝑟 + 𝑟𝑑𝑒𝑟 

𝑒𝑟  𝑠𝑖𝑛𝜃cos𝜑 �⃗⃗�𝑠𝑖𝑛𝜃sin 𝜑 �⃗� +𝑐𝑜𝑠𝜃�⃗⃗� ⇒ 𝑑𝑒𝑟 =
𝜕𝑒𝑟

𝜕𝜃
𝑑𝜃 +

𝜕𝑒𝑟

𝜕𝜑
𝑑𝜑 = 𝑑𝜃𝑒𝜃 + 𝑠𝑖𝑛𝜃. 𝑑𝜑𝑒𝜑 
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𝑑𝑠2 =  𝑑𝑟. 𝑑𝑟 =  (𝑑𝑟𝑒𝑟 + 𝑟𝑑𝜃𝑒𝜃 + 𝑟𝑠𝑖𝑛𝜃. 𝑑𝜑𝑒𝜑). ( 𝑑𝑟𝑒𝑟 + 𝑟𝑑𝜃𝑒𝜃 + 𝑟𝑠𝑖𝑛𝜃. 𝑑𝜑𝑒𝜑) 

= (𝑑𝑟)2 + (𝑟𝑑𝜃)2 + (𝑟𝑠𝑖𝑛𝜃. 𝑑𝜑)2 

In general, we write:                          𝑑𝑠2 = ∑ 𝑔𝑖𝑗𝑞𝑖𝑞𝑗𝑖,𝑗  

Where 𝑔𝑖𝑗 is called the metric (metric tensor). 

 

𝑔𝑖𝑗  is a symmetric tensor that allows us to define the kinetic energy 𝐸𝑐 by: 

𝐸𝑐 =
𝑚

2
∑𝑔𝑖𝑗𝑞�̇��̇�𝑗
𝑖,𝑗

 

2-7. Holonomic and Non-Holonomic Constraints: 

A holonomic constraint is a constraint that can be expressed in the form: 

𝑓(𝑟1⃗⃗⃗ ⃗, … , 𝑟𝑁⃗⃗⃗⃗⃗, 𝑡) = 0 

If it cannot, it is classified as non-holonomic. If the equation of the holonomic constraint 

depends on time, such that 

𝜕𝑓

𝜕𝑡
≠ 0, 

it is called rheonomic. If it does not depend on time, such that 

𝑑𝑓

𝑑𝑡
= 0 

it is called scleronomic. 

Example: 

 

For a simple pendulum, the constraint equations are: 
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1. 𝑧 = 0 

2. 𝑥2 + 𝑦2 = 𝑙2 

Both constraints are holonomic and scleronomic. 

 

Example 1: In spherical coordinates, the Lagrangian of a particle subjected to a potential 

𝑈(𝑟, 𝜃, 𝜑) is written as: 

L=
𝑚

2
(�̇�2 + (𝑟�̇�)

2
+ (𝑟𝑠𝑖𝑛𝜃. �̇�)2) − 𝑈(𝑟, 𝜃, 𝜑) 

Lagrange equations: 3 equations correspond to the variables 𝑟, 𝜃, 𝜑. 

(

 
 
 
 
 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑟
= 0          (1)

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜃
= 0          (2)

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜑
= 0         (3)

         

𝜕𝐿

𝜕�̇�
= 𝑚�̇�

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) = 𝑚�̈�             𝑎𝑛𝑑  

𝜕𝐿

𝜕𝑟
= 𝑚𝑟�̇�2 +𝑚𝑟�̇�2𝑠𝑖𝑛2𝜃 −

𝜕𝑈

𝜕𝑟
 

     
𝜕𝐿

𝜕�̇�
= 𝑚𝑟2�̇�

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) = 2𝑚𝑟�̇� + 𝑚𝑟2�̈�             𝑎𝑛𝑑  

𝜕𝐿

𝜕𝜃
= 2𝑚𝑟�̇�2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 −

𝜕𝑈

𝜕𝜃
 

𝜕𝐿

𝜕�̇�
= 𝑚𝑟2�̇� 𝑠𝑖𝑛2𝜃

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) = 2𝑚𝑟�̇��̇� 𝑠𝑖𝑛2𝜃 +𝑚𝑟2�̈� 𝑠𝑖𝑛2𝜃 + 2𝑚𝑟2�̇�𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃             

 𝑎𝑛𝑑  
𝜕𝐿

𝜕𝜑
= −

𝜕𝑈

𝜕𝜑
 



(

 
 
 
 
 

𝑚�̈� − 𝑚𝑟�̇�2 −𝑚𝑟�̇�2𝑠𝑖𝑛2𝜃 +
𝜕𝑈

𝜕𝑟
= 0          (1)

2𝑚𝑟�̇� + 𝑚𝑟2�̈� − 2𝑚𝑟�̇�2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 +
𝜕𝑈

𝜕𝜃
= 0          (2)

2𝑚𝑟�̇��̇� 𝑠𝑖𝑛2𝜃 +𝑚𝑟2�̈� 𝑠𝑖𝑛2𝜃 + 2𝑚𝑟2�̇�𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃  −
𝜕𝐿

𝜕𝜑
= 0         (3)

         

Applications: 

1 - Particle in a Gravitational Field: 
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A particle of mass mmm in a gravitational field has a potential energy U=mgz, where z 

measures its height, and g is the acceleration due to gravity. We set z=0; U=0 as the origin of 

gravitational potential energy. (x,y,z) are the coordinates of the material point in space. 

Describe the motion of this material point using the Lagrangian formalism. 

2 - Particle Suspended by a Spring: 

A particle of mass m is suspended by a spring with constant k in a gravitational field. Near the 

Earth's surface, it is assumed that only vertical motion is allowed, with no movement in the x 

and y directions, resulting in only one degree of freedom. The best choice of generalized 

coordinates is the Cartesian coordinate z (with U=mgzU ). The motion is purely vertical. 

 

Describe the motion of m  using the Lagrangian formalism. 

3 - Two-Body Problem: 

This is the simplest closed physical system that exists. Two particles, with masses 𝑚1and 𝑚2, 

have instantaneous positions 𝑟1⃗⃗⃗ ⃗ and 𝑟2⃗⃗⃗⃗   and interact through a potential: U(𝑟1⃗⃗⃗ ⃗, 𝑟1⃗⃗⃗ ⃗)=U(𝑟1⃗⃗⃗ ⃗−𝑟1⃗⃗⃗ ⃗). 

 

The relative coordinate is: 

𝑟 = 𝑟1⃗⃗⃗⃗  -𝑟2⃗⃗⃗⃗  , 

and the center of mass coordinate is: 
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𝑟𝑐⃗⃗⃗ =
𝑚1𝑟1⃗⃗ ⃗⃗ +𝑚2𝑟2⃗⃗ ⃗⃗  

𝑚1+𝑚2
 

Write 𝑟1⃗⃗⃗ ⃗ and 𝑟2⃗⃗⃗⃗   as functions of 𝑟 and 𝑟𝑐 

Write the Lagrangian in terms 

Generalized Atwood Machine: Consider the system shown in which a mass 𝑚1 is 

connected, via pulley A, to a second pulley B with mass M. Pulley B, in turn, connects two 

other masses 𝑚2 and 𝑚3. The masses of the ropes and pulleys are negligible, and gravity g 

acts downward. The vertical positions of the three masses are 𝑦1, 𝑦2, and 𝑦3, and movement 

in any direction other than vertical is ignored. Pulley A is fixed, and the ropes have constant 

lengths.  

 

1. Show that this problem has two degrees of freedom. 

2. Write the Lagrangian of this system, using are 𝑦1and 𝑦2 as generalized coordinates. 

3. Find an explicit expression for the accelerations �̈�1 and �̈�2 in terms of g and the three 

masses. Under what condition is �̈�1 zero? 

 

 

 

 

 

 

 

 


