Chapter 2: Lagrangian Formalism
2-1. Generalized Coordinates:

Let us consider a mechanical system consisting of N particles moving in three dimensions. The
positions of these particles will be denoted as 1y (for i=1,2,..., ,N). Each position vector has
three components, so 3N coordinates are required to fully specify the configuration of the entire
system. Furthermore, let us assume that these 3N coordinates are not independent, meaning
they cannot evolve independently, but rather are linked by a certain number K of constraints,
which can be expressed as a set of explicit mathematical relations:

Ca(r’s,...,. N,D)=0 (a = 1,2,...,K)

We define n=3N-K as the number of degrees of freedom of the mechanical system under study.
The n variables qa., o =1, 2, ..., n, which are sufficient to describe the system, are called
generalized coordinates.

The variables qo are, in principle, known functions of the particle coordinates and, possibly,
of time:

qo=qo(r’1,...,r N,1); (0=1,2,...,n)
These are the transformation relations between the generalized coordinates qa. and the ;.

Example 1: Simple Pendulum
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Simple Pendulum double Pendulum

Consider a mass m suspended from a point P (taken as the origin) by a rigid rod of length | and
negligible mass.

Writing the constraint equations:

From the setup, the two constraints are:



1. z = 0 (since the motion is restricted to a plane)
2. x% + y? = [? (the distance between the mass and the origin is constant)

Determining the number of degrees of freedom:

The number of degrees of freedom is: n =3 x1—2 =1, Thus, there is only 1 degree of
freedom.

Generalized Coordinates and Transformation Relations:
We can express the position coordinates x and y as:

x = l.sing
y =l.cose

Knowing the angle ¢ is enough to determine x and y.

Hence, the generalized coordinate is o.

The transformation relation is written as: ¢ = ¢ = arctan(x/y)
Example 2: Double Pendulum

Now, let's add a second mass mg, suspended from the mass my of the simple pendulum by
another rigid rod of length I> and negligible mass, also constrained to move in the xy-plane. Let
@2 represent the angle made by the second rod relative to the vertical (with ¢ for the first rod
of length I1).

Let (X1,y1,21) and (X2,y2,22) be the Cartesian coordinates of the two masses.
Writing the constraint equations:
The four constraints are:

z1=0 (motion of mass 1 is in the plane)

z2=0 (motion of mass 2 is in the plane)

x12+y12=11% (mass 1 is at a constant distance from the origin)
(X2—x1)>+(y2—y1)>=12? (mass 2 is at a constant distance from mass 1)
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Determining the number of degrees of freedom:

The number of degrees of freedom is: n =3 x 2 —4 =2 Thus, there are 2 degrees of
freedom.

Generalized Coordinates and Transformation Relations:



We can express the Cartesian coordinates of both masses as follows:

x, = lysing,

y = licosg,
X, = lisin @1 + l;sing,
y, = licospl + l,cosp,

Knowing ¢z and 2 is enough to determine x4, y;, x,, and y,. The transformation relations are
written as:

q1 = @1 = arctan(x,/y1)
xz - x1

Y2—W1

q, = @, = arctan(

)

2-2. Functional Variation:

Real Differentials:

Let f(q;, t) be a function where i = 1,2, ..., n. Its real differential is:
df = Zj—:;idqi + %dt

where dg; and dt are the differentials of qli and t.

Virtual Differentials (Variation):

The variations of the coordinatesq; follow laws q; =q; (t), making f ultimately a function of
time through the variablesg;.

By definition, the virtual differential of f at time t is expressed as:

of
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with time held constant, dt = 0.

Let dW e the work done by force F during an infinitesimal displacement dr:




where @, is called the generalized force.@, = Y.\ _, F; Fae
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Important Relations:
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" 0qq - 0qq
Proof:
Given 1,=7, (q1,-.-» Gg»---» gn) , We can write the differential of 7; as:
d"—a?ld + +a?ld + +aﬁd
rl - aql Q1 aqa Qa aqn qu
dr, 07, dq, - 07, dqq o7, dqn
dt  dq, dt dq, dt dq, dt
Thus,
aw_om. L om0
dt_aqlql aqaqa aqnqn

Therefore, we conclude that:

) g(a_ﬁ’)_@
" dt\dqy/ ~ 9qq

Proof:
Since

d(or\ @ (dr\ 9T
dt\dq,) dq,\dt) adq,



2-3. Lagrange's Equation:

Let ﬁl- be the external force acting on the i-th particle in a system of N particles with n degrees
of freedom:

We have:
m; 7_‘{ = ﬁi
Multiplying both sides by :—f, we get:

=, 97 > 01,
m;,—=F; 1
llaqCx laqa ()

On the other hand, we also have:

d(0n\_=0n . d(on
de\ "aq,) ~ "aq, = " dr\aq,

which implies:

L0 _d (501 o d(on

n 99, dt ( n aqa) [ (aqa) (2)
Multiplying Equation (2) by m;

=, 01 d(;@?{) LN d(aF{) > 0
mh—=m;—(n—)—-m71n, —(—=)=F— 3
l laqa ldt laqa l ldt aqa laqa ()

Let E. be the Kinetic energy of a system of N particles:
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For the partial derivative of E. with respect to q,:

9E, N L on
=) m; ,.— 4
aQ(x =1 [ aQa ( )

And for the partial derivative of E_ with respect to g, :

0E, N = 6%7 N X, 0T
=) m; rh.—=)_,m;1..— 5
aqa{ =1 [ aqa Zl—l L't aqa ( )



Substituting Equations (4) and (5) into Equation (3) gives:

d <6EC> 0E.

ai\oq,) "aq, P ©

Equation (6) is the Lagrange equation. There is one Lagrange equation for each generalized
coordinate g, . Thus, for a system with n degrees of freedom, we have a system of n Lagrange
equations.

2-4. Generalized Momentum:
The quantity p, defined as:

_9E,
0qq

Pa

is called the generalized momentum associated with the generalized coordinate q,,.
2-5. The Lagrangian:

In conservative systems, the applied force on the system derives from a potential U, which
gives:

Thus, the Lagrange equation becomes:

d((’)Ec> JE.  dU
dt\0qe/ 04y  04q

or equivalently:

d (O(EC — U)) d(E;—U) _ 0
dt a4, aq,

We define the Lagrangian function L as:
L=E.-U

where L is known as the Lagrangian of the system.



Therefore, the Lagrange equation for a conservative system is:
d ( dL ) oL _
dt\dq, q,

2-6. Curvilinear Coordinate System:

Unlike the Cartesian coordinate system, the reference frame of a curvilinear coordinate system
is not fixed but depends on the position of a point in space.

A curvilinear coordinate system is called an orthogonal system if the coordinate lines are
orthogonal to each other at every point M in space. The three base vectors are tangent to the
coordinate lines at M, resulting in these vectors being orthogonal to each other at every point
in space.

Examples of curvilinear coordinate systems:

e Cylindrical coordinates
o Spherical coordinates

Kinetic energy of a particle of mass m in curvilinear coordinates:

£ = 1 (dS)Z
c = 2™\t
Where s is the curvilinear abscissa, defined such that : ds? = d#.d7
In Cartesian coordinates: d7 = dxi + dyj + dz k
ds? = (dxi+ dyj + dzTc)). (dxT + dyj + dzTc)) = (dx)? + (dy)? + (dz)?

In cylindrical coordinates (see Chapter 1):

B

7=0M

pe, + zk = d7 = dpe, + pde, + dzk = dpe, + pdgé, + dzk
Thus:
dr = dpe, + pdpé, + dzk
ds? = d7.d7 = (dpe, + pdpé, + dzE). (dpe, + pdpé, + dzz)
= (dp)* + (pdep)* + (dz)*

In spherical coordinates (see Chapter 1):
7 = OM=ré, = dr = dré, + rde,

8, = sinfcose i+sinb sin ¢ | +cosfk = dé, = %de + Z—Zd(p = d6éy + sinb.dyé,



ds? = d7.d7 = (dré, +rd0éy + rsind. d(pé(p). (dré, +rdféy + rsind. d<pé’(p)
=(dr)? + (rd8)? + (rsinf.de)?

In general, we write: ds? = 27 9ij9:49;

Where g;; is called the metric (metric tensor).

Coordonnées cartésiennes Coordonnées cylindriques Coordonnées sphériques
‘10 Oy 10 Oy ‘10 0
gij = (o 1 g) Jij = (0 p? 4}) g =10 r? 0

\0 0 1/ \0 0 1/ \0 0 r?sin?g/

gi; is asymmetric tensor that allows us to define the kinetic energy E. by:

m . .
E. = ?Z 9ij9.4;
i,j

2-7. Holonomic and Non-Holonomic Constraints:
A holonomic constraint is a constraint that can be expressed in the form:
f@q, ..,ty,t) =0

If it cannot, it is classified as non-holonomic. If the equation of the holonomic constraint
depends on time, such that

of

E;&O,

it is called rheonomic. If it does not depend on time, such that

ar

I 0

it is called scleronomic.

Example:

For a simple pendulum, the constraint equations are:
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Both constraints are holonomic and scleronomic.
Example 1: In spherical coordinates, the Lagrangian of a particle subjected to a potential
U(r, 8, p) is written as:

L= %(7’”2 + (ré)z + (rsin®. <p)2) —U(r,0,9)

Lagrange equations: 3 equations correspond to the variables r, 8, ¢.

/dt 32 =0 @
'dt( ) %= @

|
| d aL _o ;
\dt 3)
oL . d(aL)_ . daL_ 02 4 )2in20 au
o7 = M=o 52 ) = mi and —=mr mr@?sin =
Z—; = mr2f =< (Z;) = 2mré + mr26 and £ = 2mr¢?sinfcosf — Z—Z
oL _ mr2g sin? d(aL> 2 29 + 29 4 2 Bcosb
T mreg sin*f=— 35) = mri¢ sin mr2¢ sin mr2¢sinfcos
L oL _ U
an 30 = 99
. au
m# — mr6? — mr@?sin®0 + 5 = 0 (1)
2mré + 26 — 2 Bcosf + — ou =0 2
- mr mr mr@?sinfcos 30 (2)
L . .. oL
2mri¢ sin?0 + mr?¢ sin?0 + 2mr2@sinfcosd ——=0 (3)
Applications:

1 - Particle in a Gravitational Field:



A particle of mass mmm in a gravitational field has a potential energy U=mgz, where z
measures its height, and g is the acceleration due to gravity. We set z=0; U=0 as the origin of
gravitational potential energy. (X,y,z) are the coordinates of the material point in space.

Describe the motion of this material point using the Lagrangian formalism.

2 - Particle Suspended by a Spring:

A particle of mass m is suspended by a spring with constant k in a gravitational field. Near the
Earth's surface, it is assumed that only vertical motion is allowed, with no movement in the x

and y directions, resulting in only one degree of freedom. The best choice of generalized
coordinates is the Cartesian coordinate z (with U=mgzU ). The motion is purely vertical.

Describe the motion of m using the Lagrangian formalism.
3 - Two-Body Problem:

This is the simplest closed physical system that exists. Two particles, with masses m,and m,,
have instantaneous positions 7; and 7, and interact through a potential: U(ry, 77)=U(17—77).
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The relative coordinate is:
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and the center of mass coordinate is:
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7 = myT{+m,7;
¢ m1+m2

Write 77 and 7, as functions of 7 and 7.

Write the Lagrangian in terms

Generalized Atwood Machine: Consider the system shown in which a mass m; is
connected, via pulley A, to a second pulley B with mass M. Pulley B, in turn, connects two
other masses m, and ms. The masses of the ropes and pulleys are negligible, and gravity g
acts downward. The vertical positions of the three masses are y,, y,, and ys, and movement
in any direction other than vertical is ignored. Pulley A is fixed, and the ropes have constant
lengths.

=

Show that this problem has two degrees of freedom.

Write the Lagrangian of this system, using are y;and y, as generalized coordinates.
3. Find an explicit expression for the accelerations y, and j, in terms of g and the three
masses. Under what condition is y, zero?
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