Department of Physics University of M'sila Module: Analytical Mechanics Series 2 Exercise 1

Consider a mass m_1 suspended from a point P, which we take as the origin, by a rigid rod of length l_1 and negligible mass. Let's add a second mass m_2 , suspended from mass m_1 by another rigid rod of negligible mass and length l_2 , also constrained to pivot only in the (x, y) plane. Let φ_2 be the angle that the second rod makes with the vertical (as opposed to φ_1 for the first rod, of length l_1). Let (x_1, y_1, z_1) and (x_2, y_2, z_2) be the Cartesian coordinates of the two masses.

- 1. Write the constraint equations and define the generalized coordinates of this system.
- 2. Write the kinetic and potential energy of this system.
- 3. Write the Lagrangian and the Lagrange equations.
- 4. Write the previous equations assuming that the angles φ_1 and φ_2 are small, and deduce the expression for the equations of motion.

Exercise 2

Write the Lagrangian of a particle of mass mmm in spherical coordinates in the potential field $V(r, \theta)$

Application:
$$V(r, \theta) = \frac{\cos\theta}{r^2}$$

Exercise 3: Generalized Atwood Machine: Consider the system shown in which a mass m_1 is connected, via pulley A, to a second pulley B with mass M. Pulley B, in turn, connects two other masses m_2 and m_3 . The masses of the ropes and pulleys are negligible, and gravity g acts downward. The vertical positions of the three masses are y_1 , y_2 , and y_3 , and movement in any direction other than vertical is ignored. Pulley A is fixed, and the ropes have constant lengths.

- 1. Show that this problem has two degrees of freedom.
- 2. Write the Lagrangian of this system, using are y_1 and y_2 as generalized coordinates.
- 3. Find an explicit expression for the accelerations \ddot{y}_1 and \ddot{y}_2 in terms of g and the three masses. Under what condition is \ddot{y}_1 zero?

Exercise 4

Two masses m_1 and m_2 arranged on a perfectly smooth double inclined plane are connected by an inextensible string of negligible mass that passes without friction over a pulley of negligible mass. Let α_1 and α_2 be the angles of the inclined planes.

- 1. Show that this problem has one degree of freedom.
- 2. Write the Lagrangian and the Lagrange equations.
- 3. Deduce the conditions for equilibrium.

