
20

MATLAB is an interactive program for numerical computation and data

visualization. You can enter a command by typing it at the MATLAB prompt '>>'

on the Command Window.

In this section, we will provide lists of commonly used general MATLAB commands.

Commands for Managing a Session

MATLAB provides various commands for managing a session. The following table

provides all such commands:

Command Purpose

clc Clears command window.

clear Removes variables from memory.

exist Checks for existence of file or variable.

global Declares variables to be global.

help Searches for a help topic.

lookfor Searches help entries for a keyword.

quit Stops MATLAB.

who Lists current variables.

whos Lists current variables (long display).

Commands for Working with the System

MATLAB provides various useful commands for working with the system, like

saving the current work in the workspace as a file and loading the file later.

5. COMMANDS

21

It also provides various commands for other system-related activities like,

displaying date, listing files in the directory, displaying current directory, etc.

The following table displays some commonly used system-related commands:

Command Purpose

cd Changes current directory.

date Displays current date.

delete Deletes a file.

diary Switches on/off diary file recording.

dir Lists all files in current directory.

load Loads workspace variables from a file.

path Displays search path.

pwd Displays current directory.

save Saves workspace variables in a file.

type Displays contents of a file.

what Lists all MATLAB files in the current directory.

wklread Reads .wk1 spreadsheet file.

22

Input and Output Commands

MATLAB provides the following input and output related commands:

Command Purpose

disp Displays contents of an array or string.

fscanf Read formatted data from a file.

format Controls screen-display format.

fprintf Performs formatted writes to screen or file.

input Displays prompts and waits for input.

; Suppresses screen printing.

The fscanf and fprintf commands behave like C scanf and printf functions. They

support the following format codes:

Format Code Purpose

%s Format as a string.

%d Format as an integer.

%f Format as a floating point value.

%e Format as a floating point value in scientific notation.

%g Format in the most compact form: %f or %e.

\n Insert a new line in the output string.

\t Insert a tab in the output string.

23

The format function has the following forms used for numeric display:

Format Function Display up to

format short Four decimal digits (default).

format long 16 decimal digits.

format short e Five digits plus exponent.

format long e 16 digits plus exponents.

format bank Two decimal digits.

format + Positive, negative, or zero.

format rat Rational approximation.

format compact Suppresses some line feeds.

format loose Resets to less compact display mode.

Vector, Matrix, and Array Commands

The following table shows various commands used for working with arrays,

matrices and vectors:

Command Purpose

cat Concatenates arrays.

find Finds indices of nonzero elements.

length Computes number of elements.

linspace Creates regularly spaced vector.

24

logspace Creates logarithmically spaced vector.

max Returns largest element.

min Returns smallest element.

prod Product of each column.

reshape Changes size.

size Computes array size.

sort Sorts each column.

sum Sums each column.

eye Creates an identity matrix.

ones Creates an array of ones.

zeros Creates an array of zeros.

cross Computes matrix cross products.

dot Computes matrix dot products.

det Computes determinant of an array.

inv Computes inverse of a matrix.

pinv Computes pseudoinverse of a matrix.

rank Computes rank of a matrix.

rref Computes reduced row echelon form.

25

cell Creates cell array.

celldisp Displays cell array.

cellplot Displays graphical representation of cell array.

num2cell Converts numeric array to cell array.

deal Matches input and output lists.

iscell Identifies cell array.

Plotting Commands

MATLAB provides numerous commands for plotting graphs. The following table

shows some of the commonly used commands for plotting:

Command Purpose

axis Sets axis limits.

fplot Intelligent plotting of functions.

grid Displays gridlines.

plot Generates xy plot.

print Prints plot or saves plot to a file.

title Puts text at top of plot.

xlabel Adds text label to x-axis.

ylabel Adds text label to y-axis.

axes Creates axes objects.

26

close Closes the current plot.

close all Closes all plots.

figure Opens a new figure window.

gtext Enables label placement by mouse.

hold Freezes current plot.

legend Legend placement by mouse.

refresh Redraws current figure window.

set Specifies properties of objects such as axes.

subplot Creates plots in sub windows.

text Places string in figure.

bar Creates bar chart.

loglog Creates log-log plot.

polar Creates polar plot.

semilogx Creates semi log plot. (logarithmic abscissa).

semilogy Creates semi log plot. (logarithmic ordinate).

stairs Creates stairs plot.

stem Creates stem plot.

30

MATLAB does not require any type declaration or dimension statements.

Whenever MATLAB encounters a new variable name, it creates the variable and

allocates appropriate memory space.

If the variable already exists, then MATLAB replaces the original content with new

content and allocates new storage space, where necessary.

For example,

Total = 42

The above statement creates a 1-by-1 matrix named 'Total' and stores the value

42 in it.

Data Types Available in MATLAB

MATLAB provides 15 fundamental data types. Every data type stores data that is

in the form of a matrix or array. The size of this matrix or array is a minimum of

0-by-0 and this can grow up to a matrix or array of any size.

The following table shows the most commonly used data types in MATLAB:

Data Type Description

int8 8-bit signed integer

uint8 8-bit unsigned integer

int16 16-bit signed integer

uint16 16-bit unsigned integer

int32 32-bit signed integer

uint32 32-bit unsigned integer

int64 64-bit signed integer

7. DATA TYPES

31

uint64 64-bit unsigned integer

single single precision numerical data

double double precision numerical data

logical logical values of 1 or 0, represent true and false respectively

char character data (strings are stored as vector of characters)

cell array array of indexed cells, each capable of storing an array of a

different dimension and data type

structure C-like structures, each structure having named fields

capable of storing an array of a different dimension and data

type

function handle pointer to a function

user classes objects constructed from a user-defined class

java classes objects constructed from a Java class

Example

Create a script file with the following code:

str = 'Hello World!'

n = 2345

d = double(n)

un = uint32(789.50)

rn = 5678.92347

c = int32(rn)

32

When the above code is compiled and executed, it produces the following result:

str =

Hello World!

n =

 2345

d =

 2345

un =

 790

rn =

 5.6789e+03

c =

 5679

Data Type Conversion

MATLAB provides various functions for converting a value from one data type to

another. The following table shows the data type conversion functions:

Function Purpose

Char Convert to character array (string)

int2str Convert integer data to string

mat2str Convert matrix to string

num2str Convert number to string

str2double Convert string to double-precision value

33

str2num Convert string to number

native2unicode Convert numeric bytes to Unicode characters

unicode2native Convert Unicode characters to numeric bytes

base2dec Convert base N number string to decimal number

bin2dec Convert binary number string to decimal number

dec2base Convert decimal to base N number in string

dec2bin Convert decimal to binary number in string

dec2hex Convert decimal to hexadecimal number in string

hex2dec Convert hexadecimal number string to decimal number

hex2num Convert hexadecimal number string to double-precision

number

num2hex Convert singles and doubles to IEEE hexadecimal strings

cell2mat Convert cell array to numeric array

cell2struct Convert cell array to structure array

cellstr Create cell array of strings from character array

mat2cell Convert array to cell array with potentially different sized

cells

num2cell Convert array to cell array with consistently sized cells

struct2cell Convert structure to cell array

34

Determination of Data Types

MATLAB provides various functions for identifying data type of a variable.

Following table provides the functions for determining the data type of a variable:

Function Purpose

is Detect state

isa Determine if input is object of specified class

iscell Determine whether input is cell array

iscellstr Determine whether input is cell array of strings

ischar Determine whether item is character array

isfield Determine whether input is structure array field

isfloat Determine if input is floating-point array

ishghandle True for Handle Graphics object handles

isinteger Determine if input is integer array

isjava Determine if input is Java object

islogical Determine if input is logical array

isnumeric Determine if input is numeric array

isobject Determine if input is MATLAB object

isreal Check if input is real array

isscalar Determine whether input is scalar

35

isstr Determine whether input is character array

isstruct Determine whether input is structure array

isvector Determine whether input is vector

class Determine class of object

validateattributes Check validity of array

whos List variables in workspace, with sizes and types

Example

Create a script file with the following code:

x = 3

isinteger(x)

isfloat(x)

isvector(x)

isscalar(x)

isnumeric(x)

x = 23.54

isinteger(x)

isfloat(x)

isvector(x)

isscalar(x)

isnumeric(x)

x = [1 2 3]

36

isinteger(x)

isfloat(x)

isvector(x)

isscalar(x)

x = 'Hello'

isinteger(x)

isfloat(x)

isvector(x)

isscalar(x)

isnumeric(x)

When you run the file, it produces the following result:

x =

 3

ans =

 0

ans =

 1

ans =

 1

ans =

 1

ans =

 1

x =

 23.5400

37

ans =

 0

ans =

 1

ans =

 1

ans =

 1

ans =

 1

x =

 1 2 3

ans =

 0

ans =

 1

ans =

 1

ans =

 0

x =

Hello

ans =

 0

ans =

 0

38

ans =

 1

ans =

 0

ans =

 0

39

An operator is a symbol that tells the compiler to perform specific mathematical

or logical manipulations. MATLAB is designed to operate primarily on whole

matrices and arrays. Therefore, operators in MATLAB work both on scalar and non-

scalar data. MATLAB allows the following types of elementary operations:

Arithmetic Operators

Relational Operators

Logical Operators

Bitwise Operations

Set Operations

Arithmetic Operators

MATLAB allows two different types of arithmetic operations:

Matrix arithmetic operations

Array arithmetic operations

Matrix arithmetic operations are same as defined in linear algebra. Array operations are executed

element by element, both on one-dimensional and multidimensional array.

The matrix operators and array operators are differentiated by the period (.) symbol. However, as

the addition and subtraction operation is same for matrices and arrays, the operator is same for

both cases. The following table gives brief description of the operators:

Operator Description

+ Addition or unary plus. A+B adds the values stored in variables A

and B. A and B must have the same size, unless one is a scalar. A

scalar can be added to a matrix of any size.

- Subtraction or unary minus. A-B subtracts the value of B from A. A

and B must have the same size, unless one is a scalar. A scalar can

be subtracted from a matrix of any size.

8. OPERATORS

40

* Matrix multiplication. C = A*B is the linear algebraic product of the

matrices A and B. More precisely,

For non-scalar A and B, the number of columns of A must be equal

to the number of rows of B. A scalar can multiply a matrix of any

size.

.* Array multiplication. A.*B is the element-by-element product of the

arrays A and B. A and B must have the same size, unless one of

them is a scalar.

/ Slash or matrix right division. B/A is roughly the same as B*inv(A).

More precisely, B/A = (A'\B')'.

./ Array right division. A./B is the matrix with elements A(i,j)/B(i,j). A

and B must have the same size, unless one of them is a scalar.

\ Backslash or matrix left division. If A is a square matrix, A\B is

roughly the same as inv(A)*B, except it is computed in a different

way. If A is an n-by-n matrix and B is a column vector with n

components, or a matrix with several such columns, then X = A\B

is the solution to the equation AX = B. A warning message is

displayed if A is badly scaled or nearly singular.

.\ Array left division. A.\B is the matrix with elements B(i,j)/A(i,j). A

and B must have the same size, unless one of them is a scalar.

^ Matrix power. X^p is X to the power p, if p is a scalar. If p is an

integer, the power is computed by repeated squaring. If the integer

is negative, X is inverted first. For other values of p, the calculation

involves eigenvalues and eigenvectors, such that if [V,D] = eig(X),

then X^p = V*D.^p/V.

.^ Array power. A.^B is the matrix with elements A(i,j) to the B(i,j)

power. A and B must have the same size, unless one of them is a

scalar.

41

' Matrix transpose. A' is the linear algebraic transpose of A. For

complex matrices, this is the complex conjugate transpose.

.' Array transpose. A.' is the array transpose of A. For complex

matrices, this does not involve conjugation.

Example

The following examples show the use of arithmetic operators on scalar data.

Create a script file with the following code:

a = 10;

b = 20;

c = a + b

d = a - b

e = a * b

f = a / b

g = a \ b

x = 7;

y = 3;

z = x ^ y

When you run the file, it produces the following result:

c =

 30

d =

 -10

e =

 200

f =

 0.5000

42

g =

 2

z =

 343

Functions for Arithmetic Operations

Apart from the above-mentioned arithmetic operators, MATLAB provides the

following commands/functions used for similar purpose:

Function Description

uplus(a) Unary plus; increments by the amount a

plus (a,b) Plus; returns a + b

uminus(a) Unary minus; decrements by the amount a

minus(a, b) Minus; returns a - b

times(a, b) Array multiply; returns a.*b

mtimes(a, b) Matrix multiplication; returns a* b

rdivide(a, b) Right array division; returns a ./ b

ldivide(a, b) Left array division; returns a.\ b

mrdivide(A, B) Solve systems of linear equations xA = B for x

mldivide(A, B) Solve systems of linear equations Ax = B for x

power(a, b) Array power; returns a.^b

mpower(a, b) Matrix power; returns a ^ b

43

cumprod(A) Cumulative product; returns an array of the same size

as the array A containing the cumulative product.

If A is a vector, then cumprod(A) returns a vector

containing the cumulative product of the elements of

A.

If A is a matrix, then cumprod(A) returns a matrix

containing the cumulative products for each column

of A.

If A is a multidimensional array, then cumprod(A) acts

along the first non-singleton dimension.

cumprod(A, dim) Returns the cumulative product along dimension dim.

cumsum(A) Cumulative sum; returns an array A containing the

cumulative sum.

If A is a vector, then cumsum(A) returns a vector

containing the cumulative sum of the elements of A.

If A is a matrix, then cumsum(A) returns a matrix

containing the cumulative sums for each column of A.

If A is a multidimensional array, then cumsum(A) acts

along the first non-singleton dimension.

cumsum(A, dim) Returns the cumulative sum of the elements along

dimension dim.

diff(X) Differences and approximate derivatives; calculates

differences between adjacent elements of X.

If X is a vector, then diff(X) returns a vector, one

element shorter than X, of differences between

adjacent elements: [X(2)-X(1) X(3)-X(2) ... X(n)-

X(n-1)]

If X is a matrix, then diff(X) returns a matrix of row

differences: [X(2:m,:)-X(1:m-1,:)]

diff(X,n) Applies diff recursively n times, resulting in the nth

difference.

46

idivide(A, B, 'ceil') Fractional quotients are rounded toward infinity to the

nearest integers.

mod (X,Y) Modulus after division; returns X - n.*Y where n =

floor(X./Y). If Y is not an integer and the quotient X./Y

is within round off error of an integer, then n is that

integer. The inputs X and Y must be real arrays of the

same size, or real scalars (provided Y ~=0).

Please note:

mod(X,0) is X

mod(X,X) is 0

mod(X,Y) for X~=Y and Y~=0 has the same sign as

Y

rem (X,Y) Remainder after division; returns X - n.*Y where n =

fix(X./Y). If Y is not an integer and the quotient X./Y

is within round off error of an integer, then n is that

integer. The inputs X and Y must be real arrays of the

same size, or real scalars (provided Y ~=0).

Please note that:

rem(X,0) is NaN

rem(X,X) for X~=0 is 0

rem(X,Y) for X~=Y and Y~=0 has the same sign as

X.

round(X) Round to nearest integer; rounds the elements of X

to the nearest integers. Positive elements with a

fractional part of 0.5 round up to the nearest positive

integer. Negative elements with a fractional part of -

0.5 round down to the nearest negative integer.

Relational Operators

Relational operators can also work on both scalar and non-scalar data. Relational

operators for arrays perform element-by-element comparisons between two

arrays and return a logical array of the same size, with elements set to logical 1

(true) where the relation is true and elements set to logical 0 (false) where it is

not.

47

The following table shows the relational operators available in MATLAB:

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

Example

Create a script file and type the following code:

a = 100;

b = 200;

if (a >= b)

max = a

else

max = b

end

When you run the file, it produces following result:

max =

 200

Apart from the above-mentioned relational operators, MATLAB provides the

following commands/functions used for the same purpose:

48

Function Description

eq(a, b) Tests whether a is equal to b

ge(a, b) Tests whether a is greater than or equal to b

gt(a, b) Tests whether a is greater than b

le(a, b) Tests whether a is less than or equal to b

lt(a, b) Tests whether a is less than b

ne(a, b) Tests whether a is not equal to b

isequal Tests arrays for equality

isequaln Tests arrays for equality, treating NaN values as equal

Example

Create a script file and type the following code:

% comparing two values

a = 100;

b = 200;

if (ge(a,b))

max = a

else

max = b

end

% comparing two different values

a = 340;

b = 520;

49

if (le(a, b))

disp(' a is either less than or equal to b')

else

disp(' a is greater than b')

end

When you run the file, it produces the following result:

max =

 200

 a is either less than or equal to b

Logical Operators

MATLAB offers two types of logical operators and functions:

Element-wise - These operators operate on corresponding elements of logical
arrays.

Short-circuit - These operators operate on scalar and logical expressions.

Element-wise logical operators operate element-by-element on logical arrays. The

symbols &, |, and ~ are the logical array operators AND, OR, and NOT.

Short-circuit logical operators allow short-circuiting on logical operations. The

symbols && and || are the logical short-circuit operators AND and OR.

Example

Create a script file and type the following code:

a = 5;

b = 20;

 if (a && b)

 disp('Line 1 - Condition is true');

 end

 if (a || b)

 disp('Line 2 - Condition is true');

50

 end

 % lets change the value of a and b

 a = 0;

 b = 10;

 if (a && b)

 disp('Line 3 - Condition is true');

 else

 disp('Line 3 - Condition is not true');

 end

 if (~(a && b))

 disp('Line 4 - Condition is true');

 end

When you run the file, it produces following result:

Line 1 - Condition is true

Line 2 - Condition is true

Line 3 - Condition is not true

Line 4 - Condition is true

Functions for Logical Operations

Apart from the above-mentioned logical operators, MATLAB provides the following

commands or functions used for the same purpose:

Function Description

and(A, B) Finds logical AND of array or scalar inputs;

performs a logical AND of all input arrays A, B, etc.

and returns an array containing elements set to

either logical 1 (true) or logical 0 (false). An

51

element of the output array is set to 1 if all input

arrays contain a nonzero element at that same

array location. Otherwise, that element is set to 0.

not(A) Finds logical NOT of array or scalar input; performs

a logical NOT of input array A and returns an array

containing elements set to either logical 1 (true) or

logical 0 (false). An element of the output array is

set to 1 if the input array contains a zero value

element at that same array location. Otherwise,

that element is set to 0.

or(A, B) Finds logical OR of array or scalar inputs; performs

a logical OR of all input arrays A, B, etc. and

returns an array containing elements set to either

logical 1 (true) or logical 0 (false). An element of

the output array is set to 1 if any input arrays

contain a nonzero element at that same array

location. Otherwise, that element is set to 0.

xor(A, B) Logical exclusive-OR; performs an exclusive OR

operation on the corresponding elements of arrays

A and B. The resulting element C(i,j,...) is logical

true (1) if A(i,j,...) or B(i,j,...), but not both, is

nonzero.

all(A) Determine if all array elements of array A are

nonzero or true.

If A is a vector, all(A) returns logical 1 (true) if all

the elements are nonzero and returns logical 0

(false) if one or more elements are zero.

If A is a nonempty matrix, all(A) treats the columns

of A as vectors, returning a row vector of logical

1's and 0's.

If A is an empty 0-by-0 matrix, all(A) returns

logical 1 (true).

If A is a multidimensional array, all(A) acts along

the first non-singleton dimension and returns an

array of logical values. The size of this dimension

52

reduces to 1 while the sizes of all other dimensions

remain the same.

all(A, dim) Tests along the dimension of A specified by

scalar dim.

any(A) Determine if any array elements are nonzero; tests

whether any of the elements along various

dimensions of an array is a nonzero number or is

logical 1 (true). The any function ignores entries

that are NaN (Not a Number).

If A is a vector, any(A) returns logical 1 (true) if

any of the elements of A is a nonzero number or is

logical 1 (true), and returns logical 0 (false) if all

the elements are zero.

If A is a nonempty matrix, any(A) treats the

columns of A as vectors, returning a row vector of

logical 1's and 0's.

If A is an empty 0-by-0 matrix, any(A) returns

logical 0 (false).

If A is a multidimensional array, any(A) acts along

the first non-singleton dimension and returns an

array of logical values. The size of this dimension

reduces to 1 while the sizes of all other dimensions

remain the same.

any(A,dim) Tests along the dimension of A specified by

scalar dim.

False Logical 0 (false)

false(n) is an n-by-n matrix of logical zeros

false(m, n) is an m-by-n matrix of logical zeros.

false(m, n, p, ...) is an m-by-n-by-p-by-... array of logical zeros.

53

false(size(A)) is an array of logical zeros that is the same size as

array A.

false(...,'like',p) is an array of logical zeros of the same data type

and sparsity as the logical array p.

ind = find(X) Find indices and values of nonzero elements;

locates all nonzero elements of array X, and

returns the linear indices of those elements in a

vector. If X is a row vector, then the returned

vector is a row vector; otherwise, it returns a

column vector. If X contains no nonzero elements

or is an empty array, then an empty array is

returned.

ind = find(X, k)

ind = find(X, k, 'first')

Returns at most the first k indices corresponding

to the nonzero entries of X. k must be a positive

integer, but it can be of any numeric data type.

ind = find(X, k, 'last') returns at most the last k indices corresponding to

the nonzero entries of X.

[row,col] = find(X, ...) Returns the row and column indices of the nonzero

entries in the matrix X. This syntax is especially

useful when working with sparse matrices. If X is

an N-dimensional array with N > 2, col contains

linear indices for the columns.

[row,col,v] = find(X, ...) Returns a column or row vector v of the nonzero

entries in X, as well as row and column indices. If

X is a logical expression, then v is a logical array.

Output v contains the non-zero elements of the

logical array obtained by evaluating the expression

X.

islogical(A) Determine if input is logical array; returns true if A

is a logical array and false otherwise. It also

returns true if A is an instance of a class that is

derived from the logical class.

54

logical(A) Convert numeric values to logical; returns an array

that can be used for logical indexing or logical

tests.

True Logical 1 (true)

true(n) is an n-by-n matrix of logical ones.

true(m, n) is an m-by-n matrix of logical ones.

true(m, n, p, ...) is an m-by-n-by-p-by-... array of logical ones.

true(size(A)) is an array of logical ones that is the same size as

array A.

true(...,'like', p) is an array of logical ones of the same data type

and sparsity as the logical array p.

Example

Create a script file and type the following code:

a = 60; % 60 = 0011 1100

b = 13; % 13 = 0000 1101

c = bitand(a, b) % 12 = 0000 1100

c = bitor(a, b) % 61 = 0011 1101

c = bitxor(a, b) % 49 = 0011 0001

c = bitshift(a, 2) % 240 = 1111 0000 */

c = bitshift(a,-2) % 15 = 0000 1111 */

When you run the file, it displays the following result:

c =

 12

c =

55

 61

c =

 49

c =

 240

c =

 15

Bitwise Operations

Bitwise operators work on bits and perform bit-by-bit operation. The truth tables

for &, |, and ^ are as follows:

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; Now in binary format they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

MATLAB provides various functions for bit-wise operations like 'bitwise and',

'bitwise or' and 'bitwise not' operations, shift operation, etc.

56

The following table shows the commonly used bitwise operations:

Function Purpose

bitand(a, b) Bit-wise AND of integers a and b

bitcmp(a) Bit-wise complement of a

bitget(a,pos) Get bit at specified position pos, in the integer array a

bitor(a, b) Bit-wise OR of integers a and b

bitset(a, pos) Set bit at specific location pos of a

bitshift(a, k) Returns a shifted to the left by k bits, equivalent to

multiplying by 2k. Negative values of k correspond to

shifting bits right or dividing by 2|k| and rounding to the

nearest integer towards negative infinite. Any overflow bits

are truncated.

bitxor(a, b) Bit-wise XOR of integers a and b

swapbytes Swap byte ordering

Example

Create a script file and type the following code:

a = 60; % 60 = 0011 1100

b = 13; % 13 = 0000 1101

c = bitand(a, b) % 12 = 0000 1100

c = bitor(a, b) % 61 = 0011 1101

c = bitxor(a, b) % 49 = 0011 0001

c = bitshift(a, 2) % 240 = 1111 0000 */

c = bitshift(a,-2) % 15 = 0000 1111 */

57

When you run the file, it displays the following result:

c =

 12

c =

 61

c =

 49

c =

 240

c =

 15

Set Operations

MATLAB provides various functions for set operations, like union, intersection and

testing for set membership, etc.

The following table shows some commonly used set operations:

Function Description

intersect(A,B) Set intersection of two arrays; returns the values

common to both A and B. The values returned are in

sorted order.

intersect(A,B,'rows') Treats each row of A and each row of B as single

entities and returns the rows common to both A and

B. The rows of the returned matrix are in sorted

order.

ismember(A,B) Returns an array the same size as A, containing 1

(true) where the elements of A are found in B.

Elsewhere, it returns 0 (false).

58

ismember(A,B,'rows') Treats each row of A and each row of B as single

entities and returns a vector containing 1 (true)

where the rows of matrix A are also rows of B.

Elsewhere, it returns 0 (false).

issorted(A) Returns logical 1 (true) if the elements of A are in

sorted order and logical 0 (false) otherwise. Input A

can be a vector or an N-by-1 or 1-by-N cell array of

strings. A is considered to be sorted if A and the

output of sort(A) are equal.

issorted(A, 'rows') Returns logical 1 (true) if the rows of two-dimensional

matrix A are in sorted order, and logical 0 (false)

otherwise. Matrix A is considered to be sorted if A and

the output of sortrows(A) are equal.

setdiff(A,B) Sets difference of two arrays; returns the values in A

that are not in B. The values in the returned array are

in sorted order.

setdiff(A,B,'rows') Treats each row of A and each row of B as single

entities and returns the rows from A that are not in

B. The rows of the returned matrix are in sorted

order.

The 'rows' option does not support cell arrays.

setxor Sets exclusive OR of two arrays

union Sets union of two arrays

unique Unique values in array

Example

Create a script file and type the following code:

a = [7 23 14 15 9 12 8 24 35]

b = [2 5 7 8 14 16 25 35 27]

u = union(a, b)

59

i = intersect(a, b)

s = setdiff(a, b)

When you run the file, it produces the following result:

a =

 7 23 14 15 9 12 8 24 35

b =

 2 5 7 8 14 16 25 35 27

u =

 Columns 1 through 11

 2 5 7 8 9 12 14 15 16 23 24

 Columns 12 through 14

 25 27 35

i =

 7 8 14 35

s =

 9 12 15 23 24

	294e9d1e866da8dad2d884536ae9f50426a07c3431afa4d80596f849370331c3.pdf
	294e9d1e866da8dad2d884536ae9f50426a07c3431afa4d80596f849370331c3.pdf
	294e9d1e866da8dad2d884536ae9f50426a07c3431afa4d80596f849370331c3.pdf

