

PW n°04: PN junction diode characteristics

Duration: 1^h30 .

Report prepared by:

Instructions:

- Internal laboratory regulations must be observed.
- You must wear a lab coat. \blacksquare
- Attendance is compulsory and will be monitored. Any unjustified absence or failure to hand \blacksquare in a report will result in a mark of 0/20.
- Have your assemblies checked before connecting the voltage source. \mathbf{u} .
- \mathbf{r} . It is strictly forbidden to move equipment from one station to another. In the event of a breakdown or faulty equipment, contact the teacher.
- The report must be written by a maximum of four students.
- The report must be handed in at the beginning of the next session.
- The report must include the following sections:
	- TP cover page. \mathbf{r}
	- The date of the practical session.
	- Last Name and first name of the main writer.
	- Last Names and first names of the WP participants.
	- Preparation and work in manuscript.

I. Objective of the Experiment

The main objective of this practical work is to study the influence of forward and reverse bias on the current of a PN junction diode and also to plot the current-voltage characteristic of a PN junction diode. current of a PN junction diode and also to plot the current-voltage characteristic of a diode in the forward and reverse directions.

II. Theoretical Background

A diode is an active device with two electrodes, usually called an anode and a cathode. A diode consists of a combination of P-type semiconductors (doped silicon or germanium) on the anode side and N-type semiconductors on the cathode side.

Due to the special properties of the semiconductors, current can only flow through the junction in the direction $P \rightarrow N$.

Figure.1: Structure and symbol of a PN junction diode.

1. Diode polarisation

The current flowing through the diode follows the exponential law of the voltage applied:

$$
I_d = I_s * \left[exp\left(\frac{qV_d}{nKT}\right) - 1 \right] = I_s * \left[exp\left(\frac{V_d}{nV_T}\right) - 1 \right]
$$
 (1)

With:

I_s: is called the reverse saturation current. This is the asymptotic value of the current flowing through the junction in reverse polarisation.

 V_T : the thermodynamic voltage $\left(V_T = \frac{kT}{q}\right)$ $\frac{1}{q}$ 26 m v) at 25°C

q: the charge of the electron $(1.6*10^{-19} \text{ C})$.

- K: Boltzmann constant (1.3806488*10-23 J/°C).
- T: Absolute temperature in Kelvin.

n: Emission coefficient. Depending on the material, it is around 1 for germanium diodes and between 1 and 2 for silicon diodes.

The diode can be polarised in two ways:

1.1. Polarisation in the direct direction (through direction)

Given a circuit containing a variable voltage source and a resistor with a diode in series in series:

Figure.2: Direct polarisation of the diode.

When the anode is connected to the positive $(+)$ side of the power supply (voltage generator) and the cathode is connected to the negative (-) side, the diode is said to be forward biased (figure 2).

A current flows through the circuit when the voltage across the diode is greater than the threshold voltage V_0 (V₀ = 0.5 volts for a silicon diode and V₀ = 0.3 volts for a germanium diode).

This current increases very rapidly with V and is practically limited by the resistor in series with the diode. In series with the diode. We can see that the current I flowing through the diode is related to the voltage V applied to it by equation (1).

In the case shown in figure 2, the diode is biased in the on direction, so:

$$
I_d = I_s * \left[exp\left(\frac{qV_d}{nKT}\right) - 1\right]
$$
 (2)

1.2. Reverse polarisation (blocked direction)

Consider the following circuit:

Figure.3: Reverse polarisation (blocked) of the diode.

If the anode is connected to the minus (-) side of the supply and the cathode to the plus (+) side, the diode is said to be reverse biased (Figure 3).

In the case of Figure .3, the diode is reverse biased and $I_d = I_i$; $V_d = V_i$, so equation (1) becomes:

$$
I_i = I_s * \left[exp\left(\frac{qV_i}{nKT}\right) - 1\right]
$$
 (3)

2. The current-voltage characteristic $I_d = f(V_d)$

Figure.4: Current-voltage characteristics of the diode.

III. Experiment Procedure

1. Personal work

1.1 Using Proteus, make the following assembl:

1.3 Invert the diode to obtain the following circuit:

PW n°04: **PN junction diode characteristics**

Figure.6

1.4 Simulate the installation and complete the table below:

1.4 Plot the following functions on the same graph, using appropriate scales: $I_r = f$

 (V_R) ; $I_d = f(V_d)$; $I_i = f(V_i)$.

2. Field work

2.1. Direct polarisation (through beam)

a. Make the following connection:

Figure.7

b. By varying the voltage generator *E*, record for each value the voltage drop *V^R* across the resistor *R* and the current I_R flowing through it and enter these values in the measurement table.

c. By varying the voltage generator *E*, record for each value the voltage drop *V^d* across the diode and the current I_d flowing through it and enter these values in the measurement table (Table 1).

2.2. Reverse polarisation (blocking direction)

a. Make the following circuit:

PW n°04: **PN junction diode characteristics**

Figure.8

.

b. By varying the voltage generator *E*, record for each value the voltage drop *Vⁱ* across the diode and the current *I_i* flowing through it and enter these values in the measurement table (Table 1).

2.3. Work to be carried out

a. Identify the equipment used in the experiment.

b. Plot on the same graph, using appropriate scales, the following functions

Ir = *f* (V_R); *Id* = *f* (V_d); *I_i* = *f* (V_i).

- c. Determine the slope of the line $I_R = f(V_R)$.
- d. Determine the threshold voltage of the diode and its dynamic resistance.
- e. Find the saturation current I_s of the diode.
- f. Conclusion.