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A‐ Errors, measurements and representation	

1‐	Unit	

 All physical quantities are quantified, these quantities are characterized by units 

that are suitable for their measurements.  

 In the international system (MKSA), we have 7 main units, the rest follows 

from that.  

‐  M               meter (length).                       - N            mole (number of particles) 

- K                kilogram (mass).                    - K            Kelvin (temperature) 

- S                second (time).                        - Cd           Candela (luminous Intensity)     

- A              Ampère (electrical intensity). 

                                                                                   

2‐	Scientific	notation	

When quantifying physical quantities, some of them are very large or too small, for 

this, notation is used to write them. which is called scientific notation 

𝒗.𝟏𝟎𝒏   ൝
∗  𝒗: 𝒓𝒆𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓      𝟏   𝒗  𝟗

∗  𝒏: 𝑰𝒏𝒕𝒆𝒈𝒆𝒓 𝒏𝒖𝒎𝒃𝒆𝒓                     
	

 Example:  

 The earth mass: " 6 followed by 24 zeros "                     𝒎 ൌ 𝟔  𝟏𝟎𝟐𝟒𝒌𝒈 

 The electron mass: " 9.11 preceded by 30 zero "        𝒎 ൌ 𝟗.𝟏𝟏  𝟏𝟎ି𝟑𝟏𝒌𝒈 

3‐	Measurement,	errors	and	significant	figures	

3.1	Measurements	

There are two types of measures 



a‐	Direct	measurements	

This is the operation of reading or sampling directly from the measuring instrument 

(length, time, current, ...). 

b‐	Indirect	measurements	

The desired quantity is expressed mathematically as a function of other quantities 

measured directly (area, volume, density, …) 

3.2	Errors	

a‐	Notions	of	error	and	uncertainty	

- Error:  

Is the difference between the real and measured value of the physical quantity.            

This difference can be positive or negative. 

There are two types of errors: 

- systematic errors:  

Those repeated each time in the same way (error of the instrument, ...)  

- Incidental errors:  

Those that appear each time but in a random or unpredictable way (reading, 

temperature change, ...) 

 - Uncertainty: is the maximum absolute value that the error can take. 

b‐	Determination	of	uncertainty	

- If "𝒙" is the real value of the physical quantity, while the measured value of the same 

quantity is "𝒙𝟎", then the error is:   

𝒆 ൌ  𝒙 െ 𝒙𝟎	

Note: The error may be negative or positive ሺ𝒆 ൏ 0 𝑜𝑢 𝑒  0 ሻ 

- The absolute value of the error is: the absolute error 

𝜹𝒙 ൌ |𝒆| ൌ  |𝒙 െ 𝒙𝟎|	

- The absolute uncertainty is given by: 



∆𝒙 ൌ 𝒎𝒂𝒙ሺ𝜹𝒙ሻ 

Note: we always have     ∆𝒙  𝜹𝒙 

 If the error is positive ( 𝒆  0ሻ : 

|𝒙 െ 𝒙𝟎| ൌ 𝒙 െ 𝒙𝟎    ⟹  ∆𝒙  𝜹𝒙 ൌ  𝒙 െ 𝒙𝟎     ⟹ 𝒙  𝒙𝟎  ∆𝒙 	

 If the error is negative ( 𝒆 ൏ 0ሻ : 

|𝒙 െ 𝒙𝟎| ൌ െሺ𝒙 െ 𝒙𝟎ሻ   ⟹  ∆𝒙  𝜹𝒙 ൌ  𝒙𝟎 െ 𝒙    ⟹ 𝒙  𝒙𝟎 െ ∆𝒙 	

 The real value can finally be written: 

																																																																																					𝒙 ൌ 𝒙𝟎 േ ∆𝒙	

 Determination of uncertainty 

- If the quantity is measured directly, the error made is on the smallest digit of 

the instrument. (Graduated rule in millimeters: the error made is in the mm). 

- If the quantity is given by indirect measurement, the error is expressed as a     

  function of the errors of the quantities measured directly (𝑥 ൌ 𝐹ሺ𝑎, 𝑏, 𝑐. . ሻ 

 * Sum: 

𝒙 ൌ 𝒂  𝒃  𝒄 ⋯	

∆𝒙 ൌ ∆𝒂  ∆𝒃  ∆𝒄 ⋯	

* Product: 

𝒙𝟎 ൌ 𝒂.𝒃. 𝒄	

∆𝒙 ൌ ሺ𝒃. 𝒄ሻ∆𝒂  ሺ𝒂. 𝒄ሻ∆𝒃  ሺ𝒂.𝒃ሻ∆𝒄	

              And    
∆𝒙

𝒙𝟎
ൌ

∆𝒂

𝒂


∆𝒃

𝒃


∆𝒄

𝒄
⟹ ∆𝒙 ൌ ቀ

∆𝒂

𝒂


∆𝒃

𝒃


∆𝒄

𝒄
ቁ 𝒙𝟎              

            finally:         𝒙 ൌ 𝒙𝟎 േ ∆𝒙 

	

 

Examples: 

1°- Perimeter of a rectangle: 𝑳 is the length and 𝒍 is the width 

𝑷 ൌ 𝟐. ሺ𝑳  𝒍ሻ ⟹ ∆𝑷 ൌ 𝟐ሺ∆𝑳  ∆𝒍ሻ	

2°- Surface of this rectangle:  



𝑺 ൌ 𝑳. 𝒍     ⟹       ∆𝑺 ൌ 𝒍.∆𝑳  𝑳.∆𝒍      ⟹           
∆𝑺
𝑺 ൌ

∆𝑳
𝑳 

∆𝒍
𝒍
	

⟹			∆𝑺 ൌ ቀ∆𝑳
𝑳
 ∆𝒍

𝒍
ቁ 𝑺 

4‐	Signifiant	figures	

During the measurement, we write the quantified quantity in scientific notation, the 

figures that express this quantity are said to be significant. 

Note: "13" and "13.0" have the same value, but their meanings are different i.e., the 

error of the second is 10 times less than the first  

Generally: 

 Non-zero figures are always significant (3.1415        5 significant digits).  

 All zeros that come at the end are significant (0.4500         4 significant digits). 

 The zeros between the significant digits are significant (0.104       3 significant 

digits).  

 The zeros used to move the comma are not meaningful 

(0.00125=1.25 10-5            3 significant digits).  

Some rules on significant numbers	

5‐	Data	and	graphs	

5.1‐	Data	

These are the values that a physical quantity can take in different states 

5.2‐	Graphs	

The dependence that exists between two or more physical quantities is expressed by 

a function that can be represented by a curve or a graph.  

There are several types of functions: 

- Linear functions: 

   𝒚 ൌ 𝒂𝒙  𝒃 , express the dependence between 𝑦 𝑒𝑡 𝑥. 

‐ Quadratic functions: 



 𝒚 ൌ 𝒂𝒙𝟐  𝒃𝒙  𝒄 (Parabola of the 2nd order as well as that of the 3rd order and so on) 

‐ Inverse functions: 

      𝒚 ൌ 𝒌

𝒙
	

‐ Exponential and logarithmic functions: 

   𝒚 ൌ 𝒂𝒆𝒖ሺ𝒙ሻ, 𝒚 ൌ 𝐥𝐧൫𝒗ሺ𝒙ሻ൯     𝑜ù 𝒖ሺ𝒙ሻ 𝑒𝑡 𝒗ሺ𝒙ሻ are any numeric functions 

‐ Circular or trigonometric functions: 

   𝒚 ൌ 𝒂. 𝒔𝒊𝒏ሾ𝒖ሺ𝒙ሻሿ , 𝒚 ൌ 𝒃. 𝒄𝒐𝒔ሾ𝒖ሺ𝒙ሻሿ, 𝒚 ൌ 𝒕𝒈ሾ𝒖ሺ𝒙ሻሿ… 

‐ Hyperbolic functions: 

   𝒚 ൌ 𝒂. 𝒔𝒊𝒏𝒉ሾ𝒖ሺ𝒙ሻሿ , 𝒚 ൌ 𝒃. 𝒄𝒐𝒔𝒉ሾ𝒖ሺ𝒙ሻሿ, 𝒚 ൌ 𝒕𝒈𝒉ሾ𝒖ሺ𝒙ሻሿ… 

‐ Special functions. 

   



B‐ Vectors	

1‐	Notion	of	vector	

1.1‐	Definition:	

A vector is a mathematical entity that represents an element of a vector space 𝔼ଷ 

associated with an affine space (point), ℝଷ where a direction, modulus, and point of 

application are defined. 

‐ "𝑶" point of application 

‐ "∆"  line of action 

‐ In the orthonormal basisሺଙ⃗, ଚ⃗,𝒌ሬሬ⃗ ሻ ,) and in Euclidean geometry: 

   The modulus of the vector 𝑽ሬሬ⃗   is: 

𝑽ሬሬ⃗ ൌ |𝑶𝑨|ሬሬሬሬሬሬሬሬሬ⃗ ൌ ඥ𝑥ଶ  𝑦ଶ  𝑧ଶ 

‐ From O to A is the direction 

1.2‐Types	of	vectors	

1.2.1‐	Free	vector	

It is a vector where the application point can be transferred to any point in space. 

1.2.2‐	Sliding	vector	

It is a vector where the application point can move along its line of action 

1.2.3‐	Bound	vector	

It is a vector where the point of application is fixed and defined by the coordinates of 

its origin 

 

 

      Free vector                           Sliding vector                                Bound vector  

𝐴 
𝑉ሬ⃗  

ሺ∆ሻ 

𝑂 

𝑉ሬ⃗ଵ  𝑉ሬ⃗ଵ 

𝑉ሬ⃗ଷ 

𝑉ሬ⃗ ଷ 𝑂 

𝑉ሬ⃗ଶ 

�⃗�ଶ 

ሺ∆ሻ  



2‐	Operation	on	vectors	

2.1‐	Sum	of	vectors	(resultant):		

Relative to an orthonormalሺଙ⃗, ଚ⃗,𝒌ሬሬ⃗ ሻ basis, the sum of two vectors is a vector, where the 

components are added two to two respectively 

𝑽ሬሬ⃗ 𝟏 ൌ 𝒙𝟏ଙ⃗  𝒚𝟏ଚ⃗  𝒛𝟏𝒌ሬሬ⃗            and      𝑽ሬሬ⃗ 𝟐 ൌ 𝒙𝟐ଙ⃗  𝒚𝟐ଚ⃗  𝒛𝟐𝒌ሬሬ⃗ 	

																																			⟹							𝑽ሬሬ⃗ ൌ 𝑽ሬሬ⃗ 𝟏  𝑽ሬሬ⃗ 𝟐 ൌ ሺ𝒙𝟏  𝒙𝟐ሻଙ⃗  ሺ𝒚𝟏  𝒚𝟐ሻଚ⃗  ሺ𝒛𝟏  𝒛𝟐ሻ𝒌ሬሬ⃗ 	

	

 

 

 

Note:  

For multiple vectors, the sum of the respective components added together represents the 

components of the resultant vector. 

𝑽ሬሬ⃗ ൌ 𝑽ሬሬ⃗ 𝟏  𝑽ሬሬ⃗ 𝟐  ⋯ 𝑽ሬሬ⃗ 𝒏 ൌ ሺ𝒙𝟏  𝒙𝟐  ⋯ 𝒙𝒏ሻଙ⃗  ሺ𝒚𝟏  𝒚𝟐  ⋯ 𝒚𝒏ሻଚ⃗  ሺ𝒛𝟏  𝒛𝟐  ⋯ 𝒛𝒏ሻ𝒌ሬሬ⃗ 	

𝑽ሬሬ⃗ ൌ 𝒙ଙ⃗  𝒚ଚ⃗  𝒛𝒌ሬሬ⃗ 	

	

	

	

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝒙 ൌ𝒙𝒍

𝒏

𝒍ୀ𝟏

𝒚 ൌ𝒚𝒍

𝒏

𝒍ୀ𝟏

𝒛 ൌ𝒛𝒍

𝒏

𝒍ୀ𝟏

	

𝑉ሬ⃗ଵ 

𝑉ሬ⃗ଶ 

𝑉ሬ⃗ 

𝑉ଵሬሬሬ⃗  

𝑽𝟐ሬሬሬሬ⃗  
𝑽ሬሬ⃗ 𝟐 

𝑽ሬሬ⃗  

𝑽ሬሬ⃗ 𝟏 



2.2‐	Product	of	vectors:	

								a- Scalar product and projection: 

The scalar product of two vectors 𝑽ሬሬ⃗ ଵ and 𝑽ሬሬ⃗ 𝟐  , is a scalar denoted 𝑽ሬሬ⃗ 𝟏 ∘ 𝑽ሬሬ⃗ 𝟐 , which is 

equal to the sum of the products of the corresponding components taken pairwise. 

𝑽ሬሬ⃗ 𝟏 ൌ 𝒙𝟏ଙ⃗  𝒚𝟏ଚ⃗  𝒛𝟏𝒌ሬሬ⃗        and        𝑽ሬሬ⃗ 𝟐 ൌ 𝒙𝟐ଙ⃗  𝒚𝟐ଚ⃗  𝒛𝟐𝒌ሬሬ⃗  

                                     ⟹                𝑽 ൌ  𝑽ሬሬ⃗ 𝟏 ∘ 𝑽ሬሬ⃗ 𝟐 ൌ ሺ𝒙𝟏.𝒙𝟐ሻ  ሺ𝒚𝟏.𝒚𝟐ሻ  ሺ𝒛𝟏. 𝒛𝟐ሻ 

Note: 

- For the unit vectors of the orthonormal basis, we have: 

ቊ
ଙ⃗ ∘ ଙ⃗ ൌ ଚ⃗ ∘ ଚ⃗ ൌ 𝒌ሬሬ⃗ ∘ 𝒌ሬሬ⃗ ൌ 𝟏

ଙ⃗ ∘ ଚ⃗ ൌ ଙ⃗ ∘ 𝒌ሬሬ⃗ ൌ ଚ⃗ ∘ 𝒌ሬሬ⃗ ൌ 𝟎
 

- The square of the modulus of the vector is:  

𝑽ሬሬ⃗ ∘ 𝑽ሬሬ⃗ ൌ ሺ𝒙.𝒙ሻ  ሺ𝒚.𝒚ሻ  ሺ𝒛. 𝒛ሻ ൌ 𝒙𝟐  𝒚𝟐  𝒛𝟐 ൌ 𝑽𝟐 

⟹ ห𝑽ሬሬ⃗ ห ൌ 𝑽 ൌ ඥ𝒙𝟐  𝒚𝟐  𝒛𝟐	

- The scalar product can also be defined as follows: 

𝑽ሬሬ⃗ 𝟏 ∘ 𝑽ሬሬ⃗ 𝟐 ൌ ห𝑽ሬሬ⃗ 𝟏ห. ห𝑽ሬሬ⃗ 𝟐ห 𝒄𝒐𝒔൫𝑽ሬሬ⃗ 𝟏,𝑽ሬሬ⃗ 𝟐൯ ൌ ห𝑽ሬሬ⃗ 𝟏ห. ห𝑽ሬሬ⃗ 𝟐ห𝒄𝒐𝒔 ሺ𝜽ሻ	

- The square of the modulus of a vector can be given by:  

𝑽ሬሬ⃗ 𝟏 ∘ 𝑽ሬሬ⃗ 𝟏 ൌ ห𝑽ሬሬ⃗ 𝟏ห. ห𝑽ሬሬ⃗ 𝟐ห 𝒄𝒐𝒔൫𝑽ሬሬ⃗ 𝟏,𝑽ሬሬ⃗ 𝟏൯ ൌ 𝑽𝟏
𝟐	

Properties: 

- The scalar product is commutative 

𝑽ሬሬ⃗ 𝟏 ∘ 𝑽ሬሬ⃗ 𝟐 ൌ 𝑽ሬሬ⃗ 𝟐 ∘ 𝑽ሬሬ⃗ 𝟏	

 

- The scalar product is distributive with respect to addition 

𝑽ሬሬ⃗ 𝟏 ∘ ൫𝑽ሬሬ⃗ 𝟐  𝑽ሬሬ⃗ 𝟑൯ ൌ 𝑽ሬሬ⃗ 𝟏 ∘ 𝑽ሬሬ⃗ 𝟐  𝑽ሬሬ⃗ 𝟏 ∘ 𝑽ሬሬ⃗ 𝟑	

- The scalar product geometrically represents the projection of one vector onto 

the direction of another 

𝑉ሬ⃗ଵ 

�⃗�ଶ 
𝜃 



    ൞
𝑽ሬሬ⃗ ∘ ଙ⃗ ൌ ሺ𝒙ଙ⃗  𝒚ଚ⃗  𝒛𝒌ሬሬ⃗ ሻ ∘ ଙ⃗ ൌ 𝒙

𝑽ሬሬ⃗ ∘ ଚ⃗ ൌ ሺ𝒙ଙ⃗  𝒚ଚ⃗  𝒛𝒌ሬሬ⃗ ሻ ∘ ଚ⃗ ൌ 𝒚

𝑽ሬሬ⃗ ∘ 𝒌ሬሬ⃗ ൌ ሺ𝒙ଙ⃗  𝒚ଚ⃗  𝒛𝒌ሬሬ⃗ ሻ ∘ 𝒌ሬሬ⃗ ൌ 𝒛

	

- The scalar product is zero if: 

ห𝑽ሬሬ⃗ 𝟏ห ൌ 𝟎, ห𝑽ሬሬ⃗ 𝟐ห ൌ 0 or 𝑽ሬሬ⃗ 𝟏 ⊥ 𝑽ሬሬ⃗ 𝟐 

												b‐	Vector	product	and	oriented	surface:	

The cross product of two vectors, 𝑽ሬሬ⃗ 𝟏 and 𝑽ሬሬ⃗ 𝟐, is a vector denoted  𝑽ሬሬ⃗ 𝟏 ∧ 𝑽ሬሬ⃗ 𝟐 and given by:  

𝑽ሬሬ⃗ 𝟏 ∧ 𝑽ሬሬ⃗ 𝟐 ൌ ተ
ተ

ଙ⃗ ଚ⃗ 𝒌

𝒙𝟏 𝒚𝟏 𝒛𝟏

𝒙𝟐 𝒚𝟐 𝒛𝟐

ተ
ተ
ൌ ሺ𝒚𝟏. 𝒛𝟐 െ 𝒚𝟐. 𝒛𝟏ሻଙ⃗ െ ሺ𝒙𝟏. 𝒛𝟐 െ 𝒙𝟐. 𝒛𝟏ሻଚ⃗  ሺ𝒙𝟏.𝒚𝟐 െ 𝒙𝟐.𝒚𝟏ሻ𝒌ሬሬ⃗  

Also defined as follows: 

𝑽ሬሬ⃗ 𝟏 ∧ 𝑽ሬሬ⃗ 𝟐 ൌ ห𝑽ሬሬ⃗ 𝟏ห. ห𝑽ሬሬ⃗ 𝟐ห 𝐬𝐢𝐧൫𝑽ሬሬ⃗ 𝟏,𝑽ሬሬ⃗ 𝟐൯ 𝒖ሬሬ⃗ ൌ ห𝑽ሬሬ⃗ 𝟏ห. ห𝑽ሬሬ⃗ 𝟐ห 𝐬𝐢𝐧ሺ𝜽ሻ𝒖ሬሬ⃗ 	

𝒖ሬሬ⃗   : is a unit vector 

𝒖ሬሬ⃗ ⊥ ሺ𝑽ሬሬ⃗ 𝟏𝒆𝒕 𝑽ሬሬ⃗ 𝟐ሻ 

 

Properties: 

- The vector product is noncommutative (anticommutative) 

𝑽ሬሬ⃗ 𝟏 ∧ 𝑽ሬሬ⃗ 𝟐 ൌ െ𝑽ሬሬ⃗ 𝟐 ∧ 𝑽ሬሬ⃗ 𝟏	

- The vector product is distributive with respect to the addition 

𝑽ሬሬ⃗ 𝟏 ∧ ൫𝑽ሬሬ⃗ 𝟐  𝑽ሬሬ⃗ 𝟑൯ ൌ 𝑽ሬሬ⃗ 𝟏 ∧ 𝑽ሬሬ⃗ 𝟐  𝑽ሬሬ⃗ 𝟏 ∧ 𝑽ሬሬ⃗ 𝟑 

- The resulting vector of the cross product is always perpendicular to the operand 

vectors. 

- The vector product obeys the rule of circular permutation 

൞
ଙ⃗ ∧ ଚ⃗ ൌ 𝒌ሬሬ⃗

ଚ⃗ ∧ 𝒌ሬሬ⃗ ൌ ଙ⃗

𝒌ሬሬ⃗ ∧ ଙ⃗ ൌ ଚ⃗

                  and  ଙ⃗ ∧ ଙ⃗ ൌ ଚ⃗ ∧ ଚ⃗ ൌ 𝒌ሬሬ⃗ ∧ 𝒌ሬሬ⃗ ൌ 𝟎	

𝑢ሬ⃗  

𝑉ሬ⃗ଵ ∧ 𝑉ሬ⃗ ଶ 

𝜽  𝑉ሬ⃗ଵ 

𝑉ሬ⃗ ଶ 



- The vector product is zero if: 

                                                    ห𝑽ሬሬ⃗ 𝟏ห ൌ 𝟎 ,ห𝑽ሬሬ⃗ 𝟐ห ൌ 0 or 𝑽ሬሬ⃗ 𝟏 ∥ 𝑽ሬሬ⃗ 𝟐 

- The cross product geometrically represents the area of the oriented surface 

formed by operand vectors.  

								c‐	Triple	product:	

 The scalar triple product 

  The scalar triple product, is a scalar defined as: 

                                𝑽ሬሬ⃗ 𝟏 ∘ ൫𝑽ሬሬ⃗ 𝟐 ∧ 𝑽ሬሬ⃗ 𝟑൯ ൌ 𝑾	

 

Properties:  

- The scalar triple product is invariant by cyclic permutation 

𝑽ሬሬ⃗ 𝟏 ∘ ൫𝑽ሬሬ⃗ 𝟐 ∧ 𝑽ሬሬ⃗ 𝟑൯ ൌ 𝑽ሬሬ⃗ 𝟑 ∘ ൫𝑽ሬሬ⃗ 𝟏 ∧ 𝑽ሬሬ⃗ 𝟐൯ ൌ 𝑽ሬሬ⃗ 𝟐 ∘ ൫𝑽ሬሬ⃗ 𝟑 ∧ 𝑽ሬሬ⃗ 𝟏൯	

- The scalar triple product is zero if:  

               ห𝑽ሬሬ⃗ 𝟏ห ൌ 𝟎 ห𝑽ሬሬ⃗ 𝟐ห ൌ 𝟎ห𝑽ሬሬ⃗ 𝟑ห ൌ 𝟎,       or 𝑽ሬሬ⃗ 𝟏,𝑽ሬሬ⃗ 𝟐 and 𝑽ሬሬ⃗ 𝟑 are coplanar 

- Geometrically, the scalar triple product represents the volume formed by the 

operand vectors.  

 The vector triple product 

 The vector triple product is a vector defined by the following relation: 

𝑽ሬሬ⃗ 𝟏 ∧ ൫𝑽ሬሬ⃗ 𝟐 ∧ 𝑽ሬሬ⃗ 𝟑൯ ൌ ሺ𝑽ሬሬ⃗ 𝟏 ∘ 𝑽ሬሬ⃗ 𝟑ሻ𝑽ሬሬ⃗ 𝟐 െ ሺ𝑽ሬሬ⃗ 𝟏 ∘ 𝑽ሬሬ⃗ 𝟐ሻ𝑽ሬሬ⃗ 𝟑 ൌ 𝜶𝑽ሬሬ⃗ 𝟐  𝜷𝑽ሬሬ⃗ 𝟑 ൌ 𝑾ሬሬሬሬ⃗ 	

Remark:  

             The multiplication of a vector by a scalar is a vector (it is a homothety) 

𝝀𝑽ሬሬ⃗ ൌ 𝑾ሬሬሬሬ⃗ 	

	

𝑽ሬሬ⃗ 𝟐 ∧ 𝑽ሬሬ⃗ 𝟑 

𝑽ሬሬ⃗ 𝟏 

𝑽ሬሬ⃗ 𝟐 

𝑽ሬሬ⃗ 𝟑 𝒉 



3‐	Rule	of	sines	

							𝑽ሬሬ⃗ ൌ   𝑽ሬሬ⃗ 𝟏  𝑽ሬሬ⃗ 𝟐	

					ห𝑽ሬሬ⃗ ห ൌ ටሺ𝑽ሬሬ⃗ 𝟏  𝑽ሬሬ⃗ 𝟐ሻ ∘ ሺ𝑽ሬሬ⃗ 𝟏  𝑽ሬሬ⃗ 𝟐ሻ ൌ ඥ|𝑽𝟏|  |𝑽𝟐|  𝟐|𝑽𝟏| ∘ |𝑽𝟐|	

	

	

	

	

	

‐ The triangles 𝑨𝑩𝑪 and 𝑶𝑩𝑪 give: 

൞
𝒔𝒊𝒏ሺ𝜶ሻ ൌ

𝑩𝑪
𝑶𝑪

          

𝒔𝒊𝒏ሺ𝝅 െ 𝜷ሻ ൌ
𝑩𝑪
𝑨𝑪

         ⟹       𝑶𝑪. 𝒔𝒊𝒏ሺ𝜶ሻ ൌ 𝑨𝑪. 𝒔𝒊𝒏ሺ𝜷ሻ    ⟹   
ቚ𝑽ሬሬሬ⃗ ቚ

𝒔𝒊𝒏ሺ𝜷ሻ
ൌ

ቚ𝑽ሬሬሬ⃗ 𝟐ቚ
𝒔𝒊𝒏ሺ𝜶ሻ

  	

‐ The triangles 𝑶𝑨𝑫 and give:𝑨𝑪𝑫 

൞
𝐬𝐢𝐧ሺ𝜶ሻ ൌ

𝑨𝑫
𝑶𝑨

𝐬𝐢𝐧ሺ𝜸ሻ ൌ
𝑨𝑫
𝑨𝑪

             ⟹    𝑶𝑨. 𝐬𝐢𝐧ሺ𝜶ሻ ൌ 𝐀𝐂. 𝐬𝐢𝐧ሺ𝜸ሻ    ⟹   
ห𝑽ሬሬ⃗ 𝟏ห
𝒔𝒊𝒏ሺ𝜸ሻ

ൌ
ห𝑽ሬሬ⃗ 𝟐ห

𝒔𝒊𝒏ሺ𝜶ሻ
	

4‐	Derived	from	a	vector	

In a Cartesian orthonormal basis, the vector is expressed 𝒂ሬሬ⃗  by: 

𝒂ሬሬ⃗ ൌ 𝒙ଙ⃗  𝒚ଚ⃗  𝒛𝒌ሬሬ⃗ 	

If it is variable, its derivative comes down to differentiating these components. 

𝒅𝒂ሬሬ⃗
𝒅𝒕

ൌ
𝒅𝒙
𝒅𝒕

ଙ⃗ 
𝒅𝒚
𝒅𝒕

ଚ⃗ 
𝒅𝒛
𝒅𝒕

𝒌ሬሬ⃗ 	

 

‐ The derivative of the sum of the vectors is equal to the sum of the derivatives of 

these vectors 

𝐷 

𝐶 

𝑂 
𝐵 𝐴 𝑉ሬ⃗ଵ 

𝑉ሬ⃗ଶ 

𝛾 

𝛼 
𝛽 �⃗� 

⟹  
ห𝑽ሬሬ⃗ ห

𝒔𝒊𝒏ሺ𝜷ሻ
ൌ

ห𝑽ሬሬ⃗ 𝟐ห

𝒔𝒊𝒏ሺ𝜶ሻ
ൌ

ห𝑽ሬሬ⃗ 𝟏ห

𝒔𝒊𝒏ሺ𝜸ሻ



𝒅ሺ𝒂ሬሬ⃗  𝒃ሬሬ⃗ ሻ
𝒅𝒕

ൌ
𝒅𝒂ሬሬ⃗
𝒅𝒕


𝒅𝒃ሬሬ⃗

𝒅𝒕
	

‐ The derivative of the product of the vectors is equal to 

𝒅ሺ𝒂ሬሬ⃗ ∘ 𝒃ሬሬ⃗ ሻ
𝒅𝒕

ൌ 𝒃ሬሬ⃗ ∘
𝒅𝒂ሬሬ⃗
𝒅𝒕

 𝒂ሬሬ⃗ ∘
𝒅𝒃ሬሬ⃗

𝒅𝒕
                      𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡	

𝒅ሺ𝒂ሬሬ⃗ ∧ 𝒃ሬሬ⃗ ሻ
𝒅𝒕

ൌ 𝒂ሬሬ⃗ ∧
𝒅𝒃ሬሬ⃗

𝒅𝒕

𝒅𝒂ሬሬ⃗
𝒅𝒕

  ∧  𝒃ሬሬ⃗                   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑟𝑜𝑠𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 

  



I ‐ Coordinate systems	

1‐	Introduction	

‐ Two vectors are linearly dependent if one vector can be expressed in terms of 

the other. 

𝒃ሬሬ⃗ ൌ 𝝀𝒂ሬሬ⃗                                                  where"𝝀"  is a real 

 

‐ Two vectors are linearly independent if any of the vectors cannot be expressed 

in terms of the other. 

Remarks:  

‐ In a plane, a vector can be expressed as a linear combination of two linearly 

independent vectors.                            

𝒄ሬ⃗ ൌ 𝜶𝒂ሬሬ⃗  𝜷𝒃ሬሬ⃗  

‐ The case can be generalized to three 

dimensions and more 

𝒗ሬሬ⃗ ൌ 𝜶𝒂ሬሬ⃗  𝜷𝒃ሬሬ⃗  𝜸𝒄ሬ⃗  ⋯	

‐ The three vectors 𝒂ሬሬ⃗ ,𝒃ሬሬ⃗ , 𝒄ሬ⃗  form a basis if they are linearly independent. 

 If they are pairwise orthogonal, they form an orthogonal basis. 

 If they are normalized, the basis is called orthonormal. 

  

𝝅 

𝒄ሬ⃗  

𝒂ሬሬ⃗  

𝒃ሬሬ⃗  

𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑙𝑖𝑛𝑒𝑎𝑖𝑟𝑙𝑦 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑡 

𝒂ሬሬ⃗  

𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑡 



2‐	Representation	in	the	plan	

					2.1‐	Cartesian	(Rectangular)coordinates	ሾሺ𝒙,𝒚ሻ → ሺଙ⃗, ଚ⃗ሻሿ	

In the plane we choose an orthonormal basis ሺଙ⃗, ଚ⃗ሻ where the coordinates of the point 

"𝑴" are ሺ𝒙,𝒚ሻ 

Location of "𝑴" : 

The point 𝑴 position is given by the vector 𝑶𝑴ሬሬሬሬሬሬሬ⃗  such that: 

𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ ൌ 𝒙ଙ⃗  𝒚ଚ⃗ 

The module is: 

                                                        ห𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห ൌ |𝒓ሬ⃗ | ൌ ඥ𝒙𝟐  𝒚𝟐 

2.2‐	Polar	coordinatesሾሺ𝝆,𝜽ሻ → ൫𝒖ሬሬ⃗ 𝝆,𝒖ሬሬ⃗ 𝜽൯ሿ	

If we choose a local base ൫𝒖ሬሬ⃗ 𝝆,𝒖ሬሬ⃗ 𝜽൯. "𝑶"  taken arbitrarily as the pole. The unit vector  𝒖ሬሬ⃗ 𝝆  

is oriented along the vector 𝑶𝑴ሬሬሬሬሬሬሬ⃗ . The direction passing through the pole "𝑶" is the polar 

axis, taken as a reference to define the angle (coordinate) "𝜽".  The other coordinate "𝝆" 

is the magnitude of the vector 𝑶𝑴ሬሬሬሬሬሬሬ⃗ . 

𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝝆𝒖ሬሬ⃗ 𝝆 

The module is: 

ห𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห ൌ 𝝆 

      

							2.3‐	Intrinsic	coordinates		ሾሺ𝒖ሬሬ⃗ 𝑵,𝒖ሬሬ⃗ 𝑻ሻሿ	

We cannot represent the point in the intrinsic coordinate system 

unless we know the curve "𝓒" of the trajectory, which is taken as the 

axis. Equipped with an origin, the distance 𝒐𝑴  is denoted as "𝒔". 

𝒐𝑴 ൌ 𝒔   and   𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ 	

𝑴 

ଙ⃗ 

ଚ⃗ 

𝒚 

𝒙 
𝑶 

𝒖ሬሬ⃗ 𝑵 𝒖ሬሬ⃗ 𝑻

𝜽 

𝒔 

𝓒 𝑴 

𝑶 

𝒐 

𝒓ሬ⃗  

𝒚 

𝒙 

𝜽 

𝒖ሬሬ⃗ 𝝆 

𝒖ሬሬ⃗ 𝜽 

Polar axis 
𝑶 

𝝆 ൌ ห𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห  𝑴 



2.4‐	Relationship	between	the	coordinates	of	the	different	systems	

            ‐ In Cartesian coordinates:   𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ ൌ 𝒙ଙ⃗  𝒚ଚ⃗	

            ‐ In Polar coordinates:   𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝝆𝒖ሬሬ⃗ 𝝆  	

            ‐ If we make a choice such that the polar axis is  

           superimposed with the 𝒐𝒙ሬሬሬሬሬ⃗  axis 	

               We will have:    

ቊ
𝒖ሬሬ⃗ 𝝆 ൌ 𝒄𝒐𝒔ሺ𝜽ሻ ଙ⃗  𝒔𝒊𝒏ሺ𝜽ሻଚ⃗  

 𝒖ሬሬ⃗ 𝜽 ൌ െ𝒔𝒊𝒏ሺ𝜽ሻ ଙ⃗  𝒄𝒐𝒔ሺ𝜽ሻଚ⃗
	

															Then:																				𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ ൌ 𝒙ଙ⃗  𝒚ଚ⃗ ൌ 𝝆𝒖ሬሬ⃗ 𝝆 ൌ 𝝆𝒄𝒐𝒔ሺ𝜽ሻ ଙ⃗  𝝆 𝒔𝒊𝒏ሺ𝜽ሻ ଚ⃗	

              By comparison we will get: 

൜
𝒙 ൌ 𝝆 𝒄𝒐𝒔𝜽
𝒚 ൌ 𝝆𝒔𝒊𝒏𝜽     ⟺     ቊ𝝆 ൌ ඥ𝒙𝟐  𝒚𝟐     

𝜽 ൌ 𝒂𝒓𝒄𝒕𝒈ሺ𝒚 𝒙⁄ ሻ
 

Note:  

Polar coordinates and intrinsic coordinates should not be merge (confused). 

3‐	Representation	in	space	

					3.1‐	Cartesian	(Rectangular)coordinates	ሾሺ𝒙,𝒚, 𝒛ሻ → ൫ଙ⃗, ଚ⃗,𝒌ሬሬ⃗ ൯ሿ	

In space, the location of the point "𝑴" is expressed 

by the ሺ𝒙,𝒚, 𝒛ሻ coordinates in an orthonormal basis 

൫ଙ⃗, ଚ⃗,𝒌ሬሬ⃗ ൯.  in such a way that: 

𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ ൌ 𝒙ଙ⃗  𝒚ଚ⃗  𝒛𝒌ሬሬ⃗  

𝑶𝑴ሬሬሬሬሬሬሬ⃗  : is the position vector of the point 𝑴 

 The module is: 

ห𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห ൌ |𝒓ሬ⃗ | ൌ ඥ𝒙𝟐  𝒚𝟐  𝒛𝟐	

	

𝑶 

𝒖ሬሬ⃗ 𝝆 

 Polar axis ଙ⃗ 

𝒙 

𝑶 

𝒚 

𝜽 

𝝆 
𝑴 

𝒖ሬሬ⃗ 𝜽 

ଚ⃗ 

𝒛 

𝒚 

𝑴 

ଚ⃗ 𝒌ሬሬ⃗  



𝒙 : is the projection of 𝑶𝑴ሬሬሬሬሬሬሬ⃗  on the direction ଙ⃗ 	

𝒚 : is the projection of 𝑶𝑴ሬሬሬሬሬሬሬ⃗  on the direction ଚ⃗ 

𝒛 : is the projection of 𝑶𝑴ሬሬሬሬሬሬሬ⃗  on the direction 𝒌ሬሬ⃗  

				3.2‐	Coordinates	cylindrical	ሾሺ𝝆,𝜽, 𝒛ሻ → ൫𝒖ሬሬ⃗ 𝝆,𝒖ሬሬ⃗ 𝜽,𝒌ሬሬ⃗ ൯ሿ							

To locate a point "𝑴"  in space, instead of using a Cartesian 

system, other systems can be used. Among these, the cylindrical 

system. In this system, we imagine that point  "𝑴"  is on the 

surface of a cylinder with axis 𝑶𝒁ሬሬሬሬሬሬ⃗ , radius 𝝆, and "some" base.    

The projection of 𝑶𝑴ሬሬሬሬሬሬሬ⃗  , on the base of the cylinder is located by 

ሺ𝝆,𝜽ሻ.	

                                  So          		𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ ൌ 𝝆𝒖ሬሬ⃗ 𝝆  𝒛𝒌ሬሬ⃗  

                                And        ห𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห ൌ |𝒓ሬ⃗ | ൌ ඥ𝝆𝟐  𝒛𝟐	

				

					3.3‐	Spherical	coordinates		ሾሺ𝒓,𝜽,𝝋ሻ → ൫𝒖ሬሬ⃗ 𝒓,𝒖ሬሬ⃗ 𝜽,𝒖ሬሬ⃗ 𝝋൯ሿ	

Another system allows us to locate a point "𝑴" in space. In this system, it is imagined 

that point "𝑴" is on the surface of a sphere with radius "𝒓"  and center "𝑶" . This center 

is taken as the origin, and called pole. It is located in the equatorial plane.  

In spherical coordinates, a point "𝑴" is characterized by 

the linear variable "𝒓", and the angular variables "𝝋,𝜽". 

 "𝜽" polar angle: Angle between the polar axis taken 

arbitrarily and the direction 𝑶𝑴ሬሬሬሬሬሬሬ⃗ .  

"𝑶" is the center of this sphere. 

 The projection of  "𝑴"  on the Equatorial plane is 

"𝑴′  ". It is located by the azimuthal angle "𝝋" with 

respect to an arbitrary direction axis (azimuthal 

direction) in that plane. 

𝒖ሬሬ⃗ 𝝋 

𝒖ሬሬ⃗ 𝒓 

ሬሬ⃗

𝑎𝑥
𝑒 
𝑝𝑜
𝑙𝑎
𝑖𝑟
𝑒 

𝝋 

𝑴 

𝑴ᇱ

𝒖ሬሬ⃗ 𝝆 

𝒛 

𝒖ሬሬ⃗ 𝜽 
𝒓ሬ⃗  

𝑴 

𝒌ሬሬ⃗  

𝜽 

𝒌ሬሬ⃗  



𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ ൌ |𝒓ሬ⃗ |𝒖ሬሬ⃗ 𝒓 

 𝒖ሬሬ⃗ 𝒓 : radial unit vector (in the direction of the radius 𝑶𝑴ሬሬሬሬሬሬሬ⃗ ) 

 𝒖ሬሬ⃗ 𝜽 : unit vector tangent to the great circle (all circles of  radius 𝑶𝑴ሬሬሬሬሬሬሬ⃗  ). 

 𝒖ሬሬ⃗ 𝝋 : unit vector tangent to parallels (circles parallel to the equator). 

3.4‐	Relationship	between	the	coordinates	of	the	different	systems	

3.4‐	1	Relationship	between	Cartesian	coordinates	and	cylindrical	coordinates 

‐ In Cartesian coordinates:         𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ ൌ 𝒙ଙ⃗  𝒚ଚ⃗  𝒛𝒌ሬሬ⃗ 	

‐ In cylindrical coordinates:         𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝝆𝒖ሬሬ⃗ 𝝆  𝒛𝒌ሬሬ⃗  	

                                      With         		𝒖ሬሬ⃗ 𝝆 ൌ 𝒄𝒐𝒔𝜽 ଙ⃗  𝒔𝒊𝒏𝜽 ଚ⃗	

𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ ൌ 𝒙ଙ⃗  𝒚ଚ⃗  𝒛𝒌ሬሬ⃗ ൌ  𝝆𝒄𝒐𝒔𝜽 ଙ⃗  𝝆𝒔𝒊𝒏𝜽 ଚ⃗  𝒛𝒌ሬሬ⃗ 	

⎩
⎪
⎨

⎪
⎧
𝒙 ൌ 𝝆𝒄𝒐𝒔𝜽

𝒚 ൌ 𝝆𝒔𝒊𝒏𝜽

𝒛 ൌ 𝒛            

						⟺								ቐ
𝝆 ൌ ඥ𝒙𝟐  𝒚𝟐     

𝜽 ൌ 𝒂𝒓𝒄𝒕𝒈ሺ𝒚 𝒙⁄ ሻ
 

  

3.4‐	2	Relationship	between	Cartesian	and	spherical	coordinates	 

‐ In Cartesian coordinates:      𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ ൌ 𝒙ଙ⃗  𝒚ଚ⃗  𝒛𝒌ሬሬ⃗ 	

‐ In spherical coordinates:       𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ |𝒓ሬ⃗ |𝒖ሬሬ⃗ 𝒓 ൌ 𝒓𝒖ሬሬ⃗ 𝒓	

                                                 With         𝒖ሬሬ⃗ 𝒓 ൌ 𝒔𝒊𝒏𝜽 𝒄𝒐𝒔𝝋 ଙ⃗  𝒔𝒊𝒏𝜽 𝒔𝒊𝒏𝝋 ଚ⃗  𝒄𝒐𝒔𝜽𝒌ሬሬ⃗  

                              So: 

⎩
⎪
⎨

⎪
⎧
𝒙 ൌ 𝒓𝒔𝒊𝒏𝜽 𝒄𝒐𝒔𝝋

𝒚 ൌ 𝒓𝒔𝒊𝒏𝜽 𝒔𝒊𝒏𝝋

𝒛 ൌ 𝒓𝒄𝒐𝒔𝜽            

								⟺					

⎩
⎪
⎨

⎪
⎧ 𝒓 ൌ ඥ𝒙𝟐  𝒚𝟐  𝒛𝟐                 

𝝋 ൌ 𝒂𝒓𝒄𝒕𝒈ሺ𝒚 𝒙⁄ ሻ                       

𝜽 ൌ 𝒂𝒓𝒄𝒐𝒔ሺ 𝒛

ඥ𝒙𝟐ା𝒚𝟐ା𝒛𝟐
 ሻ           

	

 

𝜽 



II – Kinematics 

0- Some words on kinematics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kinematics is a branch of physics that studies the motion of objects without 

considering the causes behind that motion. It focuses on describing the position, 

velocity, and acceleration of particles or objects in motion. By studying kinematics, 

scientists can analyze the relationship between these variables and understand how 

an object moves and changes over time. 

One of the fundamental concepts in kinematics is displacement. Displacement refers 

to the change in position of an object or particle from its initial position to its final 

position. It is a vector quantity as it has both magnitude and direction. By calculating 

the displacement, one can determine how far an object has moved and in which 

direction it has traveled. 

Another important concept in kinematics is velocity. Velocity is the rate at which an 

object moves in a certain direction. It is calculated by dividing the displacement of an 

object by the time taken to travel that distance. Velocity is also a vector quantity and 

is dependent on both the magnitude and direction of displacement. It provides 

information about the speed of an object and the direction in which it is moving. 

Overall, kinematics plays a pivotal role in understanding the basics of motion. By 

studying displacement and velocity, scientists can analyze an object's movement and 

describe it accurately. Whether it is calculating the displacement of a ball rolling down 

the slope or analyzing the velocity of a car in a race, kinematics helps provide insights 

into the motion of objects, enhancing our understanding of the physical world. 

Kinematics is a branch of physics that deals with the motion of objects without 

considering what causes that motion. It focuses on describing the position, velocity, 

and acceleration of an object as it moves through space and time. Kinematics helps us 

understand how objects move and allows us to predict their future positions and 

velocities based on their initial conditions. 

When studying kinematics, it is essential to know the basic terms used to describe 

motion. The position of an object refers to its location relative to a chosen reference 

point. Velocity is the rate at which an object's position changes, while acceleration is 

the rate at which its velocity changes. It is important to note that velocity and 

acceleration are vector quantities which means they have both a magnitude and a 

direction.  



 

 

 

 

 

1- Concept of frame of reference

Let ൫ଙ⃗, ଚ⃗,𝒌ሬሬ⃗ ൯ be an orthonormal basis, placed at a point chosen as the origin, which is 

used to locate a point " M ". It constitutes a reference frame. (Frame of Reference = 

origin + basis) 

- If this point M is moving, it depends on time.

𝑶𝑴ሬሬሬሬሬሬሬ⃗ ሺ𝒕ሻ ൌ 𝒓ሬ⃗ ሺ𝒕ሻ ൌ 𝒙ሺ𝒕ሻ ଙ⃗  𝒚ሺ𝒕ሻ ଚ⃗  𝒛ሺ𝒕ሻ 𝒌ሬሬ⃗ t  : is time 

- The Concept of motion is relative according to the observer (rest, moving

independently or with the mobile Mሻ. The observer is the witness of time.

" To describe the motion of a material point, a reference frame is necessary, that we 

affect (bind or link) an observer to it, which leads us to define a frame of reference " 

For example, the observer on earth say that path of moon is almost circular. But the 

observer siting on the sun sees the trajectory of the moon (same object) is a line wave 

path. 

To analyze motion, kinematics uses mathematical equations and graphs. The three 

equations of motion, often referred to as the kinematic equations, are commonly used 

to solve various kinematics problems. The equations involve the initial and final 

velocities, acceleration, displacement, and time intervals. Graphs, such as position-time 

or velocity-time graphs, can provide a visual representation of an object's motion, 

enabling us to analyze its behavior more easily. 

In summary, kinematics is a fundamental concept in physics that helps us understand 

the motion of objects. It involves studying the position, velocity, and acceleration of 

objects without considering the forces that cause them to move. By utilizing 

mathematical equations and graphs, kinematics allows us to predict and analyze the 

motion of objects accurately. Understanding kinematics is crucial for further exploring 

more complex topics in physics, such as dynamics and mechanics in general. 



A reference frame is a platform from where a physical phenomenon, such as motion, 

is being observed 

2- Equation of motion and trajectory equation

The change in position of the point, produce a motion. That motion is characterized 

by several parameters which are the displacement, distance, velocity and acceleration. 

 2.1- Position vector 

The motion of a particle is described in some frame of reference. Starting first with 

locating it (position vector), then give its nature. 

In an orthonormal coordinate system (cartesian) ൫𝑶, ଙ⃗, ଚ⃗, ሬ𝒌ሬ⃗൯ the position vector is given 

by: 

𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ ൌ 𝒙 ଙ⃗  𝒚 ଚ⃗  𝒛 𝒌ሬሬ⃗ 	

2.2- Displacement and distance 

2.2-1: Displacement 

The shortest distance joining the points A and B of 

the curve i.e., the line 𝑨𝑩 which called displacement. 

It expresses how far is B from A. 

Notice that the line 𝑨𝑩 has a direction from 𝑨  to 𝑩. 

So, the displacement: 

- It is a vector quantity and is independent of the choice of origin

- It is unique for any kind of motion between two points

- It is always concealing (cover) about the actual track followed by the particle’s

motion between any two points, i.e. It doesn’t give information about a path.

- It can be positive, negative and even be zero.

- The magnitude of the displacement is always less than or equal to the distance

for particle’s motion between two points

- A body may have finite distance travelled for zero displacement

Distance 

𝑨  

𝑩  

𝑩  

𝑨  

𝑪  

- Displacement: vector 𝑨𝑩ሬሬሬሬሬሬ⃗  (Red line)

- Distance: length of the curve ACB (Blue Dashed)

Displacement 



2.2-2: Distance 

The distance express how long is the path from 𝑨 to 𝑩 passing through a point 𝑪.  

- The distance is a scalar quantity

- The distance is always positive i.e., it only increases.

- The distance is always greater or equal to the magnitude of the displacement.

2.3- Equation of motion

The equation of motion expresses the manner of change of motion

or how the motion is changing in time by giving its kinematic 

parameters which are the displacement, velocity and acceleration.

Example: Free fall    

𝒚ሺ𝒕ሻ ൌ െ
𝟏
𝟐
𝒈𝒕𝟐  𝒗𝟎𝒕  𝒚𝟎	

The distance 𝒚 traveled by the point M is given as a function of time. 

yሺtሻ is the time equation of motion 

Note:  

The coordinates of the point, M (𝒙ሺ𝒕ሻ , 𝒚ሺ𝒕ሻ𝒛ሺ𝒕ሻ), are the parametric equations 

2.4- Trajectory equation (Path equation) 

- Since the vector position ሬሬሬሬ𝑶𝑴ሬሬሬ⃗ changes, i.e., the point 𝑴 change its position as time 

is varying, then we have:

    ቐ
𝒙 ൌ 𝒙ሺ𝒕ሻ
𝒚 ൌ 𝒚ሺ𝒕ሻ
𝒛 ൌ 𝒛ሺ𝒕ሻ

               ሺ𝒙ሺ𝒕ሻ, 𝒚ሺ𝒕ሻ, and 𝒛ሺ𝒕ሻ are called parametric equations of motion. 

- The trajectory (path) is the curve which traces the locations occupied by the

mobile in space during the variations of time (as the time is changing).

- To find the equation of the trajectory, we eliminate the time from the parametric

equations, and find the form: 𝒇ሺ𝒙,𝒚, 𝒛ሻ ൌ 𝟎

𝒈ሬሬ⃗  

𝒚 

𝑶 

𝑴

𝒙



 

Example: Motion in the plane 

          ൜
𝒙 ൌ 𝒂𝒄𝒐𝒔ሺ𝝎𝒕ሻ
𝒚 ൌ 𝒂𝒔𝒊𝒏ሺ𝝎𝒕ሻ

        ⟹								൜
𝒙𝟐 ൌ 𝒂𝟐𝒄𝒐𝒔𝟐ሺ𝝎𝒕ሻ
𝒚𝟐 ൌ 𝒂𝟐𝒔𝒊𝒏𝟐ሺ𝝎𝒕ሻ

            ⟹						𝒙𝟐  𝒚𝟐 ൌ 𝒂𝟐	

This is an equation of circle with radius 𝑹 ൌ 𝒂   centered on the point C ሺ0,0ሻ called the 

center of this circle. 

3- Concept of velocity and speed

3.1-1: Average velocity 

The average velocity is the ratio of the displacement between two points A  and B  to 

the travel time without taking into account the nature of the motion (the way in 

which the section 𝑨𝑩 is traveled). 

- In one direction (one dimension)

Let the motion along the straight-line “ox ”. The point “A” is the initial position and 

“B” is the final point, so the average velocity is defined as ൏ 𝒗ሬሬ⃗  𝒗ሬሬ⃗ 𝒎𝒐𝒚 such that: 

൏ 𝒗ሬሬ⃗  𝒗ሬሬ⃗ 𝒎𝒐𝒚 ൌ
𝒙𝒇 െ  𝒙𝒊 

𝒕𝒇 െ  𝒕𝒊
ଙ⃗ ൌ

𝒙𝑩 െ  𝒙𝑨 
𝒕𝑩 െ  𝒕𝑨

ଙ⃗ ൌ
∆𝒙 
∆𝒕

ଙ⃗ 

- In all space (three dimensions):

The initial point is: 𝑨ሺ𝒙𝑨,𝒚𝑨, 𝒛𝑨ሻ

and the final point is: 𝑩ሺ𝒙𝑩,𝒚𝑩, 𝒛𝑩ሻ

The displacement is then: ∆𝒓ሬ⃗ ൌ 𝒓ሬ⃗ 𝑩 െ  𝒓ሬ⃗ 𝑨

So, the average velocity is:

൏ 𝒗ሬሬ⃗  ൌ 𝒗ሬሬ⃗ 𝒎𝒐𝒚 ൌ
∆𝒓ሬ⃗  

∆𝒕
ൌ

𝒓ሬ⃗ 𝒇ି 𝒓ሬ⃗ 𝒊 

𝒕𝒇ି 𝒕𝒊
          ⟹        ൏ 𝒗ሬሬ⃗  ൌ 𝒗ሬሬ⃗ 𝒎𝒐𝒚 ൌ

𝒙𝑩ି 𝒙𝑨
𝒕𝑩ି 𝒕𝑨

ଙ⃗  𝒚𝑩ି 𝒚𝑨
𝒕𝑩ି 𝒕𝑨

ଚ⃗  𝒛𝑩ି 𝒛𝑨
𝒕𝑩ି 𝒕𝑨

𝒌ሬሬ⃗

Note:  

The average velocity, geometrically, is the slope of the secant that join the final and the 

initial positions in the curve which represents the variation of position with time (x-t 

curve).  

ଙ⃗ 

𝒙 
𝒕𝑩 𝒕𝑨 

𝒙𝑨,𝒗𝑨 𝒙𝑩,𝒗𝑩 

𝒛 

𝒌ሬሬ⃗

ଙ⃗ ଚ⃗

𝑩  

𝑨  

𝒚



3.1-2: Average speed 

The average speed is the ratio of the distance traveled between two points A and B to 

the travel time of duration of trip  

൏ 𝑺  ൌ 𝑺𝒎𝒐𝒚 ൌ
𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒄𝒐𝒗𝒆𝒓𝒆𝒅 

𝒕𝒊𝒎𝒆 𝒕𝒂𝒌𝒆𝒏

The path A≡1-2-3-4-5≡B has the distance d, so the average speed defined as the 

distance of the journey on the time duration of the trip  

If a particle starts from′𝑨 ≡ 𝟏′ to the point ′𝑩′. Let ′𝒅𝟏𝟐′ be the distance covered by the 

particle to go from position ′𝟏′ to ′𝟐′, and ′𝒅𝟐𝟑′ that covered from position ′𝟐′ to ′𝟑′ and 

so on, until this particle arrives to the final position ′𝟓 ≡ 𝑩′. The average speed is: 

𝑺𝒎𝒐𝒚 ൌ
𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒄𝒐𝒗𝒆𝒓𝒆𝒅 

𝒕𝒊𝒎𝒆 𝒕𝒂𝒌𝒆𝒏
ൌ
𝒅𝟏𝟐  𝒅𝟐𝟑. . .𝒅𝟒𝟓
𝒕𝟏𝟐  𝒕𝟐𝟑. . .𝒕𝟒𝟓

3.1-2-1: Average speed in case when the time is divided in equal intervals 

Let the actual path from 𝑨 to 𝑩, be divided in several intervals not equal, each traversed 

with in the same lapse of time but with different speeds. To compute the average 

speed, we proceed as follows: 

𝑺𝒎𝒐𝒚 ൌ
𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒄𝒐𝒗𝒆𝒓𝒆𝒅 

𝒕𝒊𝒎𝒆 𝒕𝒂𝒌𝒆𝒏
ൌ
𝒅𝟏  𝒅𝟐. . .𝒅𝒏
𝒕𝟏  𝒕𝟐. . .𝒕𝒏

ൌ
∑ 𝒅𝒊
𝒏
𝟏

∑ 𝒕𝒊𝒏
𝟏

 

But  𝒅𝟏 ൌ 𝒔𝟏. 𝒕𝟏 , …., 𝒅𝟏 ൌ 𝒔𝒏. 𝒕𝒏 

Since the lapse of time are equal: 𝒕𝟏 ൌ 𝒕𝟐 ൌ. . .ൌ 𝒕𝒏 ൌ 𝒕 𝒏ൗ   with ′𝒕′ the time taken during

the trip 

𝑺𝒎𝒐𝒚 ൌ
𝒗𝟏ሺ

𝒕
𝒏ሻ  𝒗𝟐ሺ

𝒕
𝒏ሻ. . .𝒗𝒏ሺ

𝒕
𝒏ሻ

𝒕𝟏  𝒕𝟐. . .𝒕𝒏
ൌ

𝒕
𝒏 ሺ𝒗𝟏  𝒗𝟐. . .𝒗𝒏ሻ

𝒕
ൌ
∑ 𝒗𝒊
𝒏
𝟏

𝒏

So, we observe that when an interval is divided into n equal time parts, then the 

average speed ′𝑺𝒎𝒐𝒚′ is simply the arithmetic mean of the speeds in the respective 

intervals. 

ଙ⃗ 

𝒙 

𝒕𝑩 𝒕𝑨 

𝒙𝑨,𝒗𝑨 𝒙𝑩,𝒗𝑩 

𝟏 

𝟐 

𝟑 

𝟒 

𝟓 



𝑺𝒎𝒐𝒚 ൌ
𝟏
𝒏
𝒗𝒊

𝒏

𝟏

 

3.1-2-2: Average speed in case when the length is divided in equal intervals 

In the same manner, the distance will be divided in equal intervals 

𝒅𝟏 ൌ 𝒅𝟐 ൌ. . .ൌ 𝒅𝒏 ൌ 𝒅 𝒏ൗ  ,

But  𝒅𝟏 ൌ 𝒗𝟏𝒕𝟏  and 𝒅𝟐 ൌ 𝒗𝟐𝒕𝟐 , …, 𝒅𝒏 ൌ 𝒗𝒏𝒕𝒏  

So  𝒕𝟏 ൌ
𝒅𝟏
𝒗𝟏
ൌ

𝒅 𝒏ൗ

𝒗𝟏
, …, 𝒕𝒏 ൌ

𝒅𝒏
𝒗𝒏
ൌ

𝒅 𝒏ൗ

𝒗𝒏

𝑺𝒎𝒐𝒚 ൌ
𝒅𝟏  𝒅𝟐. . .𝒅𝒏
𝒕𝟏  𝒕𝟐. . .𝒕𝒏

ൌ
𝒅 𝒏ൗ  𝒅 𝒏ൗ . . .𝒅 𝒏ൗ

𝒅𝟏
𝒗𝟏

. . .
𝒅𝒏
𝒗𝒏

ൌ
𝒅

𝒅
𝒏𝒗𝟏

. . . 𝒅
𝒏𝒗𝒏

ൌ
𝒏

𝟏
𝒗𝟏
. . . 𝟏

𝒗𝒏

The average speed ′𝑺𝒎𝒐𝒚′ is simply n time the reciprocal of the harmonic mean of the 

speeds in the respective intervals. 

3.2- Instantaneous velocity and instantaneous speed 

Instantaneous velocity is the velocity that the material point will have at every moment 

on the trip. The velocity, in an infinitely small lapse of time, in the corresponding 

infinitesimal displacement, doesn’t change. 

𝒗ሬሬ⃗ ሺ 𝒕 ሻ ൌ 𝐥𝐢𝐦
∆𝐭→𝟎

ቆ
∆𝒓ሬ⃗  
∆𝒕
ቇ ൌ

𝒅𝒓ሬ⃗  
𝒅𝒕

ൌ
𝒅𝒙 
𝒅𝒕

ଙ⃗ 
𝒅𝒚 
𝒅𝒕

ଚ⃗ 
𝒅𝒛 
𝒅𝒕

𝒌ሬሬ⃗

𝒗ሬሬ⃗ ሺ 𝒕 ሻ ൌ 𝒗𝒙 ଙ⃗  𝒗𝒚 ଚ⃗  𝒗𝒛 𝒌ሬሬ⃗ 	

The magnitude of the velocity is given by: 

|𝒗ሬሬ⃗ ሺ 𝒕 ሻ| ൌ ට𝒗𝒙𝟐  𝒗𝒚𝟐  𝒗𝒛𝟐	

Note:  

1- The instantaneous speed is equal to the magnitude of the instantaneous velocity

𝒗ሬሬ⃗   

𝒛

𝒚 



2- The instantaneous velocity, geometrically, is the slope of the tangent to the curve

that represents the change in position with time (x-t curve).

4- Concept of acceleration

4.1- Average acceleration

- Acceleration is the rate of change of velocity over time.

- The average acceleration is the rate of change in velocity between the initial ′′A'' 

and final points B, regardless of how the path is traversed.

- In one direction only

൏ 𝒂ሬሬ⃗  ൌ 𝒂ሬሬ⃗ 𝒎𝒐𝒚 ൌ
∆𝒗ሬሬ⃗  
∆𝒕

ൌ
𝒗ሬሬ⃗ 𝒇 െ  𝒗ሬሬ⃗ 𝒊 

𝒕𝒇 െ  𝒕𝒊
ൌ
𝒗𝑩 െ  𝒗𝑨 
𝒕𝑩 െ  𝒕𝑨

ଙ⃗ 

- In all space (three dimensions)

The initial velocity is: 𝒗ሬሬ⃗ 𝑨൫𝒗𝒙𝑨,𝒗𝒚𝑨,𝒗𝒛𝑨൯

The final velocity is: 𝒗ሬሬ⃗ 𝑩൫𝒗𝒙𝑩,𝒗𝒚𝑩,𝒗𝒛𝑩൯

The variation of velocity is then: ∆𝒗ሬሬ⃗ ൌ 𝒗ሬሬ⃗ 𝑩 െ  𝒗ሬሬ⃗ 𝑨

So, the average acceleration is:

൏ 𝒂ሬሬ⃗  ൌ 𝒂ሬሬ⃗ 𝒎𝒐𝒚 ൌ
∆𝒗ሬሬ⃗  
∆𝒕

ൌ
𝒗ሬሬ⃗ 𝒇 െ  𝒗ሬሬ⃗ 𝒊 

𝒕𝒇 െ  𝒕𝒊

𝒂ሬሬ⃗ 𝒎𝒐𝒚 ൌ
𝒗𝒙𝑩 െ  𝒗𝒙𝑨 
𝒕𝑩 െ  𝒕𝑨

ଙ⃗ 
𝒗𝒚𝑩 െ  𝒗𝒚𝑨 

𝒕𝑩 െ  𝒕𝑨
ଚ⃗ 

𝒗𝒛𝑩 െ  𝒗𝒛𝑨 
𝒕𝑩 െ  𝒕𝑨

𝒌ሬሬ⃗ 	

4.2- Instantaneous acceleration 

Instantaneous acceleration is the rate of change of velocity 

in time at each moment. In an infinitely small lapse of time, 

on the corresponding infinitesimal change in velocity, the 

acceleration doesn’t change. 

𝒂ሬሬ⃗   𝒗
𝒛 

𝒗𝒚 



𝒂ሬሬ⃗ ሺ 𝒕 ሻ ൌ 𝐥𝐢𝐦
∆𝐭→𝟎

∆𝒗ሬሬ⃗  
∆𝒕

ൌ
𝒅𝒗ሬሬ⃗  
𝒅𝒕

ൌ
𝒅𝒗𝒙 
𝒅𝒕

ଙ⃗ 
𝒅𝒗𝒚 

𝒅𝒕
ଚ⃗ 

𝒅𝒗𝒛 
𝒅𝒕

𝒌ሬሬ⃗

- The hodograph of motion is the curve described by the end of the velocity vector

- Note:

The instantaneous acceleration, geometrically, is the slope of the curve (hodograph) 

which represents the variation of the velocity over time. 

𝒂ሬሬ⃗ ሺ 𝒕 ሻ ൌ
𝒅
𝒅𝒕
ቆ
𝒅𝒓ሬ⃗  
𝒅𝒕
ቇ ൌ

𝒅𝟐𝒓ሬ⃗  
𝒅𝒕𝟐

ൌ
𝒅𝟐𝒙 
𝒅𝒕𝟐

ଙ⃗ 
𝒅𝟐𝒚 
𝒅𝒕𝟐

ଚ⃗ 
𝒅𝟐𝒛 
𝒅𝒕𝟐

𝒌ሬሬ⃗ 	

𝒂ሬሬ⃗ ሺ 𝒕 ሻ ൌ 𝒂𝒙 ଙሬሬ⃗  𝒂𝒚 ଚ⃗  𝒂𝒛 𝒌ሬሬ⃗

5- Position, velocity and acceleration in the different coordinate systems

5.1- Derivative of unit vectors 

- Polar basis ൫𝒖ሬሬ⃗ 𝝆,𝒖ሬሬ⃗ 𝜽൯

𝜽ሺ𝒕ሻ and 𝝆ሺ𝒕ሻ  change in time 𝒖ሬሬ⃗ 𝝆,𝒖ሬሬ⃗ 𝜽 changes also and are written in the Cartesian base 

as follows: 

           ቊ
 𝒖ሬሬ⃗ 𝝆 ൌ 𝒄𝒐𝒔ሺ𝜽ሻ ଙ⃗  𝒔𝒊𝒏ሺ𝜽ሻ ଚ⃗   

 𝒖ሬሬ⃗ 𝜽 ൌ െ𝒔𝒊𝒏ሺ𝜽ሻ ଙ⃗  𝒄𝒐𝒔ሺ𝜽ሻ ଚ⃗
	

 𝒖ሬሬ⃗ 𝝆  and  𝒖ሬሬ⃗ 𝜽	are a composite function, so we apply the chain rule  

- If we have a function 𝒇 ൌ 𝑭൫𝒖ሺ𝒙ሻ൯ which depend on the

variable 𝒖 who depends also on the other variable 𝒙. Then

the derivative of this this function with respect to the

variable 𝒙 is given by:

𝒅𝒇 ൌ
𝝏𝒇
𝝏𝒖

.
𝝏𝒖
𝝏𝒙

⟹						ቐ

𝒅𝒖ሬሬ⃗ 𝝆
𝒅𝒕

ൌ
𝒅𝒖ሬሬ⃗ 𝝆
𝒅𝜽

𝒅𝜽

𝒅𝒕
ൌ ሾെ𝒔𝒊𝒏ሺ𝜽ሻ ଙ⃗  𝒄𝒐𝒔ሺ𝜽ሻ ଚ ሬሬ⃗ ሿ 𝒅𝜽

𝒅𝒕
𝒅𝒖ሬሬ⃗ 𝜽
𝒅𝒕

ൌ 𝒅𝒖ሬሬ⃗ 𝜽
𝒅𝜽

𝒅𝜽

𝒅𝒕
ൌ ሾെ𝒄𝒐𝒔ሺ𝜽ሻ ଙ⃗ െ 𝒔𝒊𝒏ሺ𝜽ሻ ଚ⃗ ሿ 𝒅𝜽

𝒅𝒕

𝜽 
𝒖ሬሬ⃗ 𝜽 

𝒖ሬሬ⃗ 𝝆 ଚ⃗ 

ଙ⃗ 

𝑴 



 
⟹		   ቐ

𝒅𝒖ሬሬ⃗ 𝝆
𝒅𝒕

ൌ 𝜽ሶ ቂ𝒄𝒐𝒔 ቀ𝜽  𝝅

𝟐
ቁ ଙ⃗  𝒔𝒊𝒏 ቀ𝜽  𝝅

𝟐
ቁ ଚ⃗ቃ  

 𝒅𝒖
ሬሬ⃗ 𝜽
𝒅𝒕

ൌ 𝜽ሶ ቒെ𝒔𝒊𝒏 ቀ𝜽  𝝅

𝟐
ቁ ଙ⃗  𝒄𝒐𝒔 ቀ𝜽  𝝅

𝟐
ቁ ଚ⃗ቓ

        ⟹											ቐ
𝒖ሶሬሬ⃗ 𝝆 ൌ

𝒅𝒖ሬሬ⃗ 𝝆
𝒅𝒕

ൌ 𝜽ሶ  𝒖ሬሬሬ⃗ 𝜽     

𝒖ሶሬሬ⃗ 𝜽 ൌ
𝒅𝒖ሬሬ⃗ 𝜽
𝒅𝒕

ൌ െ𝜽 ሶ 𝒖ሬሬ⃗ 𝝆

To find the derivative of a unit vector, we make a rotation anti-clockwise of 𝝅 𝟐ൗ

Note:  

The cylindrical basis gives similar results as the polar basis by adding the z 

coordinate.  

‐	Spherical base	𝒖ሬሬ⃗ 𝒓,𝒖ሬሬ⃗ 𝜽,𝒖ሬሬ⃗ 𝝋	

From the figure, the unit vectors 𝒖ሬሬ⃗ 𝒓, 𝒖ሬሬ⃗ 𝜽 and 𝒖ሬሬ⃗ 𝝋 are given by: 

൞
𝒖ሬሬ⃗ 𝒓 ൌ 𝒔𝒊𝒏𝜽 𝒄𝒐𝒔𝝋 ଙ⃗  𝒔𝒊𝒏𝜽 𝒔𝒊𝒏𝝋 ଚ⃗  𝒄𝒐𝒔𝜽𝒌ሬሬ⃗

𝒖ሬሬ⃗ 𝜽 ൌ 𝒄𝒐𝒔𝜽 𝒄𝒐𝒔𝝋 ଙሬሬ⃗  𝒄𝒐𝒔𝜽 𝒔𝒊𝒏𝝋 ଚ⃗ െ 𝒔𝒊𝒏𝜽 𝒌ሬሬ⃗

𝒖ሬሬ⃗ 𝝋 ൌ െ𝒔𝒊𝒏𝝋 ଙ⃗  𝒄𝒐𝒔𝝋 ଚ⃗

	

If we use the differential form of the function that depend on 

many variables: 

𝒇ሺ𝒙,𝒚, 𝒛ሻ     ⟹       𝒅𝒇 ൌ 𝝏𝒇

𝝏𝒙
𝒅𝒙  𝝏𝒇

𝝏𝒚
𝒅𝒚  𝝏𝒇

𝝏𝒛
𝒅𝒛    

⟹       𝒅𝒇
𝒅𝒕
ൌ 𝝏𝒇

𝝏𝒙

𝒅𝒙

𝒅𝒕
  𝝏𝒇

𝝏𝒚

𝒅𝒚

𝒅𝒕
 𝝏𝒇

𝝏𝒛

𝒅𝒛

𝒅𝒕

𝒖ሬሬ⃗ 𝒓 ൌ 𝒇ሺ𝜽,𝝋ሻ and  𝒖ሬሬ⃗ 𝒓 ൌ 𝒉ሺ𝜽,𝝋ሻ         ⟹		

⎩
⎪
⎨

⎪
⎧ 𝒅𝒖ሬሬ⃗ 𝒓 ൌ

𝝏𝒖ሬሬ⃗ 𝒓
𝝏𝜽

.𝒅𝜽  𝝏𝒖ሬሬ⃗ 𝒓
𝝏𝝋

.𝒅𝝋

𝒅𝒖ሬሬ⃗ 𝜽 ൌ
𝝏𝒖ሬሬ⃗ 𝜽
𝝏𝜽

.𝒅𝜽  𝝏𝒖ሬሬ⃗ 𝜽
𝝏𝝋

.𝒅𝝋 

𝒅𝒖ሬሬ⃗ 𝝋 ൌ
𝒅𝒖ሬሬ⃗ 𝝋
𝒅𝝋

.𝒅𝝋

Finally 

⟹							

⎩
⎪
⎨

⎪
⎧ 𝒖ሶሬሬ⃗ 𝒓 ൌ

𝒅𝒖ሬሬ⃗ 𝒓
𝒅𝒕

ൌ 𝝏𝒖ሬሬ⃗ 𝒓
𝝏𝜽

. 𝒅𝜽
𝒅𝒕
 𝝏𝒖ሬሬ⃗ 𝒓

𝝏𝝋
. 𝒅𝝋
𝒅𝒕
ൌ 𝜽 ሶ 𝒖ሬሬ⃗ 𝜽  𝝋ሶ 𝒔𝒊𝒏𝜽 𝒖ሬሬ⃗ 𝝋 

𝒖ሶሬሬ⃗ 𝜽 ൌ
𝒅𝒖ሬሬ⃗ 𝜽
𝒅𝒕

ൌ 𝝏𝒖ሬሬ⃗ 𝜽
𝝏𝜽

. 𝒅𝜽
𝒅𝒕
 𝝏𝒖ሬሬ⃗ 𝜽

𝝏𝝋
. 𝒅𝝋
𝒅𝒕
ൌ െ𝜽ሶ  𝒖ሬሬሬ⃗ 𝒓  𝝋ሶ 𝒄𝒐𝒔𝜽 𝒖ሬሬሬ⃗ 𝝋

𝒖ሶሬሬ⃗ 𝝋 ൌ
𝒅𝒖ሬሬ⃗ 𝝋
𝒅𝒕

ൌ
𝒅𝒖ሬሬ⃗ 𝝋
𝒅𝝋

. 𝒅𝝋
𝒅𝒕
ൌ െ𝝋ሶ ሺ𝒔𝒊𝒏𝜽𝒖ሬሬ⃗ 𝒓   𝒄𝒐𝒔𝜽 𝒖ሬሬ⃗ 𝜽ሻ     

														

⟹							

⎩
⎨

⎧𝒖ሶ
ሬሬ⃗
𝒓 ൌ 𝜽 ሶ 𝒖ሬሬ⃗ 𝜽  𝝋ሶ 𝒔𝒊𝒏𝜽 𝒖ሬሬ⃗ 𝝋

𝒖ሶሬሬ⃗ 𝜽 ൌ െ𝜽ሶ  𝒖ሬሬሬ⃗ 𝒓  𝝋ሶ 𝒄𝒐𝒔𝜽 𝒖ሬሬሬ⃗ 𝝋

𝒖ሶሬሬ⃗ 𝝋 ൌ െ𝝋ሶ ሺ𝒔𝒊𝒏𝜽𝒖ሬሬ⃗ 𝒓   𝒄𝒐𝒔𝜽 𝒖ሬሬ⃗ 𝜽ሻ

𝝋 

𝜽 
𝒖ሬሬ⃗ 𝒓 

𝒖ሬሬ⃗ 𝝋 

𝒖ሬሬ⃗ 𝜽 

𝒌ሬሬ⃗

ଚ⃗ 

ଙ⃗ 



 

				5.2- Polar coordinates 

a- Position vector

As we have already seen that the position vector in the polar basis is:

𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ ൌ 𝝆𝒖ሬሬ⃗ 𝝆 ⟹ ห𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห ൌ 𝝆	

b- velocity vector

According to the definition:

     𝒗ሬሬ⃗ ሺ 𝒕 ሻ ൌ 𝒅𝑶𝑴ሬሬሬሬሬሬሬ⃗

𝒅𝒕
ൌ 𝒅𝒓ሬ⃗

𝒅𝒕
ൌ

𝒅൫𝝆𝒖ሬሬ⃗ 𝝆൯

𝒅𝒕
ൌ 𝝆ሶ 𝒖ሬሬ⃗ 𝝆  𝝆

𝒅𝒖ሬሬ⃗ 𝝆
𝒅𝒕

              But       𝒅𝒖ሬሬ⃗ 𝝆
𝒅𝒕

ൌ 𝜽ሶ  𝒖ሬሬ⃗ 𝜽	

          Then      𝒗ሬሬ⃗ ሺ𝐭ሻ ൌ 𝝆 ሶ 𝒖ሬሬ⃗ 𝝆  𝝆𝜽 ሶ 𝒖ሬሬ⃗ 𝜽 ൌ 𝒗ሬሬ⃗ 𝝆𝒗ሬሬ⃗ 𝜽               

           Where       ቊ
ห𝒗ሬሬ⃗ 𝝆ห ൌ 𝝆ሶ     

|𝒗ሬሬ⃗ 𝜽| ൌ 𝝆𝜽ሶ

⟹									|𝒗ሬሬ⃗ ሺ𝐭ሻ| ൌ ට𝒗𝝆𝟐  𝒗𝜽
𝟐 ൌ ට𝝆ሶ 𝟐  ൫𝝆𝜽ሶ ൯

𝟐
	

c- acceleration vector

According to the definition:                𝒖ሶሬሬ⃗ 𝝆  𝒖ሶሬሬ⃗ 𝜽

𝒂ሬሬ⃗ ൌ
 

𝒅𝒗ሬሬ⃗
𝒅𝒕

ൌ
𝒅
𝒅𝒕
ቆ
𝒅𝒓ሬ⃗
𝒅𝒕
ቇ ൌ

𝒅
𝒅𝒕
൫𝝆ሶ  𝒖ሬሬ⃗ 𝝆  𝝆𝜽ሶ  𝒖ሬሬ⃗ 𝜽൯

⟹      		𝒂ሬሬ⃗ ൌ
 
𝝆ሷ  𝒖ሬሬ⃗ 𝝆  𝝆ሶ 𝒖ሶሬሬ⃗ 𝝆  𝝆ሶ 𝜽 ሶ 𝒖ሬሬ⃗ 𝜽  𝝆𝜽 ሷ 𝒖ሬሬ⃗ 𝜽  𝝆𝜽 ሶ 𝒖ሶሬሬ⃗ 𝜽	

𝒂ሬሬ⃗ ൌ
 
൫𝝆ሷ െ 𝝆𝜽ሶ 𝟐൯ 𝒖ሬሬ⃗ 𝝆  ൫𝟐𝝆ሶ 𝜽ሶ  𝝆𝜽ሷ ൯ 𝒖ሬሬ⃗ 𝜽 ൌ 𝒂ሬሬ⃗ 𝝆  𝒂ሬሬ⃗ 𝜽

               Where      ቊ
ห𝒂ሬሬ⃗ 𝝆ห ൌ ൫𝝆ሷ െ 𝝆𝜽ሶ 𝟐൯   

|𝒂ሬሬ⃗ 𝜽| ൌ ൫𝟐𝝆ሶ 𝜽ሶ  𝝆𝜽ሷ ൯

⟹								|𝒂ሬሬ⃗ ሺ𝐭ሻ| ൌ ට𝒂𝝆𝟐  𝒂𝜽
𝟐 ൌ ට൫𝝆ሷ െ 𝝆𝜽ሶ 𝟐൯

𝟐
 ൫𝟐𝝆ሶ 𝜽ሶ  𝝆𝜽ሷ ൯

𝟐
	



5.3- Intrinsic coordinates (Natural coordinates) 

The coordinate is the distance "s " traveled along the trajectory such that: 

𝒔 ൌ 𝒐𝑴  

The position vector is given by: 

𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ ൌ 𝒙 ଙ⃗  𝒚 ଚ⃗ .	

If the mobile moves from the point M to the point M', then	

𝒓ሬ⃗ ᇱ ൌ 𝒓ሬ⃗  𝑴𝑴ሬሬሬሬሬሬሬሬ⃗ ᇱ        			⇒           𝒓ሬ⃗ ᇱ െ 𝒓ሬ⃗ ൌ 𝑴𝑴ሬሬሬሬሬሬሬሬ⃗ ᇱ ൌ 𝒅𝒓ሬሬሬሬሬ⃗ ൌ 𝒅𝒙 ଙ⃗  𝒅𝒚 ଚ⃗	

The segment "ds" of the curve is related to the variation of Cartesian coordinates in 

such a way that: 

𝒅𝒔 ൌ ඥ𝒅𝒙𝟐  𝒅𝒚𝟐 ൌ ห𝒅𝒓ሬሬሬሬሬ⃗ ห	

b- velocity vector

According to the definition:

𝒗ሬሬ⃗ ሺ𝐭ሻ ൌ
𝒅𝑶𝑴ሬሬሬሬሬሬሬ⃗

𝒅𝒕
ൌ
𝒅𝒓ሬ⃗
𝒅𝒕

ൌ
𝑴𝑴ሬሬሬሬሬሬሬሬ⃗ ᇱ

𝒅𝒕
ൌ
ห𝑴𝑴ሬሬሬሬሬሬሬሬ⃗ ᇱห
𝒅𝒕

𝒖ሬሬ⃗ 𝑻	

    Since the limit    𝒅𝒔 ൌ ห𝑴𝑴ሬሬሬሬሬሬሬሬ⃗ ᇱห ൌ ห𝒅𝒓ሬሬሬሬሬ⃗ ห 

Then:						𝒗ሬሬ⃗ ሺ𝒕ሻ ൌ
ห𝑴𝑴ሬሬሬሬሬሬሬሬ⃗ ᇲห

𝒅𝒕
𝒖ሬሬ⃗ 𝑻 ൌ

𝒅𝒔

𝒅𝒕
𝒖ሬሬ⃗ 𝑻 ൌ 𝒗.𝒖ሬሬ⃗ 𝑻	

    The velocity vector is oriented along the tangent to the curve 

c- acceleration vector

According to the definition:

𝒂ሬሬ⃗ ൌ
𝒅𝒗ሬሬ⃗
𝒅𝒕

ൌ
𝒅
𝒅𝒕
ቆ
𝒅𝒓ሬ⃗
𝒅𝒕
ቇ ൌ

𝒅
𝒅𝒕
ሺ𝒗.𝒖ሬሬ⃗ 𝑻ሻ ൌ

𝒅
𝒅𝒕
ሺ𝒗ሻ.𝒖ሬሬ⃗ 𝑻  𝒗.

𝒅
𝒅𝒕
ሺ𝒖ሬሬ⃗ 𝑻ሻ	

According to the previous figure “ 𝒖ሬሬ⃗ 𝑻 "  is tangent to the curve and “ 𝒖ሬሬ⃗ 𝑵 "oriented 

towards the concavity 

൜
𝒖ሬሬ⃗ 𝑻 ൌ 𝒄𝒐𝒔𝝋 ଙ⃗ െ 𝒔𝒊𝒏𝝋 ଚ⃗    
𝒖ሬሬ⃗ 𝑵 ൌ െ𝒔𝒊𝒏𝝋 ଙ⃗ െ 𝒄𝒐𝒔𝝋 ଚ⃗

	

𝒖ሬሬ⃗ 𝑵 

𝒖ሬሬ⃗ 𝑻 

𝑴 ଚ⃗ 

ଙ⃗ 

𝝋 

𝝋 

𝒖ሬሬ⃗ 𝑵 

𝝋 

𝒓′ሬሬሬ⃗  

𝒖ሬሬ⃗ 𝑻 

𝒅𝝋 
𝑴′ 

𝑶 

𝑴

𝑜 𝒓ሬ⃗  

𝓒

ଚ⃗ 

ଙ⃗ 

𝒖ሬሬ⃗ 𝑵 

𝒖ሬሬ⃗ 𝑻 



⇒				ቐ
𝒖ሶሬሬ⃗ 𝑻 ൌ

𝒅𝒖ሬሬ⃗ 𝑻
𝒅𝒕

ൌ െ 𝒅𝝋

𝒅𝒕
ሺ𝒔𝒊𝒏𝝋 ଙ⃗  𝒄𝒐𝒔𝝋 ଚሬሬ⃗ ሻ ൌ 𝝋ሶ  𝒖ሬሬ⃗ 𝑵    

𝒖ሶሬሬ⃗ 𝑵 ൌ
𝒅𝒖ሬሬ⃗ 𝑵
𝒅𝒕

ൌ െ 𝒅𝝋

𝒅𝒕
ሺ𝒄𝒐𝒔𝝋ଙ⃗ െ 𝒔𝒊𝒏𝝋ଚ⃗ሻ ൌ െ𝝋 ሶ 𝒖ሬሬ⃗ 𝑻

	

      Then: 

𝒂ሬሬ⃗ ൌ
𝒅
𝒅𝒕
ሺ𝒗ሻ.𝒖ሬሬ⃗ 𝑻  𝒗.𝝋 ሶ 𝒖ሬሬ⃗ 𝑵	

      But  𝑴𝑴ᇱ ൌ 𝒅𝒔 ൌ 𝝆𝒅𝝋	

									ρ  is a curvature radius  

𝒅𝒔
𝒅𝒕

ൌ 𝝆
𝒅𝝋
𝒅𝒕

ൌ 𝒗	

⇒			𝝋ሶ ൌ 𝒗/𝝆	

        Finally 

𝒂ሬሬ⃗ ൌ
𝒅𝒗
𝒅𝒕

.𝒖ሬሬ⃗ 𝑻  𝒗.
𝒗
𝝆
𝒖ሬሬ⃗ 𝑵 ൌ

𝒅𝒗
𝒅𝒕

.𝒖ሬሬ⃗ 𝑻 
𝒗𝟐

𝝆
𝒖ሬሬ⃗ 𝑵 ൌ 𝒂ሬሬ⃗ 𝑻  𝒂ሬሬ⃗ 𝑵	

𝒂ሬሬ⃗ ൌ 𝒂ሬሬ⃗ 𝑻  𝒂ሬሬ⃗ 𝑵	

൜
𝒂ሬሬ⃗ 𝑻 ൌ   𝑖𝑠 𝑡ℎ𝑒 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑 𝑚𝑜𝑑𝑢𝑙𝑢𝑠       
𝒂ሬሬ⃗ 𝑵 ൌ  𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑 

 

		

	5.4- Cylindrical coordinates 

													a- Position vector 

             The position vector is given by: 

𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝝆 𝒖ሬሬ⃗ 𝝆  𝒛 𝒌ሬሬ⃗ ⟹ ห𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห ൌ ඥ𝝆𝟐  𝒛𝟐	

														b- velocity vector 

                 Based on definition: 

𝒗ሬሬ⃗ ሺ𝐭ሻ ൌ
 

𝒅𝑶𝑴ሬሬሬሬሬሬሬ⃗

𝒅𝒕
ൌ
𝒅𝒓ሬ⃗
𝒅𝒕

ൌ
𝒅൫𝝆 𝒖ሬሬ⃗ 𝝆  𝒛 𝒌ሬሬ⃗ ൯

𝒅𝒕
ൌ 𝝆 ሶ 𝒖ሬሬ⃗ 𝝆  𝝆

𝒅𝒖ሬሬ⃗ 𝝆
𝒅𝒕

 𝒛 ሶ 𝒌ሬሬ⃗  

                  But    
𝒅𝒖ሬሬ⃗ 𝝆
𝒅𝒕

ൌ 𝜽ሶ  𝒖ሬሬ⃗ 𝜽	



																					𝒗ሬሬ⃗ ሺ𝒕ሻ ൌ 𝝆ሶ  𝒖ሬሬ⃗ 𝝆  𝝆𝜽 ሶ 𝒖ሬሬ⃗ 𝜽  𝒛 ሶ 𝒌ሬሬ⃗ ൌ 𝒗ሬሬ⃗ 𝝆𝒗ሬሬ⃗ 𝜽  𝒗ሬሬ⃗ 𝒛                  

                    With  ቐ
ห𝒗ሬሬ⃗ 𝝆ห ൌ 𝝆ሶ     

|𝒗ሬሬ⃗ 𝜽| ൌ 𝝆𝜽ሶ

|𝒗ሬሬ⃗ 𝒛| ൌ 𝒛ሶ    

	

                   ⟹     |𝒗ሬሬ⃗ ሺ𝐭ሻ| ൌ ට𝒗𝝆𝟐  𝒗𝜽
𝟐  𝒗𝒛𝟐

 

ൌ ට𝝆ሶ 𝟐  ൫𝝆𝜽ሶ ൯
𝟐
 𝒛ሶ 𝟐	

             c- acceleration vector 

                        According to the definition: 

𝒂ሬሬ⃗ ൌ
 

𝒅𝒗ሬሬ⃗
𝒅𝒕

ൌ
𝒅
𝒅𝒕
ቆ
𝒅𝒓ሬ⃗
𝒅𝒕
ቇ ൌ

𝒅
𝒅𝒕
൫𝝆 ሶ 𝒖ሬሬ⃗ 𝝆  𝝆𝜽 ሶ 𝒖ሬሬ⃗ 𝜽  𝒛 ሶ 𝒌ሬሬ⃗ ൯	

	

⟹         𝒂ሬሬ⃗ ൌ
 
𝝆 ሷ 𝒖ሬሬ⃗ 𝝆  𝝆ሶ  𝒖ሶሬሬ⃗ 𝝆  𝝆ሶ 𝜽 ሶ 𝒖ሬሬ⃗ 𝜽  𝝆𝜽 ሷ 𝒖ሬሬ⃗ 𝜽  𝝆𝜽 ሶ 𝒖ሶሬሬ⃗ 𝜽  𝒛 ሷ 𝒌ሬሬ⃗ 	

𝒂ሬሬ⃗ ൌ ൫𝝆ሷ െ 𝝆𝜽ሶ 𝟐൯ 𝒖ሬሬ⃗ 𝝆  ൫𝟐𝝆ሶ 𝜽ሶ  𝝆𝜽ሷ ൯ 𝒖ሬሬ⃗ 𝜽  𝒛 ሷ 𝒌ሬሬ⃗ 	

	

																																																						𝒂ሬሬ⃗ ൌ
 
𝒂ሬሬ⃗ 𝝆  𝒂ሬሬ⃗ 𝜽  𝒂ሬሬ⃗ 𝒛              With          ቐ

ห𝒂ሬሬ⃗ 𝝆ห ൌ ൫𝝆ሷ െ 𝝆𝜽ሶ 𝟐൯     

|𝒂ሬሬ⃗ 𝜽| ൌ ൫𝟐𝝆ሶ 𝜽ሶ  𝝆𝜽ሷ ൯   
|𝒂ሬሬ⃗ 𝒛| ൌ 𝒛ሷ                        

	

									     ⟹           |𝒂ሬሬ⃗ ሺ𝐭ሻ| ൌ ට𝒂𝝆𝟐  𝒂𝜽
𝟐  𝒂𝒛𝟐

 

ൌ ට൫𝝆ሷ െ 𝝆𝜽ሶ 𝟐൯
𝟐
 ൫𝟐𝝆ሶ 𝜽ሶ  𝝆𝜽ሷ ൯

𝟐
 𝒛ሷ  𝟐	

5.5- Spherical coordinates 

             a- Position vector 

                   The position vector is given by: 

𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓 𝒖ሬሬ⃗ 𝒓							⟹      ห𝑶𝑴ሬሬሬሬሬሬሬ⃗ ห ൌ 𝒓	

             b- velocity vector 

                   According to the definition: 



 

      𝒗ሬሬ⃗ ሺ𝒕ሻ ൌ 𝒅𝑶𝑴ሬሬሬሬሬሬሬ⃗

𝒅𝒕
ൌ 𝒅𝒓ሬ⃗

𝒅𝒕
ൌ 𝒓 ሶ 𝒖ሬሬ⃗ 𝒓  𝒓 𝒖ሶሬሬ⃗ 𝒓                         

                            But      𝒖ሶሬሬ⃗ 𝒓 ൌ 𝜽 ሶ 𝒖ሬሬ⃗ 𝜽  𝝋ሶ 𝒔𝒊𝒏𝜽𝒖ሬሬ⃗ 𝝋.	

																												⟹								𝒗ሬሬ⃗ ሺ𝐭ሻ ൌ
 

𝒓 ሶ 𝒖ሬሬ⃗ 𝒓  𝒓𝜽ሶ  𝒖ሬሬ⃗ 𝜽  𝒓𝝋ሶ 𝒔𝒊𝒏𝜽𝒖ሬሬ⃗ 𝝋 ൌ 𝒗ሬሬ⃗ 𝒓𝒗ሬሬ⃗ 𝜽𝒗ሬሬ⃗ 𝝋	

                                           With   ቐ
|𝒗ሬሬ⃗ 𝒓| ൌ 𝒓ሶ             
|𝒗ሬሬ⃗ 𝜽| ൌ 𝒓𝜽ሶ          
ห𝒗ሬሬ⃗ 𝝋ห ൌ 𝒓𝝋ሶ 𝒔𝒊𝒏𝜽

	

                                    ⟹    |𝒗ሬሬ⃗ ሺ𝐭ሻ| ൌ ට𝒗𝒓𝟐  𝒗𝜽
𝟐  𝒗𝝋𝟐

 

ൌ ට𝒓ሶ 𝟐  ൫𝒓𝜽ሶ ൯
𝟐
 ሺ𝒓𝝋ሶ 𝒔𝒊𝒏𝜽ሻ𝟐	

             c- acceleration vector 

                  According to the definition: 

𝒂ሬሬ⃗ ൌ
 

𝒅𝒗ሬሬ⃗
𝒅𝒕

ൌ
𝒅
𝒅𝒕
ቆ
𝒅𝒓ሬ⃗
𝒅𝒕
ቇ ൌ

𝒅
𝒅𝒕
൫𝒓 ሶ 𝒖ሬሬ⃗ 𝒓  𝒓𝜽 ሶ 𝒖ሬሬ⃗ 𝜽  𝒓𝝋ሶ 𝒔𝒊𝒏𝜽𝒖ሬሬ⃗ 𝝋൯	

	

⟹  𝒂ሬሬ⃗ ൌ
 
𝒓ሷ𝒖ሬሬ⃗ 𝒓  𝒓ሶ 𝒖ሶሬሬ⃗ 𝒓  𝒓ሶ𝜽ሶ 𝒖ሬሬ⃗ 𝜽  𝒓𝜽ሷ 𝒖ሬሬ⃗ 𝜽  𝒓𝜽ሶ  𝒖ሶሬሬ⃗ 𝜽  𝒓ሶ𝝋ሶ 𝒔𝒊𝒏𝜽 𝒖ሬሬ⃗ 𝝋  𝒓𝝋ሷ 𝒔𝒊𝒏𝜽 𝒖ሬሬ⃗ 𝝋  𝒓𝝋ሶ 𝜽ሶ 𝒄𝒐𝒔𝜽 𝒖ሬሬ⃗ 𝝋  𝒓𝝋ሶ 𝒔𝒊𝒏𝜽 𝒖ሶሬሬ⃗ 𝝋	

      Knowing also that:    

 

െ  𝒖ሶሬሬ⃗ 𝜽 ൌ
𝒅𝒖ሬሬ⃗ 𝜽
𝒅𝒕

ൌ 𝝏𝒖ሬሬ⃗ 𝜽
𝝏𝜽

. 𝒅𝜽
𝒅𝒕
 𝝏𝒖ሬሬ⃗ 𝜽

𝝏𝝋
. 𝒅𝝋
𝒅𝒕
ൌ െ𝜽 ሶ 𝒖ሬሬ⃗ 𝒓  𝝋ሶ 𝒄𝒐𝒔𝜽 𝒖ሬሬ⃗ 𝝋             

െ  𝒖ሶሬሬ⃗ 𝝋 ൌ
𝒅𝒖ሬሬ⃗ 𝝋
𝒅𝒕

ൌ
𝒅𝒖ሬሬ⃗ 𝝋
𝒅𝜽

. 𝒅𝜽
𝒅𝒕
ൌ െ𝝋ሶ ሺ𝒔𝒊𝒏𝜽𝒖ሬሬ⃗ 𝒓   𝒄𝒐𝒔𝜽 𝒖ሬሬ⃗ 𝜽ሻ                   

	

	

⟹   𝒂ሬሬ⃗ ൌ
 
ቀ𝒓ሷ െ 𝒓𝜽ሶ

𝟐
െ 𝒓𝝋ሶ 𝟐𝒔𝒊𝒏𝟐𝜽ቁ 𝒖ሬሬ⃗ 𝒓  ൫𝒓𝜽ሷ  𝟐𝒓ሶ𝜽ሶ െ 𝒓𝝋ሶ 𝟐𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝜽൯𝒖ሬሬ⃗ 𝜽  ൫𝒓𝝋ሷ 𝒔𝒊𝒏𝜽  𝟐𝒓𝝋ሶ 𝜽ሶ 𝒄𝒐𝒔𝜽  𝟐𝒓ሶ𝝋ሶ 𝒔𝒊𝒏𝜽ሶ ൯𝒖ሬሬ⃗ 𝝋	

					𝒂ሬሬ⃗ ൌ
 
𝒂ሬሬ⃗ 𝒓  𝒂ሬሬ⃗ 𝜽  𝒂ሬሬ⃗ 𝝋          With       ቐ

|𝒂ሬሬ⃗ 𝒓| ൌ 𝒓ሷ െ 𝒓𝜽ሶ 𝟐 െ 𝒓𝝋ሶ 𝟐𝒔𝒊𝒏𝟐𝜽                          
|𝒂ሬሬ⃗ 𝜽| ൌ 𝒓𝜽ሷ  𝟐𝒓ሶ𝜽ሶ െ 𝒓𝝋ሶ 𝟐𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝜽              
ห𝒂ሬሬ⃗ 𝝋ห ൌ 𝒓𝝋ሷ 𝒔𝒊𝒏𝜽  𝟐𝒓𝝋ሶ 𝜽ሶ 𝒄𝒐𝒔𝜽  𝟐𝒓ሶ𝝋ሶ 𝒔ଙ𝒏𝜽ሶ

	

   

 Since   |𝒂ሬሬ⃗ ሺ𝐭ሻ| ൌ ට𝒂𝒓𝟐  𝒂𝜽
𝟐  𝒂𝝋𝟐

 

      ⟹	

|𝒂ሬሬ⃗ | ൌ ට൫𝒓ሷ െ 𝒓𝜽ሶ 𝟐 െ 𝒓𝝋ሶ 𝟐𝒔𝒊𝒏𝟐𝜽൯
𝟐
 ൫𝒓𝜽ሷ  𝟐𝒓ሶ𝜽ሶ െ 𝒓𝝋ሶ 𝟐𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝜽൯

𝟐
 ൫𝒓𝝋ሷ 𝒔𝒊𝒏𝜽  𝟐𝒓𝝋ሶ 𝜽ሶ 𝒄𝒐𝒔𝜽  𝟐𝒓ሶ𝝋ሶ 𝒔ଙ𝒏𝜽ሶ ൯ 𝟐	
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	7-Special motions 

In general, we meet in nature 3 types of motion 

 The translational motion. 

 The rotational motion. 

 Vibrational motion 

We will limit ourselves to certain particular motions of each type. 

      6.1-Rectilinear motion 

When the trajectory of the mobile M is a line, the motion is said to be rectilinear. 

              a- Uniform rectilinear motion (motion at constant velocity) 

If the motion is done at constant velocity ൫𝒂ሬሬ⃗ ൌ 𝟎ሬሬ⃗ ൯, the motion is said to be 

uniform 

∆𝒗 ൌ 𝒗 െ 𝒗𝟎   Since 𝒗 is constant      

 ⟹       𝒗 ൌ 𝒗𝟎     and  𝒂 ൌ ∆𝒗

∆𝒕
ൌ 𝟎	

The route or the path can be obtained as follows: 

𝒗 ൌ
∆𝒙
∆𝒕

    ⟹      ∆𝒙 ൌ 𝒙𝒇 െ 𝒙𝒊 ൌ 𝒗൫𝒕𝒇 െ 𝒕𝒊൯	

If 𝒙𝒊 ൌ 𝟎   and 𝒕𝒊 ൌ 𝟎      then 

 

𝒙 ൌ 𝒗𝒕   . 

 𝑇ℎ𝑖𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑟𝑒𝑐𝑡𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑡𝑖𝑜𝑛.	

	

The same result is given by the integral form because: 

𝒗 ൌ 𝒅𝒙
𝒅𝒕ൗ  ⟹    𝒅𝒙 ൌ 𝒗𝒅𝒕     

න 𝒅𝒙
𝒙𝒇

𝒙𝒊

ൌ න 𝒗𝒅𝒙
𝒕𝒇

𝒕𝒊

 

⟹    𝒙𝒇 െ 𝒙𝒊 ൌ 𝒗൫𝒕𝒇 െ 𝒕𝒊൯ 
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	b- Uniformly varied rectilinear motion (motion done at constant acceleration) 

If the motion has (is done with) a constant acceleration, it is said to be 

uniformly varying. 

               Example: free fall 

               - Let a motion that done on to the direction 𝒐𝒙ሬሬሬሬሬ⃗ 	

 

𝒂ሬሬ⃗ 𝒎𝒐𝒚 ൌ
∆𝒗ሬሬ⃗  
∆𝒕

ൌ
𝒗ሬሬ⃗ 𝒇 െ  𝒗ሬሬ⃗ 𝒊 

𝒕𝒇 െ  𝒕𝒊
ൌ
𝒗𝑩 െ  𝒗𝑨 
𝒕𝑩 െ  𝒕𝑨

ଙ⃗	

               When the motion is uniformly varying 𝒂 ൌ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒	

𝒂𝒎𝒐𝒚 ൌ 𝒂 ⟹ ∆𝒗 ൌ 𝒗𝑩 െ 𝒗𝑨 ൌ 𝒂ሺ𝒕𝑩 െ 𝒕𝑨ሻ	

 

If 𝒕𝑩 ൌ 𝒕 any time and  𝒕𝑨 ൌ 𝒕𝟎  

as  𝒗𝑩 ൌ 𝒗  and 𝒗𝑨 ൌ 𝒗𝟎  

also 𝒙𝑩 ൌ 𝒙  and  𝒙𝑨 ൌ 𝒙𝟎	

              Then: 

𝒗𝑩 ൌ 𝒗 ൌ 𝒂ሺ𝒕 െ  𝒕𝟎ሻ  𝒗𝟎	

              Likewise, 

𝒗ሬሬ⃗ 𝒎𝒐𝒚 ൌ
∆𝒓ሬ⃗  
∆𝒕

ൌ
𝒙𝒇 െ  𝒙𝒊 

𝒕𝒇 െ  𝒕𝒊
ଙ⃗ ൌ

𝒙𝑩 െ  𝒙𝑨 
𝒕𝑩 െ  𝒕𝑨

ଙ⃗ 	

⟹            𝒗𝒎𝒐𝒚 ൌ
𝒙ି 𝒙𝟎 

𝒕ି 𝒕𝟎
 

             We know that the average value is given by: 

 𝑿𝒎𝒐𝒚 ൌ 𝑿ഥ ൌ
∑ 𝒙𝒍
𝒏
𝒍ୀ𝟏   
𝒏

⟹ 𝒗𝒎𝒐𝒚 ൌ
𝒗   𝒗𝟎 

𝟐
	

ଙ⃗ 
𝒙 

𝒕𝑩 𝒕𝑨 

𝒙𝑨,𝒗𝑨  𝒙𝑩,𝒗𝑩 
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Hence        𝒗𝒎𝒐𝒚 ൌ
𝒙ି 𝒙𝟎 

𝚫𝒕
ൌ 𝒗ା 𝒗𝟎 

𝟐
 t 

Since         𝒗 ൌ 𝒂ሺ𝒕 െ  𝒕𝟎ሻ  𝒗𝟎	

		

⟹          𝒙 െ 𝒙𝟎 ൌ
𝒂ሺ𝒕ି 𝒕𝟎ሻା𝒗𝟎 

𝟐
ሺ𝒕 െ  𝒕𝟎ሻ 

𝒗𝟎 

𝟐
ሺ𝒕 െ 𝒕𝟎ሻ	

	

𝒙 ൌ  
𝒂 
𝟐
ሺ𝒕 െ  𝒕𝟎ሻ𝟐  𝒗𝟎ሺ𝒕 െ  𝒕𝟎ሻ    𝒙𝟎  	

                   𝐼𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑟𝑒𝑐𝑡𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑡𝑖𝑜𝑛	

                  Note: The same result can be found using the integral form. 

                      If the acceleration is constant 

𝒂 ൌ
𝑑𝑣
𝑑𝑡

⟹ 𝒅𝒗 ൌ 𝒂𝒅𝒕 ⟹ න 𝒅𝒗
𝒗

𝒗𝟎

ൌ න 𝒂𝒅𝒕
𝒕

𝒕𝟎

 

⟹           𝒗 െ 𝒗𝟎 ൌ 𝒂ሺ𝒕 െ 𝒕𝟎ሻ            ⟹               𝒗 ൌ 𝒗𝟎  𝒂ሺ𝒕 െ 𝒕𝟎ሻ 

                                Since     𝒗 ൌ 𝒅𝒙

𝒅𝒕
          ⟹    𝒅𝒙 ൌ 𝒗𝒅𝒕	

⟹න 𝒅𝒙
𝒙

𝒙𝟎

ൌ න 𝒗𝒅𝒕
𝒕

𝒕𝟎

ൌ න ሾ𝒗𝟎  𝒂ሺ𝒕 െ 𝒕𝟎ሻሿ𝒅𝒕
𝒕

𝒕𝟎

	

𝒙 െ 𝒙𝟎 ൌ
𝟏
𝟐
𝒂ሺ𝒕 െ 𝒕𝟎ሻ𝟐  𝒗𝟎ሺ𝒕 െ 𝒕𝟎ሻ	

𝒙 ൌ
𝟏
𝟐
𝒂ሺ𝒕 െ 𝒕𝟎ሻ𝟐  𝒗𝟎ሺ𝒕 െ 𝒕𝟎ሻ  𝒙𝟎	
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7.2- Curvilinear motion 

When the trajectory of the mobile M is any curve, the movement is said to 

be curvilinear. 

														7.2.1‐	Circular	motion	

 The trajectory of the mobile M is a circle 

a‐Uniform	circular	motion	(𝜽ሶ ൌ 𝝎	is	constant)	

 when the motion of the mobile M is done at constant 

angular velocity. 

The distance traveled is the arc 𝒐𝑴 ൌ 𝒔, it is 

expressed as a function of radius R and the angle 

θ as follows: 

𝒔 ൌ 𝑹𝜽	

  The position vector is: 

𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ ൌ 𝑹 𝒖ሬ⃗ 𝝆	

 Angular velocity and linear velocity 

 The angular velocity is given by the derivative of the angle θ with respect to 

time.     𝒅𝜽
𝒅𝒕
ൌ 𝜽ሶ ൌ 𝝎	

 The linear velocity is given by the derivative of a displacement with respect 

to time. 	

𝒅𝒓ሬ⃗
𝒅𝒕

ൌ 𝒗ሬሬ⃗ ൌ
𝒅൫𝑹𝒖ሬሬ⃗ 𝝆൯

𝒅𝒕
ൌ 𝑹 ሶ 𝒖ሬሬ⃗ 𝝆  𝑹 𝒖ሶሬሬ⃗ 𝝆	

                      since R is constant (circular motion).    ⟹     𝑹ሶ ൌ 𝟎 

                      we have    𝒖ሶሬሬ⃗ 𝝆 ൌ 𝜽ሶ 𝒖ሬሬ⃗ 𝜽	

																																					⟹														𝒗ሬሬ⃗ ൌ  𝑹 𝒖ሶሬሬ⃗ 𝝆 ൌ 𝑹𝜽 ሶ 𝒖ሬሬ⃗ 𝜽	

           So                           |𝒗ሬሬ⃗ | ൌ 𝒗 ൌ 𝑹𝜽ሶ ൌ 𝑹𝝎  ,    

o 

𝑴 

𝒖ሬሬ⃗ 𝝆 𝒖ሬሬ⃗ ఏ 

ଙ⃗ 

ଚ⃗ 𝜽 

O 

𝑹 
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And
|𝒅𝒓ሬ⃗ |

𝒅𝒕
ൌ |𝒗ሬሬ⃗ | ൌ

𝒅𝒔

𝒅𝒕

          The linear velocity is tangential to the curve (to the trajectory) 

							Angular acceleration and linear acceleration 

- The angular acceleration is given by the derivative of the angular velocityθሶ

with respect to time.

𝜺 ൌ 𝜽ሷ ൌ
𝒅൫𝜽ሶ ൯

𝒅𝒕
               

For a uniform circular motion    𝜺 ൌ 𝒐	

- Linear acceleration is given by the derivative of velocity with respect to time.

𝒅𝒗ሬሬ⃗
𝒅𝒕

ൌ 𝒂ሬሬ⃗ ൌ
𝒅൫𝑹𝜽 ሶ 𝒖ሬሬ⃗ 𝜽൯

𝒅𝒕
ൌ 𝑹ሶ 𝜽 ሶ 𝒖ሬሬ⃗ 𝜽  𝑹𝜽 ሷ 𝒖ሬሬ⃗ 𝜽  𝑹𝜽 ሶ 𝒖ሶሬሬ⃗ 𝜽	

Since R and θሶ  are constants (uniform circular motion) 

 ⟹     𝑹ሶ ൌ 𝟎 and 𝜽ሷ ൌ 𝟎 

We have also   𝒖ሶሬሬ⃗ 𝜽 ൌ െ𝜽ሶ 𝒖ሬሬ⃗ 𝝆       

⟹     𝒂ሬሬ⃗ ൌ 𝑹𝜽ሶ ൫െ𝜽ሶ 𝒖ሬሬ⃗ 𝝆൯ ൌ െ𝑹𝜽ሶ 𝟐𝒖ሬሬ⃗ 𝝆	

The linear acceleration is radial and directed towards the center (centripetal) 

b- Uniformly varied circular motion	(𝜺 ൌ 𝜽ሷ 	is constant)

We have 𝜺 ൌ 𝜽ሷ ൌ 𝒅𝜽ሶ

𝒅𝒕
      ⟹ 𝒅𝜽ሶ ൌ 𝜺𝒅𝒕

⟹    𝜽ሶ 𝒇 െ 𝜽ሶ 𝒊 ൌ 𝜺൫𝒕𝒇 െ 𝒕𝒊൯⟹         

If we take 𝒕𝒊 ൌ 𝒕𝟎 as an initial time and 𝒕𝒇 ൌ 𝒕 any time during the motion, with,

           𝜽ሶ 𝒇 ൌ 𝜽ሶ   ;   𝜽ሶ 𝒊 ൌ 𝜽ሶ 𝟎 

        then:	
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𝜽ሶ ൌ 𝜺ሺ𝒕 െ 𝒕𝟎ሻ  𝜽ሶ 𝟎	

	            We have:    

𝒅𝜽
𝒅𝒕

ൌ 𝜽ሶ ൌ 𝝎  

⟹        𝒅𝜽 ൌ 𝝎𝒅𝒕            ⟹න 𝒅𝜽
𝜽𝒇

𝜽𝒊

ൌ න 𝝎𝒅𝒕
𝒕𝒇

𝒕𝒊

 

                                                  ⟹									𝜽𝒇 െ 𝜽𝒊 ൌ
𝟏

𝟐
𝜺൫𝒕𝒇 െ 𝒕𝒊൯

𝟐
 𝜽ሶ 𝒊൫𝒕𝒇 െ 𝒕𝒊൯	

               If we take:     𝜽𝒇 ൌ 𝜽 ,  𝜽𝒊 ൌ 𝜽𝟎       

                                                   ⟹          𝜽 െ 𝜽𝟎 ൌ
𝟏

𝟐
𝜺൫𝒕𝒇 െ 𝒕𝟎൯

𝟐
 𝜽ሶ 𝟎൫𝒕𝒇 െ 𝒕𝟎൯ 

⟹           𝜽 ൌ
𝟏
𝟐
𝜺ሺ𝒕 െ 𝒕𝟎ሻ𝟐  𝜽ሶ 𝟎ሺ𝒕 െ 𝒕𝟎ሻ  𝜽𝟎	

 

 Vectorial expression between linear velocity and angular velocity 

Since linear velocity has as magnitude 𝒗 ൌ 𝑹𝝋ሶ  and direction 𝒖ሬሬ⃗ 𝑻	

 So:                                               𝒗ሬሬ⃗ ൌ 𝑹𝝋ሶ 𝒖ሬ⃗ 𝑻	

 As shown in the figure: 

                                                      𝝋ሶሬሬ⃗ ൌ 𝝎𝒌ሬሬ⃗  

  But: 

⎩
⎪
⎨

⎪
⎧
𝒗 ൌ 𝑹𝝋ሶ ൌ  𝑹𝝎                         

|𝝎ሬሬሬ⃗ ⋀�⃑�| ൌ |𝝎ሬሬሬ⃗ ||𝒓ሬ⃗ |𝒔𝒊𝒏𝜽                  

𝑹 ൌ |𝒓ሬ⃗ |𝒔𝒊𝒏𝜽𝒆𝒕𝒖ሬሬ⃗ 𝑻 ⊥ ሺ𝝎ሬሬሬ⃗ , �⃑�ሻ    

 

                                                ⟹            𝒗ሬሬ⃗ ൌ 𝑹𝝋ሶ 𝒖ሬሬ⃗ 𝑻 ൌ 𝝎𝒓𝒔𝒊𝒏𝜽𝒖ሬሬ⃗ 𝑻 ൌ 𝝎ሬሬሬ⃗ ⋀𝒓ሬ⃗  

𝒗ሬሬ⃗ ൌ 𝝎ሬሬሬ⃗ ⋀𝒓ሬ⃗ 	

which	is	an	important	result	

𝒖ሬሬ⃗ 𝑻 

𝒌ሬሬ⃗  

ଚ⃗ 
ଙ⃗ 

𝒓ሬ⃑  

𝝋 𝑹

𝜽 
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c – General motion 

When the point moves from A to B, it traverses the arc  

                          𝒔 ൌ 𝑨𝑩 .	

The position vector is given by r⃗ , so the displacement is:  

                         ∆𝒓ሬ⃗ ൌ 𝒓ሬ⃗ 𝑩 െ 𝒓ሬ⃗ 𝑨 

For elementary variations (𝑨 → 𝑩), the sector 𝒅𝒓 overlay the magnitude of 

displacement 𝒅𝒓  

𝒅𝒓ሬ⃗ ൌ |𝒅𝒓ሬ⃗ |𝒖ሬሬ⃗ 𝑻 ൌ 𝒅𝒔𝒖ሬሬ⃗ 𝑻	

 Velocity 

We know that: 

 𝒗ሬሬ⃗ ൌ
𝒅𝒓ሬ⃗
𝒅𝒕

ൌ
𝒅𝒔
𝒅𝒕

𝒖ሬሬ⃗ 𝑻 ൌ |𝒗ሬሬ⃗ | 𝒖ሬሬ⃗ 𝑻 ൌ 𝒗 𝒖ሬሬ⃗ 𝑻	

                                 Linear velocity is always tangential to the curve 

 Acceleration 

                              By definition:   𝒂ሬሬ⃗ ൌ 𝒅𝒗ሬሬ⃗

𝒅𝒕
 

                     So  𝒂ሬሬ⃗ ൌ 𝒅ሺ𝒗𝒖ሬሬ⃗ 𝑻ሻ

𝒅𝒕
ൌ 𝒅𝒗

𝒅𝒓
𝒖ሬሬ⃗ 𝑻  𝒗 𝒅𝒖ሬሬ⃗ 𝑻

𝒅𝒕
 

                                But  ൝
𝒖ሬሬ⃗ 𝑻 ൌ 𝒄𝒐𝒔ሺ𝝋ሻ ଙ⃗  𝒔𝒊𝒏ሺ𝝋ሻ ଚ⃗  

 
𝒖ሬሬ⃗ 𝑵 ൌ െ𝒔𝒊𝒏ሺ𝝋ሻ ଙ⃗  𝒄𝒐𝒔ሺ𝝋ሻ ଚ⃗

 

																																		Then 

⟹     

⎩
⎪
⎨

⎪
⎧
𝒅𝒖ሬሬ⃗ 𝑻
𝒅𝒕

ൌ
𝒅𝒖ሬሬ⃗ 𝑻
𝒅𝝋

.
𝒅𝝋
𝒅𝒕

ൌ 𝝋ሶ ሾെ𝒔𝒊𝒏ሺ𝝋ሻ ଙ⃗  𝒄𝒐𝒔ሺ𝝋ሻ ଚ ሬሬ⃗ ሿ

𝒅𝒖ሬሬ⃗ 𝑵
𝒅𝒕

ൌ
𝒅𝒖ሬሬ⃗ 𝑵
𝒅𝝋

.
𝒅𝝋
𝒅𝒕

ൌ െ𝝋ሶ ሾ𝒄𝒐𝒔ሺ𝝋ሻ ଙ⃗  𝒔𝒊𝒏ሺ𝝋ሻ ଚ⃗ ሿ

      

𝑶 

∆𝝋

𝑨 𝑩 

𝝋 
𝒓ሬ⃗ 𝑩 

𝒓ሬ⃗ 𝑨 

𝒖ሬሬ⃗ 𝑵 𝒖ሬሬ⃗ 𝑻 

𝓒 

𝓡 
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⟹         ቐ
𝒖ሬ⃗ 𝑻ሶ ൌ 𝝋ሶ  𝒖ሬ⃗ 𝑵

 

𝒖ሬ⃗ 𝑵ሶ ൌ െ𝝋 ሶ 𝒖ሬ⃗ 𝑻

             ⟹												𝒂ሬሬ⃗ ൌ 𝒅𝒗

𝒅𝒓
𝒖ሬሬ⃗ 𝑻  𝒗ሺ𝝋ሶ  𝒖ሬ⃗ 𝑵ሻ	

We have seen in the circular motion that:  

𝒗 ൌ 𝝆
𝒅𝝋
𝒅𝒕

ൌ 𝝆𝝋ሶ  

ρ is the radius of curvature of C     ⟹      𝝋ሶ ൌ 𝒗

𝝆

          Finally: 

𝒂ሬሬ⃗ ൌ
𝒅𝒗
𝒅𝒓

𝒖ሬሬ⃗ 𝑻 
𝒗𝟐

𝝆
 𝒖ሬሬ⃗ 𝑵 ൌ 𝒂ሬሬ⃗ 𝑻  𝒂ሬሬ⃗ 𝑵	

⎩
⎪
⎨

⎪
⎧𝒂𝑻 ൌ

𝒅𝒗
𝒅𝒓

   𝒅𝒖𝒆 𝒕𝒐 𝒕𝒉𝒆 𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝒕𝒉𝒆 𝒎𝒐𝒅𝒖𝒍𝒖𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝒗𝒆𝒄𝒕𝒐𝒓: 𝒕𝒂𝒏𝒈𝒆𝒏𝒕𝒊𝒂𝒍 𝒂𝒄𝒄𝒆𝒍𝒆𝒓𝒂𝒕𝒊𝒐𝒏

𝒂𝑵 ൌ
𝒗𝟐

𝝆
 𝒅𝒖𝒆 𝒕𝒐 𝒕𝒉𝒆 𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝒕𝒉𝒆 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒕𝒉𝒆 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚:𝒏𝒐𝒓𝒎𝒂𝒍 𝒂𝒄𝒄𝒆𝒍𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 

7.3‐	Harmonic	motion	

If the motion of the particle is along a line with back and forth the motion is 

said to be rectilinear harmonic. 

 Temporary	equation

           The temporary equation of motion is a circular function of form:  

          where 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝒙ሺ𝒕ሻ ൌ 𝒙𝟎 𝐬𝐢𝐧ሺ𝝎𝒕  𝝋ሻ 

𝒙𝟎   is the 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 of motion

𝝎 ൌ 𝟐𝝅

𝑻
is the 𝑝𝑢𝑙𝑠𝑎𝑡𝑖𝑜𝑛 of motion
 𝑻 is the 𝑝𝑒𝑟𝑖𝑜𝑑𝑒  of motion  

  

𝝎𝒕  𝝋 is the phse of the motion

 𝝋 is the 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 phase
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 Velocity	

We know that the velocity is given by the derivative of the position vector with respect 

to time.  

𝒗 ൌ
𝒅𝒙
𝒅𝒕

ൌ 𝝎𝒙𝟎 𝐜𝐨𝐬ሺ𝝎𝒕  𝝋ሻ ൌ 𝝎𝒙𝟎 𝐬𝐢𝐧 ቀ𝝎𝒕  𝝋 
𝝅
𝟐
ቁ	

	

The phase difference between velocity and abscissa is π
2
. They are said to be in 

quadrature 

 Acceleration	

 We know that acceleration is given by the derivative of velocity with respect to time. 

𝒂 ൌ
𝒅𝒗
𝒅𝒕

ൌ െ𝝎𝟐𝒙𝟎 𝐬𝐢𝐧ሺ𝝎𝒕  𝝋ሻ ൌ 𝝎𝟐𝒙𝟎 𝐬𝐢𝐧ሺ𝝎𝒕  𝝋  𝝅ሻ ൌ െ𝝎𝟐𝒙	

The phase difference between velocity and acceleration is "𝝅". They are said to be in 

phase opposition. 

Remark:  

 From the expression of acceleration one can deduce the equation of harmonic 

motion.     

𝒂 ൌ
𝒅𝒗
𝒅𝒕

ൌ
𝒅𝟐𝒙
𝒅𝒕𝟐

ൌ െ𝝎𝟐𝒙 ⟹ 𝒙ሷ  𝝎𝟐𝒙 ൌ 𝒐	

It is a second-order differential equation 

 

𝒙ሺ𝒕ሻ 𝒙ሶ ሺ𝒕ሻ 𝒙ሷ ሺ𝒕ሻ 
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In general case 

𝒅𝒗𝟐

𝒅𝒕
ൌ 𝟐𝒗ሬሬ⃗ ∘ 𝒅𝒗

ሬሬ⃗

𝒅𝒕
ൌ 𝟐𝒗ሬሬ⃗ ∘ 𝒂ሬሬ⃗ ൌ 𝟐|𝒗ሬሬ⃗ ||𝒂ሬሬ⃗ |𝒄𝒐𝒔𝜶 

- If there is movement, speed 𝒗 ് 𝟎 

* Uniform motion: 

 
𝒅𝒗𝟐

𝒅𝒕
ൌ 𝟎 ⟹ ቐ

𝒂 ൌ 𝟎   

𝜶 ൌ േ
𝝅
𝟐

 

⟹ ൞

𝒂 ൌ 𝟎    𝑟𝑒𝑐𝑡𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑒 𝑚𝑜𝑡𝑖𝑜𝑛                  
 

𝜶 ൌ േ
𝝅
𝟐

       𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑒 𝑚𝑜𝑡𝑖𝑜𝑛 𝒗ሬሬ⃗ ⊥ 𝒂ሬሬ⃗
 

	

* Uniform varied motion 

- The movement is accelerated if the norm of speed is an increasing function of 

time 

𝒅𝒗𝟐

𝒅𝒕
 0  ⟹   𝟐|𝒗ሬሬ⃗ ||𝒂ሬሬ⃗ |𝒄𝒐𝒔𝜶  0 

⟹    𝒄𝒐𝒔𝜶  0     ⟹   𝟎 ൏ 𝛼 ൏ 𝝅

𝟐
	

- Movement is delayed if:	

𝒅𝒗𝟐

𝒅𝒕
൏ 𝟎      ⟹   𝟐|𝒗ሬሬ⃗ ||𝒂ሬሬ⃗ |𝒄𝒐𝒔𝜶 ൏ 0    

⟹     𝒄𝒐𝒔𝜶 ൏ 0    ⟹ 𝝅

𝟐
൏ 𝛼 ൏ 𝜋	

	

𝜶 

𝒗ሬሬ⃗  

𝒂ሬሬ⃗  
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8	Relative	motion	

					8.1‐	Change	of	basis‐	System	transform	

* In an orthonormal basis ሺ𝑶, ଙ⃗, ଚ⃗ሻ, the vector 𝑶𝑴ሬሬሬሬሬሬሬ⃗   is written as: 

𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ ൌ 𝒙 ଙ⃗  𝒚 ଚ⃗	

* In another orthonormal basis ሺ𝑶𝟏, ଙ⃗𝟏, ଚ⃗𝟏ሻ, the vector 𝑶𝟏𝑴ሬሬሬሬሬሬሬሬሬ⃗   is written: 

𝑶𝟏𝑴ሬሬሬሬሬሬሬሬሬ⃗ ൌ 𝒓ሬ⃗ 𝟏 ൌ 𝒙𝟏ଙ⃗𝟏  𝒚𝟏ଚ⃗𝟏	

	

Question: How to write the coordinates of one basis according to the other basis? 

The relationship between the two position vectors is 

𝑶𝑴ሬሬሬሬሬሬሬ⃗ ൌ 𝑶𝑶ሬሬሬሬሬሬ⃗ 𝟏  𝑶𝟏𝑴ሬሬሬሬሬሬሬሬሬ⃗  

               ⟹          𝒙ଙ⃗  𝒚ଚ⃗ ൌ ሺ𝒙𝑶𝟏ଙ⃗  𝒚𝑶𝟏ଚ⃗ሻ  ሺ𝒙𝟏ଙ⃗𝟏  𝒚𝟏ଚ⃗𝟏ሻ 

 

The passage of 𝑶𝑴 to 𝐎𝟏𝑴 is called basis change (transform) 

8.2‐	Motion	of	a	reference	frame	𝓡𝟏	with	respect	to	reference	frame	𝓡	

Let ൫𝑶, ଙ⃗, ଚ⃗,𝒌ሬሬ⃗ ൯ and ൫𝑶𝟏, ଙ⃗𝟏, ଚ⃗𝟏,𝒌ሬሬ⃗ 𝟏൯ be two orthonormal bases assigned to both 𝓡 and R1 

which are fixed and mobile reference frame respectively.	

								8.2.1‐	Position	vector	

     Position vectors are written in both reference frames as follows: 

- In the fixed frame of reference 

             𝑶𝑴ሬሬሬሬሬሬሬ⃗ /𝓡 ൌ 𝒓ሬ⃗ ൌ 𝒙 ଙ⃗  𝒚 ଚ⃗  𝒛 𝒌ሬሬ⃗ 	

-  In the mobile frame of reference 

𝑶𝟏𝑴ሬሬሬሬሬሬሬሬሬ⃗ /𝓡𝟏
ൌ 𝒓ሬ⃗ 𝟏 ൌ 𝒙𝟏ଙ⃗𝟏  𝒚𝟏ଚ⃗𝟏  𝒛𝟏𝒌ሬሬ⃗ 	

M	

T

ଚ⃗ 
𝒓ሬ⃗  

ଙ⃗ 

𝒓ሬ⃗ 𝟏 

ଚ⃗𝟏 
ଙ⃗𝟏 

𝑶𝟏 

𝒓ሬ⃗  
𝒓ሬ⃗ 𝟏 

O

ଚ⃗ 

ଙ⃗ 

ଚ⃗𝟏 

ଙ⃗𝟏 𝑶𝟏 
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 The relationship between the two position vectors is: 

𝒓ሬ⃗ ൌ 𝑶𝑴ሬሬሬሬሬሬሬ⃗ /𝓡 ൌ 𝑶𝑶ሬሬሬሬሬሬ⃗ 𝟏/𝓡  𝑶𝟏𝑴ሬሬሬሬሬሬሬሬሬ⃗ /𝓡𝟏
ൌ 𝑶𝑶ሬሬሬሬሬሬ⃗ 𝟏/𝓡  𝒓ሬ⃗ 𝟏/𝓡𝟏

	

                     ⟹        𝒙ଙ⃗  𝒚ଚ⃗  𝒛𝒌ሬሬ⃗ ൌ ൫𝒙𝑶𝟏ଙ⃗  𝒚𝑶𝟏ଚ⃗  𝒛𝑶𝟏𝒌ሬሬ⃗ ൯  ൫𝒙𝟏ଙ⃗𝟏  𝒚𝟏ଚ⃗𝟏  𝒛𝟏𝒌ሬሬ⃗ 𝟏൯ 

8.2.2‐	Velocity	

Remained the transport theorem: 

For two reference frames 𝓡 and 𝓡𝟏 Let ωሬሬ⃗  the angular velocity of 𝓡𝟏 with 

respect to 𝓡.The derivative of a vector 𝑨ሬሬ⃗  with respect to 𝓡 is: 

𝒅𝑨ሬሬ⃗ /𝓡

𝒅𝒕
ൌ
𝒅𝑨ሬሬ⃗ /𝓡𝟏

𝒅𝒕
 ωሬሬ⃗  ⋀ 𝑨ሬሬ⃗ /𝓡𝟏

 

According to the definition: 

𝒗ሬሬ⃗ 𝑴 ൌ
𝒅𝒓ሬ⃗
𝒅𝒕

ൌ
𝒅𝑶𝑴ሬሬሬሬሬሬሬ⃗ /𝓡

𝒅𝒕
ൌ
𝒅𝑶𝑶ሬሬሬሬሬሬ⃗ 𝟏/𝓡

𝒅𝒕

𝒅𝑶𝟏𝑴ሬሬሬሬሬሬሬሬሬ⃗ /𝓡

𝒅𝒕
ൌ
𝒅𝑶𝑶ሬሬሬሬሬሬ⃗ 𝟏/𝓡

𝒅𝒕

𝒅𝑶𝟏𝑴ሬሬሬሬሬሬሬሬሬ⃗ /𝓡

𝒅𝒕𝟏
.
𝒅𝒕𝟏
𝒅𝒕
	

In the case of low speeds, time is considered to be absolute, i.e.   

𝒕 ൌ 𝒕𝟏					⟹     𝒅𝒕 ൌ 𝒅𝒕𝟏	

𝒗ሬሬ⃗ 𝑴 ൌ
𝒅𝑶𝑶ሬሬሬሬሬሬ⃗ 𝟏/𝓡

𝒅𝒕

𝒅𝑶𝟏𝑴ሬሬሬሬሬሬሬሬሬ⃗ /𝓡

𝒅𝒕𝟏
	

𝒗ሬሬ⃗ 𝑴 ൌ
𝒅൫𝒙𝑶𝟏ଙ⃗  𝒚𝑶𝟏ଚ⃗  𝒛𝑶𝟏𝒌ሬሬ⃗ ൯

𝒅𝒕

𝒅൫𝒙𝟏ଙ⃗𝟏  𝒚𝟏ଚ⃗𝟏  𝒛𝟏𝒌ሬሬ⃗ 𝟏൯

𝒅𝒕
	

𝒗ሬሬ⃗ 𝑴 ൌ ൬
𝒅𝒙𝑶𝟏
𝒅𝒕

ଙ⃗ 
𝒅𝒚𝑶𝟏
𝒅𝒕

ଚ⃗ 
𝒅𝒛𝑶𝟏
𝒅𝒕

𝒌ሬሬ⃗ ൰  ൬
𝒅𝒙𝟏
𝒅𝒕

ଙ⃗𝟏 
𝒅𝒚𝟏
𝒅𝒕

ଚ⃗𝟏 
𝒅𝒛𝟏
𝒅𝒕

𝒌ሬሬ⃗ 𝟏൰  ቆ𝒙𝟏
𝒅ଙ⃗𝟏
𝒅𝒕

 𝒚𝟏
𝒅ଚ⃗𝟏
𝒅𝒕

  𝒛𝟏
𝒅𝒌ሬሬ⃗ 𝟏
𝒅𝒕

ቇ	

The moving basis is in translation and rotation with an angular velocity ωሬሬ⃗  with 

respect to the fixed basis. 

But the derivative of a vector with respect to time is: 

                    𝒅𝑨
ሬሬ⃗

𝒅𝒕
ൌ 𝝎ሬሬሬ⃗ ∧ 𝑨ሬሬ⃗   for any vector 𝑨ሬሬ⃗  of constant magnitude 

For any unitary vector ′ 𝒖ሬሬ⃗  ′ :  𝒅𝒖
ሬሬ⃗

𝒅𝒕
ൌ 𝝎ሬሬሬ⃗ ∧ 𝒖ሬሬ⃗         
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⟹        𝒅ଙ⃗
𝒅𝒕
ൌ 𝝎ሬሬሬ⃗ ∧ ଙ⃗  ,      𝒅ଚ⃗

𝒅𝒕
ൌ 𝝎ሬሬሬ⃗ ∧ ଚ⃗      and      𝒅𝒌

ሬሬ⃗

𝒅𝒕
ൌ 𝝎ሬሬሬ⃗ ∧ 𝒌ሬሬ⃗  

The velocity of the point M is written as follows: 

𝒗ሬሬ⃗ 𝑴/𝓡 ൌ 𝒙ሶ 𝑶𝟏ଙ⃗  𝒚ሶ 𝑶𝟏ଚ⃗  𝒛ሶ 𝑶𝟏𝒌ሬሬ⃗  𝒙ሶ 𝟏ଙ⃗𝟏  𝒚ሶ 𝟏ଚ⃗𝟏  𝒛ሶ 𝟏𝒌ሬሬ⃗ 𝟏  𝒙𝟏ሺ𝝎ሬሬሬ⃗ ∧ ଙ⃗𝟏ሻ  𝒚𝟏ሺ𝝎ሬሬሬ⃗ ∧ ଚ⃗𝟏 ሻ  𝒛𝟏൫𝝎ሬሬሬ⃗ ∧ 𝒌ሬሬ⃗ 𝟏൯	

𝒗ሬሬ⃗ 𝑴/𝓡 ൌ 𝒙ሶ 𝑶𝟏ଙ⃗  𝒚ሶ 𝑶𝟏ଚ⃗  𝒛ሶ 𝑶𝟏𝒌ሬሬ⃗  𝒙ሶ 𝟏ଙ⃗𝟏  𝒚ሶ 𝟏ଚ⃗𝟏  𝒛ሶ 𝟏𝒌ሬሬ⃗ 𝟏  ሺ𝝎ሬሬሬ⃗ ∧ 𝒙𝟏ଙ𝟏ሬሬሬ⃗ ሻ  ሺ𝝎ሬሬሬ⃗ ∧ 𝒚𝟏ଚ⃗𝟏 ሻ  ൫𝝎ሬሬሬ⃗ ∧ 𝒛𝟏𝒌ሬሬ⃗ 𝟏൯	

Since the vector product is distributive with respect to addition, we will have: 

𝒗ሬሬ⃗ 𝑴/𝓡 ൌ ൫𝒙ሶ 𝑶𝟏ଙ⃗  𝒚ሶ 𝑶𝟏ଚ⃗  𝒛ሶ 𝑶𝟏𝒌ሬሬ⃗ ൯  ൫𝒙ሶ 𝟏ଙ⃗𝟏  𝒚ሶ 𝟏ଚ⃗𝟏  𝒛ሶ 𝟏𝒌ሬሬ⃗ 𝟏൯  𝝎ሬሬሬ⃗ ∧ ൫𝒙𝟏ଙ⃗𝟏  𝒚𝟏ଚ⃗𝟏  𝒛𝟏𝒌ሬሬ⃗ 𝟏൯	

𝒗ሬሬ⃗ 𝑴/𝓡 ൌ 𝒗ሬሬ⃗ 𝑴/𝓡𝟏
 𝒗ሬሬ⃗ 𝑶𝟏/𝓡 𝝎ሬሬሬ⃗ ∧ 𝑶𝟏𝑴ሬሬሬሬሬሬሬሬሬ⃗ ൌ 𝒗ሬሬ⃗ 𝑴/𝓡𝟏

 𝒗ሬሬ⃗ 𝑶𝟏/𝓡  𝝎ሬሬሬ⃗ ∧ 𝒓ሬ⃗ 𝟏	

𝒗ሬሬ⃗ 𝑴/𝓡 ൌ 𝒗ሬሬ⃗ 𝒂 ൌ 𝒗ሬሬ⃗ 𝒓  𝒗ሬሬ⃗ 𝒆	

This is the law of velocities composition 

𝒗ሬሬ⃗ 𝑴/𝓡 ൌ 𝒗ሬሬ⃗ 𝒂 

Is the absolute velocity, i.e., the velocity of the point M with respect to the fixed 

reference frame 𝓡൫𝑶, ଙ⃗, ଚ⃗,𝒌ሬሬ⃗ ൯. 

𝒗ሬሬ⃗ 𝑴/𝓡𝟏
ൌ 𝒗ሬሬ⃗ 𝒓 

Is the relative velocity, i.e., the velocity of the point M with respect to the mobile 

reference frame 𝓡𝟏൫𝑶𝟏, ଙ⃗𝟏, ଚ⃗𝟏,𝒌ሬሬ⃗ 𝟏൯. 

𝒗ሬሬ⃗ 𝑶𝟏/𝓡 𝝎ሬሬሬ⃗ ∧ 𝒓ሬ⃗ 𝟏 ൌ 𝒗ሬሬ⃗ 𝒆 

Is transport velocity, i.e., the velocity of the point with respect to the fixed reference 

frame, M assuming that this point is fixed in the mobile reference frame (The 

velocity of the mobile reference frame with respect to the fixed one)   

8.2.3‐	Acceleration	vector	

 According to the definition: 

𝒂ሬሬ⃗ 𝑴 ൌ
𝒅𝒗ሬሬ⃗ 𝑴/𝓡

𝒅𝒕
ൌ
𝒅𝟐൫𝑶𝑴ሬሬሬሬሬሬሬ⃗ /𝓡൯

𝒅𝒕𝟐
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𝒂ሬሬ⃗ 𝑴 ൌ
𝒅ቀ𝒗ሬሬ⃗ 𝑴/𝓡𝟏

 𝒗ሬሬ⃗ 𝑶𝟏/𝓡  𝝎ሬሬሬ⃗ ∧ 𝑶𝟏𝑴ሬሬሬሬሬሬሬሬሬ⃗ ቁ

𝒅𝒕
ൌ
𝒅൫𝒗ሬሬ⃗ 𝑴/𝓡𝟏

൯

𝒅𝒕

𝒅ቀ𝒗ሬሬ⃗ 𝑶𝟏/𝓡ቁ

𝒅𝒕

𝒅൫𝝎ሬሬሬ⃗ ∧ 𝑶𝟏𝑴ሬሬሬሬሬሬሬሬሬ⃗ ൯

𝒅𝒕
	

                    

⎩
⎪⎪
⎨

⎪⎪
⎧
𝒅ቀ𝒗ሬሬ⃗ 𝑴/𝓡𝟏ቁ

𝒅𝒕
ൌ

𝒅൫𝒙ሶ 𝟏ଙ⃗𝟏ା𝒚ሶ 𝟏ଚ⃗𝟏ା𝒛ሶ 𝟏𝒌ሬሬ⃗ 𝟏൯

𝒅𝒕
ൌ ൫𝒙ሷ 𝟏ଙ⃗𝟏  𝒚𝟏ሷ ଚ⃗𝟏  𝒛ሷ 𝟏𝒌ሬሬ⃗ 𝟏൯  𝝎ሬሬሬ⃗ ∧ ൫𝒙ሶ 𝟏ଙ⃗𝟏  𝒚ሶ 𝟏ଚ⃗𝟏  𝒛ሶ 𝟏𝒌ሬሬ⃗ 𝟏൯

𝒅൫𝒗ሬሬ⃗ 𝑶𝟏/𝓡൯

𝒅𝒕
ൌ

𝒅൫𝒙ሶ 𝑶𝟏ଙ⃗ା𝒚ሶ 𝑶𝟏ଚ⃗ା𝒛ሶ𝑶𝟏𝒌ሬሬ⃗ ൯

𝒅𝒕
ൌ 𝒙ሷ 𝑶𝟏ଙ⃗  𝒚ሷ 𝑶𝟏ଚ⃗  𝒛ሷ 𝑶𝟏𝒌ሬሬ⃗                                                            

𝒅ሺ𝝎ሬሬሬ⃗ ∧𝒓ሬ⃗ 𝟏ሻ

𝒅𝒕
ൌ 𝝎ሶሬሬሬ⃗ ∧ 𝒓ሬ⃗ 𝟏  𝝎ሬሬሬ⃗ ∧ ൣ൫𝒙ሶ 𝟏ଙ⃗𝟏  𝒚ሶ 𝟏ଚ⃗𝟏  𝒛ሶ 𝟏𝒌ሬሬ⃗ 𝟏൯  𝝎ሬሬሬ⃗ ∧ ൫𝒙𝟏ଙ⃗𝟏  𝒚𝟏ଚ⃗𝟏  𝒛𝟏𝒌ሬሬ⃗ 𝟏൯൧

	

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝒅൫𝒗ሬሬ⃗ 𝑴/𝓡𝟏

൯

𝒅𝒕
ൌ 𝒂ሬሬ⃗ 𝑴/𝓡𝟏

 𝝎ሬሬሬ⃗ ∧ 𝒗ሬሬ⃗ 𝒓                        

𝒅൫𝒗ሬሬ⃗ 𝑶𝟏/𝓡൯

𝒅𝒕
ൌ 𝒂ሬሬ⃗ 𝑶𝟏/𝓡                                           

𝒅ሺ𝝎ሬሬሬ⃗ ∧ 𝒓ሬ⃗ 𝟏ሻ
𝒅𝒕

ൌ 𝝎ሶሬሬሬ⃗ ∧ 𝒓ሬ⃗ 𝟏  𝝎ሬሬሬ⃗ ∧ ሾ𝒗ሬሬ⃗ 𝒓  𝝎ሬሬሬ⃗ ∧ 𝒓ሬ⃗ 𝟏ሿ

	

Finally:  

𝒂ሬሬ⃗ 𝑴 ൌ 𝒂ሬሬ⃗ 𝑴/𝓡𝟏
 𝒂ሬሬ⃗ 𝑶𝟏/𝓡  𝝎ሶሬሬሬ⃗ ∧ 𝒓ሬ⃗ 𝟏  𝝎ሬሬሬ⃗ ∧   ሺ𝝎ሬሬሬ⃗ ∧ 𝒓ሬ⃗ 𝟏ሻ  𝟐𝝎ሬሬሬ⃗ ∧ 𝒗ሬሬ⃗ 𝒓 	

𝒂ሬሬ⃗ ൌ 𝒂ሬሬ⃗ 𝒓  𝒂ሬሬ⃗ 𝒆  𝒂ሬሬ⃗ 𝒄	

𝒂ሬሬ⃗  :  Is the absolute acceleration, i.e., the acceleration of the point M with respect        

to the fixed reference frame 𝓡൫𝑶, ଙ⃗, ଚ⃗,𝒌ሬሬ⃗ ൯.	

𝒂ሬሬ⃗ 𝒓 : Is the relative acceleration, i.e. The acceleration of the point M with respect 

to the mobile frame of reference 𝓡𝟏൫𝑶𝟏, ଙ⃗𝟏, ଚ⃗𝟏,𝒌ሬሬ⃗ 𝟏൯	

𝒂ሬሬ⃗ 𝒆 : Is the transport acceleration, 

𝒂ሬሬ⃗ 𝒄 : Is the Coriolis acceleration. This acceleration cancels out if: 

‐ 𝝎ሬሬሬ⃗ ൌ 𝟎ሬሬ⃗        Movement is a pure translation 

‐ 𝒗ሬሬ⃗ 𝒓 ൌ 𝟎ሬ⃗       The point is fixed in the moving coordinate system M 

‐ 𝝎ሬሬሬ⃗ ∥ 𝒗ሬሬ⃗ 𝒓     The rotation is in a plane perpendicular to the displacement of in the     
           M moving coordinate system 
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8.3‐	Special	case	

													8.3.1	‐"𝓡𝟏"	in	translation	with	respect	to	′′𝓡"	

a‐	Translation	at	constant	velocity:	

In this case: 𝝎ሬሬሬ⃗ ൌ 𝟎ሬሬ⃗  and the acceleration of the point O1 is zero 
𝒅ቀ𝒗ሬሬ⃗ 𝑶𝟏/𝓡ቁ

𝒅𝒕
 ൌ 𝟎ሬሬ⃗   , 

then:  

𝒗ሬሬ⃗ 𝒂 ൌ 𝒗ሬሬ⃗ 𝒓  𝒗ሬሬ⃗ 𝒆 ൌ 𝒗ሬሬ⃗ 𝒓  𝒗ሬሬ⃗ 𝑶𝟏/𝓡	

         The transport velocity is that of the moving coordinate system. 

𝒂ሬሬ⃗ ൌ 𝒂ሬሬ⃗ 𝒓	

              

           Note: In this case Newton's laws are the same in both referential  ′′𝓡" and  "𝓡𝟏" , 

they are called Galilean referential 

b	‐	Translation	at	variable	velocity	

In this case: 𝝎ሬሬሬ⃗ ൌ 𝟎ሬሬ⃗  and the acceleration of the point O1  is not zero 

𝒅ቀ𝒗ሬሬ⃗ 𝑶𝟏/𝓡ቁ

𝒅𝒕
 ് 𝟎ሬሬ⃗  

𝒗ሬሬ⃗ 𝒂 ൌ 𝒗ሬሬ⃗ 𝒓  𝒗ሬሬ⃗ 𝒆 ൌ 𝒗ሬሬ⃗ 𝒓  𝒗ሬሬ⃗ 𝑶𝟏/𝓡  and    𝒂ሬሬ⃗ ൌ 𝒂ሬሬ⃗ 𝒓  𝒂ሬሬ⃗ 𝑶𝟏/𝓡	

                           Note:  

We see that the absolute acceleration is increased by the acceleration of the 

origin of the moving coordinate system. The frame of reference is not Galilean, 

Newton's 2nd law is not valid but will be corrected. 

8.3.2‐	"𝓡𝟏"		in	rotation	with	respect	to	′′𝓡"	

a‐	Rotation	at	constant	angular	velocity:		𝝎ሬሬሬ⃗ ൌ 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆	

        In this case:  𝝎ሬሬሬ⃗ ൌ 𝑪𝒔𝒕𝒆    ⟹     𝒅 𝝎ሬሬሬ⃗

𝒅𝒕
ൌ 𝝎ሶሬሬሬ⃗ ൌ 𝟎ሬሬ⃗  
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        And  𝒂ሬሬ⃗ 𝑶𝟏/𝓡 ൌ
𝒅ቀ𝒗ሬሬ⃗ 𝑶𝟏/𝓡ቁ

𝒅𝒕
ൌ 𝟎ሬሬ⃗  ;          𝒗ሬሬ⃗ 𝑶𝟏/𝓡 ൌ 𝟎ሬሬ⃗   (Only rotation) 

             The absolute velocity is: 

𝒗ሬሬ⃗ 𝒂 ൌ 𝒗ሬሬ⃗ 𝒓  𝒗ሬሬ⃗ 𝒆 ൌ 𝒗ሬሬ⃗ 𝒓  𝝎ሬሬሬ⃗ ∧ 𝒓ሬ⃗ 𝟏	

               And the absolute acceleration is given by: 

𝒂ሬሬ⃗ ൌ 𝒂ሬሬ⃗ 𝒓  𝒂ሬሬ⃗ 𝒆  𝒂ሬሬ⃗ 𝒄 ൌ 𝒂ሬሬ⃗ 𝒓  𝝎ሬሬሬ⃗ ∧   ሺ𝝎ሬሬሬ⃗ ∧ 𝒓ሬ⃗ 𝟏ሻ  𝟐𝝎ሬሬሬ⃗ ∧ 𝒗ሬሬ⃗ 𝒓	

b‐	Variable	angular	velocity			

             In this case:       𝒗ሬሬ⃗ 𝑶𝟏/𝓡 ൌ 𝟎ሬሬ⃗       (Only rotation) 

                And                𝒂ሬሬ⃗ 𝑶𝟏/𝓡 ൌ
𝒅ቀ𝒗ሬሬ⃗ 𝑶𝟏/𝓡ቁ

𝒅𝒕
ൌ 𝟎ሬሬ⃗  

              Then: 

𝒗ሬሬ⃗ 𝒂 ൌ 𝒗ሬሬ⃗ 𝒓  𝒗ሬሬ⃗ 𝒆 ൌ 𝒗ሬሬ⃗ 𝒓  𝝎ሬሬሬ⃗ ∧ 𝒓ሬ⃗ 𝟏	

                   And  

𝒂ሬሬ⃗ ൌ 𝒂ሬሬ⃗ 𝒓  𝒂ሬሬ⃗ 𝒆  𝒂ሬሬ⃗ 𝒄 ൌ 𝒂ሬሬ⃗ 𝒓  ൣ𝝎ሶሬሬሬ⃗ ∧ 𝒓ሬ⃗ 𝟏  𝝎ሬሬሬ⃗ ∧ ሺ𝝎ሬሬሬ⃗ ∧ 𝒓ሬ⃗ 𝟏ሻ൧  𝟐𝝎ሬሬሬ⃗ ∧ 𝒗ሬሬ⃗ 𝒓	



III- Dynamics 

1- Introduction 

1-1-Definition:  

Dynamics (kinetics) is the study of motion by taking into account the causes that generate it 

1-2-Inertial Frame of Reference (Galilean) 

In the case of relative motion, the reference frames have been defined as "𝓡", and "𝓡𝟏", one is 

assumed to be absolute (fixed), the other is mobile. But the question for "𝓡", it is fixed with 

respect to what? As a result, it is assumed that a frame of reference is fixed according to the 

problem under study where the laws of physics become simpler.  

The frame of reference in which an isolated (free) object maintains its state of motion(constant 

velocity) is a privileged reference frame called an inertial frame.  

1.3- Observation: 

- If a ball is dropped, from a height" 𝒉", into a smooth tank (frictionless), it goes down and up 

again at the same level " 𝒉" regardless of the slope. 

- If the second side of the bowl is flattened, then it has been lowered, the ball follows a 

horizontal path and continues its path with a uniform rectilinear movement. 

Result:  

An isolated ball follows a uniform straight path. 

2- Principle of inertia 

In an inertial frame of reference (Galilean), a free body (isolated or not subjected to any external 

forces), continues to move in a straight line at a constant speed (uniform rectilinear motion) if 

it was already in motion, if it is in rest, it remains at rest. 

Note: The principle of inertia brings us closer to the concept of force. 

3- Mass and momentum 

     3.1- Mass 

      The greater the mass of a body, the more difficult to stop or move it. 

𝒉 



Mass is the amount of matter in a body that characterizes its ability to resisting 

the change of motion (velocity), it characterizes its inertia.   

     3.2- Momentum 

‐ For two bodies with the same velocity, it is easier to stop or move the one with the 

smaller mass. 

‐ For two bodies with the same mass, it is easier to stop or move the one with the lower 

velocity. 

3-2-1-Definition  

The product of a body's mass by its velocity defines the momentum denoted  "𝑷ሬሬ⃗ ". 

𝑷ሬሬ⃗ ൌ 𝒎𝒗ሬሬ⃗    [kg.m/s] 

Note: The principle of inertia can be stated as follows: 

           An isolated body of constant mass has a constant momentum. 

3-2-2-Momentum of a Particle System 

Let be an isolated system consisting  "𝒏" of particles of respective velocities " 𝒗ሬሬ⃗ 𝟏,𝒗ሬሬ⃗ 𝟐,𝒗ሬሬ⃗ 𝟑, … ,𝒗ሬሬ⃗ 𝒏". 

We define the center of mass "𝑮" whose vector position " 𝒓ሬ⃗ 𝑮" such that:  

𝒓ሬ⃗ 𝑮 ൌ
∑ 𝒎𝒊𝒓ሬ⃗ 𝒊
𝒏
𝒊ୀ𝟏

∑ 𝒎𝒊
𝒏
𝒊ୀ𝟏

 

𝒓ሬ⃗ 𝒊 : is the position vector for the 𝒊𝒕𝒉 particle of mass "𝒎𝒊" 

Then: 

𝒅𝒓ሬ⃗ 𝑮
𝒅𝒕

ൌ 𝒗ሬሬ⃗ 𝑮 ൌ
∑ 𝒎𝒊

𝒅𝒓ሬ⃗ 𝒊
𝒅𝒕

𝒏
𝒊ୀ𝟏

∑ 𝒎𝒊
𝒏
𝒊ୀ𝟏

ൌ
∑ 𝒎𝒊𝒗ሬሬ⃗ 𝒊
𝒏
𝒊ୀ𝟏

∑ 𝒎𝒊
𝒏
𝒊ୀ𝟏

 

∑ 𝒎𝒊
𝒏
𝒊ୀ𝟏 ൌ 𝑴    the total mass 

Then:       

𝒗ሬሬ⃗ 𝑮 ൌ
∑ 𝑷ሬሬ⃗ 𝒊
𝒏
𝒊స𝟏

∑ 𝒎𝒊
𝒏
𝒊స𝟏

ൌ
∑ 𝑷ሬሬ⃗ 𝒊
𝒏
𝒊స𝟏

𝑴
      ⟹     

∑ 𝒎𝒊𝒗ሬሬ⃗ 𝒊
𝒏
𝒊స𝟏

∑ 𝒎𝒊
𝒏
𝒊స𝟏

ൌ ∑ 𝑷ሬሬ⃗ 𝒊
𝒏
𝒊ୀ𝟏  

Hence: the momentum (linear momentum) of the system 

𝑷ሬሬ⃗ ൌ 𝑴𝒗ሬሬ⃗ 𝑮 ൌ 𝑷ሬሬ⃗ 𝟏  𝑷ሬሬ⃗ 𝟐  𝑷ሬሬ⃗ 𝟑  ⋯ 𝑷ሬሬ⃗ 𝒏 ൌ𝑷ሬሬ⃗ 𝒊

𝒏

𝒊ୀ𝟏

 

The momentum of system of  "𝒏" particles  is the same as if all its mass were concentrated 

at its center of mass that whose velocity is 𝒗ሬሬ⃗ 𝑮. 

 



3-2-3-Conservation of Momentum 

 a – Conservation of momentum 

 Let be a system consisting of two particles [(𝒎𝟏,𝒗ሬሬ⃗ 𝟏ሻ ;ሺ𝒎𝟐,𝒗ሬሬ⃗ 𝟐ሻ] in interaction. Due to the 

change in their velocities, each of the particles follows a curvilinear path. 

- at the moment "𝒕 ൌ 𝒕𝟎" the two particles are in position 𝑨𝟏 and  𝑨𝟐 

- at the moment "𝒕 ൌ 𝒕𝟏" the two particles are in position 𝑩𝟏 and  𝑩𝟐 

 

The position vector of the center of mass of the system is: 

 

𝒓ሬ⃗ 𝑮 ൌ
∑ 𝒎𝒊𝒓ሬ⃗ 𝒊
𝒏
𝒊ୀ𝟏

∑ 𝒎𝒊
𝒏
𝒊ୀ𝟏

ൌ
𝒎𝟏𝒓ሬ⃗ 𝟏 𝒎𝟐𝒓ሬ⃗ 𝟐
𝒎𝟏 𝒎𝟐

 

The momentum is: 

- At  "𝒕 ൌ 𝒕𝟎" :   𝑷ሬሬ⃗ ൌ 𝒎𝟏𝒗ሬሬ⃗ 𝟏  𝒎𝟐𝒗ሬሬ⃗ 𝟐 

- At "𝒕 ൌ 𝒕𝟏" :   𝑷ᇱሬሬሬሬ⃗ ൌ 𝒎𝟏𝒗ᇱሬሬሬ⃗ 𝟏  𝒎𝟐𝒗ᇱሬሬሬ⃗ 𝟐 

The velocity of the center of mass of the system is: 

‐ At  "𝒕 ൌ 𝒕𝟎" : 

𝒗ሬሬ⃗ 𝑮 ൌ
𝒅𝒓ሬ⃗ 𝑮
𝒅𝒕

ൌ
∑ 𝒎𝒊

𝒅𝒓ሬ⃗ 𝒊
𝒅𝒕

𝒏
𝒊ୀ𝟏

∑ 𝒎𝒊
𝒏
𝒊ୀ𝟏

ൌ
𝒎𝟏𝒗ሬሬ⃗ 𝟏  𝒎𝟐𝒗ሬሬ⃗ 𝟐
𝒎𝟏 𝒎𝟐

 

- At "𝒕 ൌ 𝒕𝟏" : 

 𝒗ᇱሬሬሬ⃗ 𝑮 ൌ
𝒅𝒓ሬ⃗ 𝑮
𝒅𝒕

ൌ
∑ 𝒎𝒊

𝒅𝒓ᇲሬሬሬሬ⃗ 𝒊
𝒅𝒕

𝒏
𝒊స𝟏

∑ 𝒎𝒊
𝒏
𝒊స𝟏

ൌ
𝒎𝟏𝒗ᇲሬሬሬሬ⃗ 𝟏ା𝒎𝟐𝒗ᇲሬሬሬሬ⃗ 𝟐

𝒎𝟏ା𝒎𝟐
 

 

Since the system is isolated, the center of 

mass moves at a constant speed. 

𝒗ሬሬ⃗ 𝑮 ൌ 𝒗ᇱሬሬሬ⃗ 𝑮 

- At "𝒕 ൌ 𝒕𝟎" :  𝑷ሬሬ⃗ ൌ 𝑴𝒗ሬሬ⃗ 𝑮  

- At "𝒕 ൌ 𝒕𝟏" : 𝑷ᇱሬሬሬሬ⃗ ൌ 𝑴𝒗′ሬሬሬሬ⃗ 𝑮 

𝒗ሬሬ⃗ 𝑮 ൌ 𝒗ᇱሬሬሬ⃗ 𝑮           ⟹           
𝒎𝟏𝒗ሬሬ⃗ 𝟏ା𝒎𝟐𝒗ሬሬ⃗ 𝟐
𝒎𝟏ା𝒎𝟐

ൌ
𝒎𝟏𝒗ᇲሬሬሬሬ⃗ 𝟏ା𝒎𝟐𝒗ᇲሬሬሬሬ⃗ 𝟐

𝒎𝟏ା𝒎𝟐
  

 

 𝒎𝟏𝒗ሬሬ⃗ 𝟏  𝒎𝟐𝒗ሬሬ⃗ 𝟐 ൌ  𝑴𝒗ሬሬ⃗ 𝑮 ൌ 𝒎𝟏𝒗ᇱሬሬሬ⃗ 𝟏 𝒎𝟐𝒗ᇱሬሬሬ⃗ 𝟐 ൌ 𝑴𝒗ᇱሬሬሬ⃗ 𝑮      

⟹      𝑷ሬሬ⃗ ൌ 𝑷ᇱሬሬሬሬ⃗  

𝒓ሬ⃗ 𝟏 

𝒓ሬ⃗ 𝟐 

ଚ⃗ ଙ⃗ 

𝒌ሬሬ⃗  

𝑨𝟐

𝑩𝟐 

𝑨𝟏 

𝑩𝟏 

𝓒𝟏 

𝒗ሬሬ⃗ 𝟐 

𝒗ሬሬ⃗ 𝟏

𝒎𝟐 

𝒎𝟏 

𝒗ሬሬ⃗ 𝟏
ᇱ  

𝒗ሬሬ⃗ 𝟐
ᇱ  

𝓒𝟐 



𝑷ᇱᇱሬሬሬሬሬ⃗  

𝑷𝟐
ᇱᇱሬሬሬሬሬ⃗  

 

b - Equality of changes in momentum 

Let be two magnetic disks linked by a string and thrown on a blower table which 

constitutes an isolated system.  

 

 

 

 

 

 

-   1 Position before burning the string 

         The system is isolated, and the disks are still linked. 

-   2 Position where the string is burned: 

         The system is isolated and the disks begin to repel each other. 

-   3 Position after the string is burned: 

         The system is still isolated, but the disks become non-isolated and repel each other 

(interact) and change their velocities. 

-   4 Position after a moment of disk separation: 

        The system is still isolated, but the disks become free again and continue in a 

straight path.                     

  

 

 

 

 

 

 

Since the system is isolated, momentum is conserved, 𝑷ሬሬ⃗ ൌ 𝑷ᇱሬሬሬሬ⃗ ൌ 𝑷ᇱᇱሬሬሬሬሬ⃗   

1 2 3 4 

𝑷𝟏ሬሬሬሬሬ⃗  𝑷𝟐ሬሬሬሬሬ⃗  
𝑷ሬሬ⃗  

Before the string is burned 𝑷𝟐
ᇱሬሬሬሬሬ⃗  

𝑷ᇱሬሬሬሬ⃗  

𝑷𝟏
ᇱሬሬሬሬሬ⃗  

𝑷ሬሬ⃗ 𝟏 

𝑷ሬሬ⃗ 𝟏
ᇱ  

∆𝑷ሬሬ⃗ 𝟏 

When the string is burned 

𝑷𝟏
ᇱᇱሬሬሬሬሬ⃗

𝑷ሬሬ⃗ 𝟐 

𝑷ሬሬ⃗ 𝟐
ᇱ  

∆𝑷ሬሬ⃗ 𝟐 

After the string is burned 



but for the disks constituting this system are interacting, which changes their momentum 

𝑷𝟏ሬሬሬሬሬ⃗  and 𝑷ሬሬ⃗ 𝟐. 

Since:                𝑷ሬሬ⃗ ൌ 𝑷ᇱሬሬሬሬ⃗      ⟹        𝑷ሬሬ⃗ 𝟏  𝑷ሬሬ⃗ 𝟐 ൌ 𝑷ᇱሬሬሬሬ⃗ 𝟏  𝑷ᇱሬሬሬሬ⃗ 𝟐     

                                     ⟹         𝑷ᇱሬሬሬሬ⃗ 𝟏 െ 𝑷ሬሬ⃗ 𝟏 ൌ 𝑷ሬሬ⃗ 𝟐 െ 𝑷ᇱሬሬሬሬ⃗ 𝟐 

The change in momentum is: 

∆𝑷ሬሬ⃗ ൌ 𝑷ᇱሬሬሬሬ⃗ െ 𝑷ሬሬ⃗  

⟹      ∆𝑷ሬሬ⃗ 𝟏 ൌ 𝑷ᇱሬሬሬሬ⃗ 𝟏 െ 𝑷ሬሬ⃗ 𝟏   and   ∆𝑷ሬሬ⃗ 𝟐 ൌ 𝑷ᇱሬሬሬሬ⃗ 𝟐 െ 𝑷ሬሬ⃗ 𝟐 

                                       ⟹         ∆𝑷ሬሬ⃗ 𝟏 ൌ െ∆𝑷ሬሬ⃗ 𝟐 

i.e., the variations in momentum are equal and opposite 

4- Newton's Laws   

 4.1:  1st Law: Law of Inertia 

In an inertial frame of reference, the momentum of a free body is conserved, i.e., the 

body (system) is in uniform rectilinear motion or at rest depending on its initial state  

4.2: 2nd Law: Fundamental Principle of Dynamics 

This law is already mentioned, i.e., any change in velocity (or change in momentum) of 

an isolated (free) system is the result of an interaction that results in a force. 

The rate of change in momentum in an interval time produces the applied force. 

𝑭ሬሬ⃗ ൌ 𝑭ሬሬ⃗ 𝒊
𝒆𝒙 ൌ

𝒊

∆𝑷ሬሬ⃗

∆𝒕
 

Where:    ቊ𝑭
ሬሬ⃗ : 𝑁𝑒𝑡 𝑓𝑜𝑟𝑐𝑒               

𝑷ሬሬ⃗ : system momentun
 

 

In the limit case with an infinitesimal change:  

𝑭ሬሬ⃗ ൌ 𝐥𝐢𝐦
∆𝒕→𝟎

ቆ
∆𝑷ሬሬ⃗

∆𝒕
ቇ ൌ

𝒅𝑷ሬሬ⃗

𝒅𝒕
 



Note: In the case where the mass of the system is constant, the 2ndlaw becomes 

𝑭ሬሬ⃗ ൌ 𝑭ሬሬ⃗ 𝒊
𝒆𝒙 ൌ

𝒊

𝒅𝑷ሬሬ⃗

𝒅𝒕
ൌ
𝒅ሺ𝒎𝒗ሬሬ⃗ ሻ

𝒅𝒕
ൌ  𝒎

𝒅𝒗ሬሬ⃗
𝒅𝒕

 

⟹         𝑭ሬሬ⃗ ൌ 𝒎𝒂ሬሬ⃗  

 4.3: 3rd Law:  Law of Reciprocity (Law of Action and Reaction) 

 As already pointed out, the momentum exchanging during the interaction between 

two particles in the system are the same but opposite. 

𝑷ሬሬ⃗ ൌ 𝑷ᇱሬሬሬሬ⃗   ⟹    𝑷ሬሬ⃗ 𝟏  𝑷ሬሬ⃗ 𝟐 ൌ 𝑷ᇱሬሬሬሬ⃗ 𝟏  𝑷ᇱሬሬሬሬ⃗ 𝟐 

           ⟹    𝑷ᇱሬሬሬሬ⃗ 𝟏 െ 𝑷ሬሬ⃗ 𝟏 ൌ 𝑷ሬሬ⃗ 𝟐 െ 𝑷ᇱሬሬሬሬ⃗ 𝟐    

  ⟹    ∆𝑷ሬሬ⃗ 𝟏 ൌ െ∆𝑷ሬሬ⃗ 𝟐 

If: 

 𝑭ሬሬ⃗ 𝟏𝟐: is the action of particle (1) on particle (2) 

𝑭ሬሬ⃗ 𝟐𝟏 : is the action of particle (2) on particle (1)   

So:     𝑭ሬሬ⃗ 𝟏𝟐 ൌ
∆𝑷ሬሬ⃗ 𝟐
∆𝒕

and            𝑭ሬሬ⃗ 𝟐𝟏 ൌ
∆𝑷ሬሬ⃗ 𝟏
∆𝒕

Since       ∆𝑷ሬሬ⃗ 𝟏 ൌ െ∆𝑷ሬሬ⃗ 𝟐 ⟹ 

at the limit:    ∆𝑷ሬሬ⃗ 𝟏 → 𝒅𝑷ሬሬ⃗ 𝟏   and     ∆𝑷ሬሬ⃗ 𝟐 → 𝒅𝑷ሬሬ⃗ 𝟐 

                    ⟹     𝑭ሬሬ⃗ 𝟏𝟐 ൌ
𝒅𝑷ሬሬ⃗ 𝟐
𝒅𝒕

    and       𝑭ሬሬ⃗ 𝟐𝟏 ൌ
𝒅𝑷ሬሬ⃗ 𝟏
𝒅𝒕

      

∆𝑷ሬሬ⃗ 𝟏 ൌ െ∆𝑷ሬሬ⃗ 𝟐  ⟹   𝒅𝑷ሬሬ⃗ 𝟏 ൌ െ𝒅𝑷ሬሬ⃗ 𝟐 

   ⟹    𝑭ሬሬ⃗ 𝟐𝟏 ൌ െ𝑭ሬሬ⃗ 𝟏𝟐 

 Result:  

If one body exerts an effort on another, the latter reacts with an equal and opposite force 

  



5- Some laws of force 

      According to the fundamental law of dynamics, we have:  

𝑭ሬሬ⃗ ൌ 𝒎𝒂ሬሬ⃗ ൌ 𝒎𝒓ሷሬ⃗   

Where:  𝑭ሬሬ⃗ ൌ 𝑭ሬሬ⃗  ሺ𝒓ሶሬ⃗ , 𝒓ሬ⃗ , 𝒕ሻ 

 5.1- Constant force 

In this case, the net force is: 

𝑭ሬሬ⃗ ൌ 𝑭ሬሬ⃗  ൫𝒓ሶሬ⃗ , 𝒓ሬ⃗ , 𝒕൯ ൌ 𝑭ሬሬ⃗ 𝟎 ൌ 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆 

 𝑭ሬሬ⃗ ൌ 𝑭ሬሬ⃗  ൫𝒓ሶሬ⃗ , 𝒓ሬ⃗ , 𝒕൯ ൌ 𝑭ሬሬ⃗ 𝟎 ൌ 𝒎𝒓ሷሬ⃗       ⟹    𝒓ሷሬ⃗ ൌ 𝑭ሬሬ⃗ 𝟎
𝒎
ൌ 𝒅

𝒅𝒕
ሺ𝒅𝒓
ሬ⃗

𝒅𝒕
ሻ    

 ⟹     𝒅ቀ𝒅𝒓
ሬ⃗

𝒅𝒕
ቁ ൌ 𝑭ሬሬ⃗ 𝟎

𝒎
𝒅𝒕            ⟹         𝒅൫𝒓ሶሬ⃗ ൯

𝒓ሶሬ⃗

𝒓ሶሬ⃗ 𝟎
ൌ 𝑭ሬሬ⃗ 𝟎

𝒎
 𝒅𝒕
𝒕
𝒕𝟎

       

 ⟹    𝒓ሶሬ⃗ െ 𝒓ሶሬ⃗ 𝟎 ൌ
𝑭ሬሬ⃗ 𝟎
𝒎
ሺ𝒕 െ 𝒕𝟎ሻ      ⟹        𝒓ሶሬ⃗ ൌ 𝒅𝒓ሬ⃗

𝒅𝒕
ൌ 𝒓ሶሬ⃗ 𝟎 

𝑭ሬሬ⃗ 𝟎
𝒎
ሺ𝒕 െ 𝒕𝟎ሻ 

Finally:   

න 𝒅𝒓ሬ⃗
𝒓ሬ⃗

𝒓ሬ⃗ 𝟎

ൌ න ቈ𝒓ሶሬ⃗ 𝟎 
𝑭ሬሬ⃗ 𝟎
𝒎
ሺ𝒕 െ 𝒕𝟎ሻ 𝒅𝒕

𝒕

𝒕𝟎

 

                                          ⟹         𝒓ሬ⃗ ൌ 𝟏

𝟐

𝑭ሬሬ⃗ 𝟎
𝒎
ሺ𝒕 െ 𝒕𝟎ሻ𝟐  𝒓ሶሬ⃗ 𝟎ሺ𝒕 െ 𝒕𝟎ሻ  𝒓ሬ⃗ 𝟎 

It is the law of uniformly varied motion  

Example: Free Fall              𝑭ሬሬ⃗ 𝟎 ൌ 𝒎𝒈ሬሬ⃗ ⟹ 𝒂ሬሬ⃗ ൌ 𝒈ሬሬ⃗ ൌ 𝒓ሷሬ⃗  

                               ⟹    𝒗ሬሬ⃗ ൌ 𝒅𝒓ሬ⃗

𝒅𝒕
ൌ 𝒗ሬሬ⃗ 𝟎  𝒂ሬሬ⃗ ሺ𝒕 െ 𝒕𝟎ሻ 

                              ⟹     𝒓ሬ⃗ ൌ 𝟏

𝟐
𝒂ሬሬ⃗ ሺ𝒕 െ 𝒕𝟎ሻ𝟐  𝒗ሬሬ⃗ 𝟎ሺ𝒕 െ 𝒕𝟎ሻ  𝒓ሬ⃗ 𝟎 

Since the motion is done in a straight line   

⟹     𝒓 ൌ  𝟏
𝟐
𝒂ሺ𝒕 െ 𝒕𝟎ሻ𝟐  𝒗𝟎ሺ𝒕 െ 𝒕𝟎ሻ  𝒉𝟎    

     5.2- Time-dependent force 

               𝑭ሬሬ⃗  ൫𝒓ሶሬ⃗ , 𝒓ሬ⃗ , 𝒕൯ ൌ 𝑭ሬሬ⃗ ሺ𝒕ሻ    



             𝒓ሷሬ⃗ ൌ 𝑭ሬሬ⃗ ሺ𝒕ሻ

𝒎
ൌ 𝒅

𝒅𝒕
ሺ𝒅𝒓
ሬ⃗

𝒅𝒕
ሻ       ⟹      𝒅൫𝒓ሶሬ⃗ ൯

𝒓ሶሬ⃗

𝒓ሶሬ⃗ 𝟎
ൌ 𝟏

𝒎
 𝑭ሬሬ⃗ ሺ𝒕ሻ𝒅𝒕
𝒕
𝒕𝟎

 

      ⟹   𝒓ሶሬ⃗ ൌ 𝒅𝒓ሬ⃗

𝒅𝒕
ൌ 𝒓ሶሬ⃗ 𝟎 

𝟏

𝒎
 𝑭ሬሬ⃗ ሺ𝒕ሻ𝒅𝒕
𝒕
𝒕𝟎

   ⟹         𝒅𝒓ሬ⃗
𝒓ሬ⃗
𝒓ሬ⃗ 𝟎

ൌ  ቂ𝒓ሶሬ⃗ 𝟎 
𝟏

𝒎
 𝑭ሬሬ⃗ ሺ𝒕ሻ𝒅𝒕
𝒕
𝒕𝟎

ቃ 𝒅𝒕
𝒕
𝒕𝟎

 

Finally:        𝒓ሬ⃗ ൌ  ቂ𝒓ሶሬ⃗ 𝟎 
𝟏

𝒎
 𝑭ሬሬ⃗ ሺ𝒕ሻ𝒅𝒕
𝒕
𝒕𝟎

ቃ 𝒅𝒕
𝒕
𝒕𝟎

 𝒓ሬ⃗ 𝟎 

Example: Point Charge Q   in a Variable Electric Field  𝑬ሺ𝒕ሻ ൌ 𝑬𝟎𝒔𝒊𝒏ሺ𝝎𝒕ሻ. 

We know the force of an electric charge is:    𝑭 ൌ 𝑸𝑬      

 𝑭 ൌ 𝑸𝑬𝟎𝒔𝒊𝒏ሺ𝝎𝒕ሻ ⟹ 𝑭 ൌ 𝒎𝒂 ൌ 𝑸𝑬𝟎𝒔𝒊𝒏ሺ𝝎𝒕ሻ 

⟹     𝒂 ൌ 𝑸𝑬𝟎𝒔𝒊𝒏ሺ𝝎𝒕ሻ

𝒎
 

𝒓 ൌ න ቈ𝒓ሶ 𝟎  න
𝑸𝑬𝟎𝒔𝒊𝒏ሺ𝝎𝒕ሻ

𝒎

𝒕

𝟎
 𝒅𝒕

𝒕

𝟎
 𝒓𝟎 ൌ 𝒓𝟎  𝒗𝟎𝒕 

𝑸𝑬𝟎
𝒎𝝎𝟐 ሺ𝝎𝒕 െ 𝒔𝒊𝒏𝝎𝒕ሻ 

If we take the following initial conditions: 𝒕𝟎 ൌ 𝟎 ; 𝒓𝟎 ൌ 𝟎  ; 𝒗𝟎 ൌ 𝟎  

𝒓 ൌ
𝑸𝑬𝟎
𝒎𝝎𝟐 ሺ𝝎𝒕 െ 𝒔𝒊𝒏𝝎𝒕ሻ 

 

     5.3- Velocity-dependent force 

𝑭ሬሬ⃗  ൫𝒓ሶሬ⃗ , 𝒓ሬ⃗ , 𝒕൯ ൌ 𝑭ሬሬ⃗ ൫𝒓ሶሬ⃗ ൯ ൌ 𝑭ሬሬ⃗ ሺ𝒗ሬሬ⃗ ሻ   

⟹    𝒓ሷሬ⃗ ൌ 𝑭ሬሬ⃗ ሺ𝒗ሬሬ⃗ ሻ

𝒎
ൌ 𝒅

𝒅𝒕
ሺ𝒗ሬሬ⃗ ሻ      

⟹   𝒅𝒕 ൌ 𝒎 𝒅𝒗

𝑭ሺ𝒗ሻ
         ⟹  𝒕 െ 𝒕𝟎 ൌ  𝒎 𝒅𝒗

𝑭ሺ𝒗ሻ

𝒗
𝒗𝟎

              

⟹  𝒕 ൌ 𝒕𝟎  𝒇ሺ𝒗;𝒗𝟎ሻ 

   But:  

 𝒎𝒂 ൌ 𝒎𝒅𝒗

𝒅𝒕
ൌ 𝒎𝒅𝒗

𝒅𝒓
. 𝒅𝒓
𝒅𝒕
ൌ 𝒎𝒗𝒅𝒗

𝒅𝒓
ൌ 𝑭ሺ𝒗ሻ    

           ⟹   𝒅𝒓 ൌ 𝒎 𝒗𝒅𝒗

𝑭ሺ𝒗ሻ
 

   ⟹             𝒅𝒓
𝒓
𝒓𝟎

ൌ 𝒎
𝒗𝒅𝒗

𝑭ሺ𝒗ሻ

𝒗
𝒗𝟎

         ⟹         𝒓 ൌ 𝒓𝟎 𝒎
𝒗𝒅𝒗

𝑭ሺ𝒗ሻ

𝒗
𝒗𝟎

 

 



Example: frictional force (air resistance) acting on a body in free fall: 𝑹ሬሬ⃗ ൌ െ𝒌𝒗ሬሬ⃗  

         ∑𝑭ሬሬ⃗ 𝒆𝒙 ൌ 𝒎𝒈ሬሬ⃗  𝑹ሬሬ⃗     ⟹    𝒎𝒈െ 𝒌𝒗 ൌ 𝒎𝒅𝒗

𝒅𝒕
    

         ⟹    𝒅𝒗

ቀ𝒈ି𝒌
𝒎
𝒗ቁ
ൌ 𝒅𝒕    ⟹   

𝒅𝒗

ቀ𝒈ି𝒌
𝒎
𝒗ቁ
ൌ      𝒅𝒕

If we take                

 𝒈 െ
𝒌
𝒎
𝒗 ൌ 𝒖⟹  െ

𝒌
𝒎
𝒅𝒗 ൌ 𝒅𝒖 

So 

න
𝒅𝒖
𝒖

  ൌ െ
𝒎
𝒌
න𝒅𝒕      ⟹          𝑳𝒏ሺ𝒖ሻ ൌ െ

𝒎
𝒌
𝒕 

 

If at  𝒕𝟎 ൌ 𝟎,   𝒗𝟎 ൌ 𝟎    ⟹   𝒗 ൌ 𝜶ሺ𝟏 െ 𝒆ି𝜷𝒕ሻ𝜷 ൌ 𝒎

𝒌
    

Where   𝜶 ൌ 𝒎𝒈

𝒌
 

5.4- Position-dependent force 

𝑭ሬሬ⃗  ൫𝒓ሶሬ⃗ , 𝒓ሬ⃗ , 𝒕൯ ൌ 𝑭ሬሬ⃗ ሺ𝒓ሬ⃗ ሻ 

Generally, these types of forces are conservative, so they derive from a potential. 

𝑭 ൌ െ
𝒅𝑽
𝒅𝒓

 

Where 𝑽 : is a potential function (potential energy) 

𝑭 ൌ െ𝒅𝑽

𝒅𝒓
ൌ 𝒎𝒂 ൌ 𝒎𝒓ሷ         ⟹              𝑭ሬሬ⃗ ∘ 𝒓ሶሬ⃗ ൌ 𝒎𝒓ሷሬ⃗ ∘ 𝒓ሶሬ⃗     

                𝑭ሬሬ⃗ ∘ 𝒅𝒓
ሬ⃗

𝒅𝒕
ൌ 𝟏

𝟐

𝒅ሺ𝒎𝒓ሶ 𝟐ሻ

𝒅𝒕
         

  ⟹   𝑭ሬሬ⃗ ∘ 𝒅𝒓ሬ⃗
𝒓
𝒓𝟎

ൌ  𝒅ሺ𝟏
𝟐
𝒎𝒓ሶ 𝟐ሻ

𝒓ሶ
𝒓ሶ 𝟎

ൌ െ 𝒅𝑽
𝑽
𝑽𝟎

      

⟹    𝟏
𝟐
൫𝒎𝒓ሶ 𝟐 െ 𝒎𝒓ሶ 𝟎

𝟐൯ ൌ 𝑽ሺ𝒓𝟎ሻ െ 𝑽ሺ𝒓ሻ 

⟹          𝟏
𝟐
𝒎𝒓ሶ 𝟐  𝑽ሺ𝒓ሻ ൌ  𝟏

𝟐
𝒎𝒓ሶ 𝟎

𝟐  𝑽ሺ𝒓𝟎ሻ ൌ 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 ൌ 𝑬 

E: total energy (mechanical Energy) 

𝒎𝒈ሬሬ⃗  

𝑹ሬሬ⃗  

+



We have:                     

𝒅𝒓
𝒅𝒕

ൌ 𝒓ሶ ൌ ∓ඨ
𝟐
𝒎
ඥ𝑬 െ 𝑽ሺ𝒓ሻ            ⟹            𝒅𝒕 ൌ ∓ට

𝒎
𝟐

.
𝒅𝒓

ඥ𝑬 െ 𝑽ሺ𝒓ሻ
 

⟹         𝒕 െ 𝒕𝟎 ൌ ∓ට
𝒎

𝟐
.

𝒅𝒓

ඥ𝑬ି𝑽ሺ𝒓ሻ

𝒓
𝒓𝟎

 

      ⟹        𝒕 ൌ 𝒕𝟎 ∓ ට
𝒎

𝟐
.

𝒅𝒓

ඥ𝑬ି𝑽ሺ𝒓ሻ

𝒓
𝒓𝟎

ൌ 𝑻ሺ𝒓ሻ 

Time is a function of "𝒓", conversely, we can determine the function that describes 

the position of the mobile "𝒓 ൌ 𝑹ሺ𝒕ሻ" 

 6- Angular momentum 

A particle of mass "𝒎" and velocity "𝒗ሬሬ⃗ ", has momentum "𝑷ሬሬ⃗ " and is subject to forces 

given by Newton's second law. 

𝑭ሬሬ⃗ ൌ ∑ 𝑭ሬሬ⃗ 𝒊
𝒆𝒙 ൌ𝒊

𝒅𝑷ሬሬ⃗

𝒅𝒕
     

⟹   𝒓ሬ⃗ ∧ 𝑭ሬሬ⃗ ൌ ∑ 𝒓ሬ⃗ ∧ 𝑭ሬሬ⃗ 𝒊
𝒆𝒙 ൌ ∑ 𝓜ሬሬሬሬሬ⃗ 𝒊ሺ𝑭ሬሬ⃗ 𝒊

𝒆𝒙ሻ/𝒐𝒊𝒊 ൌ 𝒓ሬ⃗ ∧ 𝒅𝑷ሬሬ⃗

𝒅𝒕
 

If we add the quantity " 𝒅𝒓
ሬ⃗

𝒅𝒕
∧ 𝑷ሬሬ⃗ ൌ 𝟎" that does not modify the previous expression in any 

way, we will have: 

𝓜ሬሬሬሬሬ⃗ 𝒊/𝒐 ൌ 𝒓ሬ⃗ ∧
𝒅𝑷ሬሬ⃗

𝒅𝒕
𝒊


𝒅𝒓ሬ⃗
𝒅𝒕

∧ 𝑷ሬሬ⃗ ൌ
𝒅൫𝒓ሬ⃗ ∧ 𝑷ሬሬ⃗ ൯

𝒅𝒕
 

Quantity "𝒓ሬ⃗ ∧ 𝑷ሬሬ⃗ " plays an important role in rotational motion than momentum in 

translation. This amount is called angular momentum. 

 6.1- Definition 

 The angular momentum with respect to a point "O", denoted "𝑳ሬሬ⃗ 𝑶", of a particle of mass 

"𝒎" and velocity " 𝒗ሬሬ⃗  ", is the rotation that results from the effect of its momentum. 

𝑳ሬሬ⃗ 𝑶 ൌ 𝓜ሬሬሬሬሬ⃗ ሺ𝑷ሬሬ⃗ ሻ/𝒐 ൌ 𝑶𝑴ሬሬሬሬሬሬሬ⃗ ∧ 𝑷ሬሬ⃗ ൌ 𝒓ሬ⃗ ∧ 𝑷ሬሬ⃗ . 



6.2- Relation between angular momentum and resultant forces (Newton's 

2nd Law) 

Newton's second law for a rotational motion of a body can be written as follows:  

𝓜ሬሬሬሬሬ⃗ ሺ𝑭ሬሬ⃗ ሻ/𝒐 ൌ𝓜ሬሬሬሬሬ⃗ 𝒊/𝒐
𝒊

ൌ
𝒅൫𝒓ሬ⃗ ∧ 𝑷ሬሬ⃗ ൯

𝒅𝒕
ൌ
𝒅𝑳ሬሬ⃗ 𝑶
𝒅𝒕

 

 

Example:  

The mass 𝒎𝟐, slides without friction, on a table, driven by 

the sphere 𝒎𝟏, with the help of a non stretched wire passing 

through the groove of a pulley of radius 𝑹 and mass 𝑴 distributed on its rim. 

Calculate  

1. The angular momentum with respect to an axis passing through the center of the  

    pulley. 

2. The acceleration of the masses 𝒎𝟏 and 𝒎𝟐 

 

 The angular momentum of 𝒎𝟐 : 

      𝑳𝟐 ൌ |𝒓ሬ⃗ 𝟐 ∧ 𝒎𝟐𝒗ሬሬ⃗ 𝟐| ൌ 𝒎𝟐𝒗𝑹 

 The angular momentum of 𝒎𝟏 : 

       𝑳𝟏 ൌ |𝒓ሬ⃗ 𝟏 ∧ 𝒎𝟏𝒗ሬሬ⃗ 𝟏| ൌ 𝒎𝟏𝒗𝑹 

 The angular momentum of 𝑴 : 

        𝑳𝟑 ൌ ห𝑹ሬሬ⃗ ∧ 𝑴𝒗ሬሬ⃗ ห ൌ 𝑴𝒗𝑹 

Pulley mass distributed over the rim (periphery), so the angular momentum is: 

𝑳/∆ ൌ 𝑳𝟏  𝑳𝟐  𝑳𝟑 

𝓜ሺ𝑭ሬሬ⃗ ሻ/∆

𝒊

ൌ
𝒅𝑳/∆

𝒅𝒕
ൌ
𝒅ሺ𝑳𝟏  𝑳𝟐  𝑳𝟑ሻ

𝒅𝒕
ൌ
𝒅ሺ𝒎𝟏𝒗𝑹 𝒎𝟐𝒗𝑹 𝑴𝒗𝑹ሻ

𝒅𝒕
 

𝓜൫𝑭ሬሬ⃗ ൯
/∆

𝒊

ൌ 𝓜ቀ𝒎𝟏𝒈ሬሬ⃗ሬሬ⃗ ቁ
/∆
ൌ 𝒎𝟏𝒈𝑹 ൌ ሺ𝒎𝟏 𝒎𝟐 𝑴ሻ𝑹𝒂 

⟹        𝒂 ൌ 𝒎𝟏𝒈

ሺ𝒎𝟏ା𝒎𝟐ା𝑴 ሻ
 

𝑶 

𝒓ሬ⃗  

𝒛 

𝒚 

𝒙 
𝑷ሬሬ⃗ ൌ 𝒎𝒗ሬሬ⃗  

𝒎𝟏 

𝒗ሬሬ⃗  𝑴,𝑹 𝒎𝟐 


