Worksheet n°2

(Bivariate statistical series)

Exercice $n^{\circ}1$:

Exercice $\mathbf{n}^{\circ}1$: We are interested in a group of 40 employees of a certain company. The following data is presented in the form of pairs of values of the form (x_i, y_i) where x_i is the Gender of the person {Male, Female} and y_i is the last diploma {bac, licence, master} :

(M,L), (F,B), (M,L), (M,L), (F,B), (F,L), (M,B), (F,L), (M,B), (F,B), (M,L), (M,B), (F,B), (F,L), (M,B), (M,B), (M,B), (M,B), (M,B), (F,B) (M,Ma), (F,B), (M,Ma), (M,B), (M,B), (M,L), (M,L), (M,B), (F,L), (F,B), (M,B), (M,B), (M,B), (F,B), (F,Ma), (M,L), (M,B), (F,B) (M,B).

1. Identify the population and characteristics being studied and their nature.

in the come	ingeneg ear				
	diploma	hac	licence	Master	total
Gender		Dac	neenee	WIASUCI	totai
Male					
Female					
total					

2. Fill in the contingency table :

3. Are the two variables X and Y independent? Justify.

<u>Exercice $n^{\circ}2$ </u>: In an exam, each candidate is tested in statistics (mark X) and maths (mark Y). The results for a sample of 100 candidates are as follows :

$X \setminus Y$	[0, 4]]4,8]]8,12]]12, 16]]16,20]	total
[0,4]	3	4	2	0	0	
]4,8]	6	9	7	4	0	
[]8,12]	1	8	15	12	8	
]12,16]	0	1	7	7	3	
[]16,20]	0	0	1	0	2	
total						

- 1. Identify the population, its size and the type of variables being studied.
- 2. Determine the marginal distributions of X and Y .
- 3. Calculate the marginal means and variances of X and Y;
- 4. Determine the conditional distribution of Y knowing that X is in the interval [8, 12].
- 5. Calculate the mean of the conditional distribution of Y given that X is in the interval [8;12].

Exercice n°3:

The following table gives the braking distance of a car on a dry road as a function of its speed : x_i (Speed in kilometres/hour) | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 |

	<u> </u>								
y_i (distance in metres)		8	12	18	24	32	40	48	58

- 1. Construct a scatterplot of this data $M_i(x_i; y_i)$.
- 2. Do you think the Fitting a line is justified? Justify your answer.
- 3. Using Mayer's method (two-mean method), determine the equation of the straight line representing the braking distance as a function of speed .
- 4. Verify that the mean point is on the fitting line.

- 5. Using this equation, estimate the braking distance of a vehicle travelling at 120km/h.
- 6. Repeat the calculations using the method of least squares.

Exercice $\mathbf{n}^{\circ 4}$: Fit this point cloud with a hyperbola $y = \frac{1}{ax+b}$

x_i	0	1	2	3	4	5	6	7	8	9
y_i	0.91	0.63	0.47	0.38	0.32	0.27	0.24	0.21	0.19	0.18

*Exercice $n^{\circ}5$:

Fit this scatter plots using a power function $y = bx^a$

ſ	x_i	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
	y_i	0.1	0.5	1.4	2.7	5.1	7.6	11.2	15.9	22.3	28.1

<u>*Exercice</u> $n^{\circ}6$:

Fit this scatter plots using an exponential function $y = be^{ax}$

x_i	1	1.5	2	2.5	3	3.5	4	4.5	5	x_i	1	1.5	2	2.5	3	3.5	4	4.5	5
y_i	0.2	0.3	0.5	0.6	0.7	1.1	1.6	2.4	3.3	y_i	0.2	0.3	0.5	0.6	0.7	1.1	1.6	2.4	3.3

Exercice $n^{\circ}7$:

Fit this scatter plots using a power function $y = b + a \ln x$

x_i	1	2	3	4	5	6	7	8	9	10
y_i	1.1	2.9	4.4	5.1	5.8	6.5	6.8	7.3	7.7	7.8