Module: Probability-Statistics

Worksheet n.3

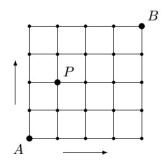
(COMBINATORIAL ANALYSIS)

Exercice $n^{\circ}1$:

In some countries, car number plates begin with a letter of the alphabet, followed by five digits. Calculate how many number plates are possible if:

- a) The first digit following the letter cannot be 0.
- b) The first letter cannot be O or I and the first digit cannot be 0 or 1.

Exercice $n^{\circ}2$:


9 people are seated around a round table.

- 1. How many different ways can they sit? (only the relative position of the nine people in relation to each other is taken into account). relative to each other)
- 2. Same question, but people A and B want to be near to each other.

Exercice $n^{\circ}3$:

Find the number of anagrams of the word MISSISSIPPI. Of these anagrams, how many begin and end with the letter S?

Exercice $n^{\circ}4$: On this 4×4 grid, you can only move to the right or upwards.

- a) How many paths are there from point A to point B?
- b) How many of these paths pass through point P(1;2)?

Exercice n°5:

Let $\overline{C_n^p = \frac{n!}{p!(n-p)!}}$, where $n, p \in \mathbb{N}$ and $p \leq n$.

- 1) Show that : a) $C_n^0 = C_n^n$ b) $C_n^p = C_n^{n-p}$ c) $C_{n+1}^{p+1} = C_n^{p+1} + C_n^p$.
- 2) Using Newton's Binomial formula $(a+b)^n = \sum_{p=0}^n C_n^i a^{n-p} b^p$, calculate

$$A = \sum_{p=0}^{n} C_n^p$$
 , $B = \sum_{p=0}^{n} C_n^p (-1)^p$.

3) Show that $\forall n,p\in\mathbb{N}$ (with $p\leq n$) : $pC_n^p=nC_{n-1}^{p-1}$, and calculate : $F=1C_n^1+2C_n^2+\ldots+nC_n^n$.

4) What is the coefficient of x^6 in the development of $(x+2)^8$ and $(x^2-5)^7$?

Exercice $n^{\circ}6$:

An urn contains 12 balls numerated from 1 to 12. 3 balls are drawn simultaneously.

- i) Determine the number of different draws.
- ii) Same question if these three balls are drawn successively.
- iii)* What if, after each draw, the ball is put back into the urn.

Exercice n°7:

Consider the set $E = \{1; 2; 3; 4; 5; 6\}$. Using the 6 digits of this set, each taken only once, how many distinct numbers can be formed in each of the following cases:

- a) Numbers of 6 digits?
- **b)** Numbers of 4 digits?
- c) Numbers with 4 digits starting with 3?
- d) Numbers of 4 digits containing the digit 3?
- e) Numbers of 4 digits containing the digits 3 and 6?
- **f)** What is a 3-combinations of a set E if repetition is allowed?