MOHAMED BOUDIAF UNIVERSITY OF M'SILA

DEPARTMENT OF COMPUTER SCIENCE

The Foundations of Graph Theory

Chapter 2: Representation of Graphs

Dr. SAID KADRI

Lecturer, Class A

Department of Computer Science, Faculty of Mathematics and Computer Science,

Mohamed Boudiaf University of M'sila

E-mail:kadri.said28@gmail.com

Website: https://kadrisaid28.wixsite.com/sgadri

Methods of graph representation

We distinguish 02 classes of methods:

- 1. Static methods (use of matrices)
 - Adjacency matrix (vertices vertices)
 - Incidence matrix (vertices arcs)
 - List of arcs (sorted unsorted)
 - List of successors
 - List of predecessors
 - Linear list of successors
- 2. Dynamic methods (using linked lists)
 - Dynamic list of vertices
 - Dynamic list of arcs

Static Methods

1. Adjacency matrix (vertices – vertices)

 $\begin{cases} A_{ij} = 1 & if there exist a link between vertices i and j \\ A_{ij} = 0 & if vertices i and j are not connected \end{cases}$

NB: Note that for a directed graph (right) the matrix is not symmetrical.

Adjacency matrix and vertex degrees

Undirected graph

Directed graph

2. Incidence matrix (vertices – arcs)

Let the following graph G(X, U): X = {a, b, c, d, e, f, g} U = {(a, d), (b, a), (b, c), (b, d), (c, b), (c, d), (c, e), (d, e), (e, e)}

A(N, M)

Remarks:

- Each column in the matrix contains a single (+1) corresponding to the initial endpoint of the arc, and a single (-1) corresponding to its terminal endpoint
- The number of (+1) on the line gives the external 1/2 degree of the vertex, although the number of (-1) gives the internal 1/2 degree of the same vertex.

3. List of sorted arcs (by initial end)

U4	U1	U2	U5	U3	U6	U7	U8	U9			
а	b	b	b	С	С	С	d	е	f	g	
d	а	С	d	b	d	е	е	е	Isola	ted vei	tices

A(2, M)/A(3, M)

4. List of unsorted arcs (taken arbitrarily)

U4	U1	U3	U2	U8	U9	U5	U6	U7			
а	b	С	b	d	е	b	С	С	f	g	
d	а	b	С	е	e	d	d	е	Isola	ted ve	rtices

A(2, M)/A(3, M)

5. List of successors

1	а	d		
2	b	а	С	d
3	С	b	d	е
4	d	е		
5	е	е		
6	f			
7	g			

A(N, d_{max}^+)

6. List of predecessors

1	а	b		
2	b	С		
3	С	b		
4	d	а	b	С
5	е	е		
6	f			
7	g			

A(N, d_{max}^{-})

Dynamic methods

For each vertex we associate a sequence of boxes (boxes/nodes), each box contains elementary information, such as:

- Name of the vertex (a, b, c, 1, 2, ...)
- Address of the 1st successor
- Address of the last successor.
- Number of successors
- Value of the arc.
- Others

1. Dynamic list of vertices

2. Dynamic list of arcs

Isolated vertices

Planar graphs

Eulerian graphs and Hamiltonian graphs

Theorem 1:

- A connected undirected graph has an Eulerian chain if only if the number of vertices of odd degree is equal to 0 or 2.
- It admits an Eulerian cycle if only if all its vertices have a even degree.

Necessary condition:

> For each vertex x, d-(x) = d+(x) ==> d(x) is even

Eulerian paths and circuits

Theorem 2:

- G admits an Eulerian circuit if only if ∀x∈G d⁻(x) = d⁺(x)
- A simple connected graph, G(X, U) is Eulerian if only if all its vertices are of even degree (∀x∈X, d(x) is even)

Examples

Hamiltonian cycles

∃ a Hamiltonian cycle

Observation

 A graph with a vertex of degree 1 cannot be Hamiltonian

7

2

3

6

The complete graphs k_n are Hamiltonian if n > 3

G is Hamiltonian (complete, k4)

G contains a Hamiltonian cycle

8

5

