Chapter 3: Trees and Arborescences

3.1. Definition of a tree, Co-tree

• A tree is an undirected graph that is connected and has no cycles.

Fig. 3.1: Example of a tree

- If G is an undirected, connected graph, the tree T of the graph G is a partial graph, connected, and without cycles.
- The co-tree T' associated with T is the complementary partial graph of T with respect to G.

Example 3.1: Building a tree, co-tree from a graph

Let the following graph G be:

Fig. 3.2: Associated Graph, Tree and Co-Tree

3.2. Definition of a forest:

Is an undirected graph, without cycles (connectivity is not necessary)

Fig.3.3: Definition of a forest

- A forest of a graph G is a partial, unconnected graph of G, without cycles.
- A forest is not a tree (consists of several trees).

Fig.3.4: Difference between a tree and a forest

Remarks

In a tree, Co-tree, forest we distinguish two types of vertices:

- Vertices with multiple incident edges (d(x) >1) (incoming or outgoing edges)
- Vertices having only one incident edge are called pendant vertices (vertices of degree 1).

Fig. 3.5: Pendant vertices and non pendant vertices

3.3. Some properties of a tree

- A tree of order ≥ 2 admits at least two pendant vertices.
- Every connected graph G admits a tree as a partial graph (eliminating cycles)
- A tree of order *n* is of size (*n*-1)

- If G is a connected undirected graph of order n and size m, then it admits a tree T of order n and size (n-1) and a co-tree of order n and size m-(n-1)
- Deleting an edge from a tree disconnects the tree (gives two connected components)
- Any edge of a tree is an isthmus (connects 2 connected components), it is an edge which is not contained in any cycle.
- Any pair of vertices *x* and *y* in tree T is connected by a unique chain.
- Adding an arc/edge to the tree creates a single cycle.

3.4. Definition of an arborescence

Let G be a directed graph, we call an arborescence of a directed tree such that there exists a particular vertex r, such that there exists a path from r to any other vertex of G, r is called the root of the arborescence.

Fig.3.6: Defining an arborescence

Observation: An arborescence is a directed tree with a root.

3.5. Properties of an arborescence

• An arborescence of order ≥ 2 admits at least one pendant vertex.

Fig. 3.7: Definition of pendant vertices

Deleting a pendant vertex from an arborescence of order≥2 gives an arborescence.

Fig. 3.8: Result of Deleting a pendant vertex

 In an arborescence with a root r, there exists a unique path from r to any vertex x≠r. (if ∃2 paths⇒ ∃cycle⇒contradiction with the definition (is not an arborescence))

Fig. 3.9: Path uniqueness in an arborescence

In an arborescence A with a root r, d⁻(r)=0 and d⁻(x)=1 for any vertex x≠r

If A is an arborescence, the set of descendants of x Γ⁺(x) (the successors of x) generates an arborescence A' of a root x for any vertex x.

Fig. 3.10: Successors of a vertex in an arborescence

 Deleting an arc from an arborescence A gives two (02) disjoint sub-arborescences A1, A2.

Fig. 3.11: Deleting an arc from an arborescence

• If G is a directed graph with a root *r*, then there exists in G an arborescence A with root *r*, which is a partial graph of G.

3.6. Representation of an arborescence

An arborescence can be represented by tables (vectors and matrices) seen in chapters II. However, it admits a more efficient representation using linked lists (dynamic representation) as follows:

Fig. 3.12: Dynamic representation of an arborescence

Example 3.2: Dynamic representation of an arborescence

Fig. 3.13: Example of dynamic representation of an arborescence

3.7. Browsing an arborescence:

Several browsing/navigating modes are possible:

- 1. Width path: 1, 2, 4, 3, 5, 9, 10, 8, 13, 7, 11, 12, 6
- 2. In-depth path: 1, 2, 3, 5, 13, 7, 9, 4, 10, 8, 11, 12, 6

Remark

Three types of navigation are also used: preorder, inorder, postorder (prefixed, infixed, postfixed)

3.8. Cycles and associated vectors:

Let G(X, U) be a directed graph of order |X| = n and size |U| = m. We can match any cycle *c* with a vector $v_c = (v_1, v_2, ..., v_i, ..., v_m)$, with:

 $v_i = \begin{cases} +1 \text{ if the arc } v_i \in v_c \text{ and it is in the direction of the path of } c \\ -1 \text{ if the arc } v_i \in v_c \text{ and it is in the inverse direction of the path of } c \\ 0 \text{ if the arc } v_i \text{ is not in } v_c \end{cases}$

Remark : We are talking here about a cycle instead of a circuit, because the component vectors have different directions.

Example 3.3: Finding vectors associated with cycles

Let the graph G be defined as follows: X = {a, b, c, d, e, f, g, h} Let the cycle $c_1 = (1, 3, 5, 9, 8, 2)$ The associated vector is as follows: $v_{c1} = (+1, -1, +1, 0, -1, 0, 0, -1, +1, 0)$ Let the cycle $c_2 = (1, 3, 10, 8, 2)$ The associated vector is as follows: $v_{c2} = (+1, -1, +1, 0, 0, 0, 0, -1, 0, +1)$ Let the cycle $c_3 = (5, 9, 10)$ The associated vector is as follows: $v_{c3} = (0, 0, 0, 0, -1, 0, 0, 0, +1, -1)$ Let the cycle $c_4 = (4, 10, 8)$ The associated vector is as follows: $v_{c4} = (0, 0, 0, -1, 0, 0, 0, -1, 0, +1)$

Fig. 3.14: Cycles and associated vectors

3.9. Independent cycles:

The cycles $c_1, c_2, ..., c_k$ are said to be independent if the corresponding vectors $v_{c1}, v_{c2}, ..., v_{ck}$ are linearly independent. i.e., there exists a relation of the form:

 $\alpha_1 v_{c1} + \alpha_2 v_{c2} + \dots + \alpha_k v_{ck} \neq \vec{0}$ with $:\alpha_1, \alpha_2, \dots, \alpha_k$ are real numbers not all zero, otherwise (i.e., $\alpha_i = 0 \quad \forall i = 0, 1, \dots$) they are said to be dependent.

For example, the cycles c_1 , c_2 , c_3 are independent because we have:

$$-v_{c1} - v_{c2} + v_{c3} \neq \vec{0} \ (\alpha_1 = -1, \alpha_2 = -1, \alpha_3 = +1)$$

Verification :

 $(-1)^*(+1, -1, +1, 0, -1, 0, 0, -1, +1, 0) + (-1) (+1, -1, +1, 0, 0, 0, 0, 0, -1, 0, +1) + (+1) (0, 0, 0, 0, -1, 0, 0, 0, +1, -1) = (-2, +2, -2, 0, 0, 0, 0, 0, -1, 0, 0, 0, +1, -1) = (-2, +2, -2, 0, 0, 0, 0, 0, -1, 0, 0, 0, +1, -1) = (-2, +2, -2, 0, 0, 0, -1, 0, 0, 0, +1, -1) = (-2, +2, -2, 0, 0, 0, -1, 0, 0, 0, +1, -1) = (-2, +2, -2, 0, 0, 0, -1, 0, 0, 0, +1, -1) = (-2, +2, -2, 0, 0, -1, 0, 0, 0, +1, -1) = (-2, +2, -2, 0, 0, -1, 0, 0, 0, +1, -1) = (-2, +2, -2, 0, 0, -1, 0, 0, 0, +1, -1) = (-2, +2, -2, 0, 0, -1, 0, 0, 0, +2, -2) \neq \vec{0}$

Theorem:

Let c_1 , c_2 , c_3 , ..., c_k cycles, if each cycle contains an arc that the others do not contain, then the cycles c_1 , c_2 , c_3 , ..., c_k form a set of independent cycles.

3.10. Definition of a cycle base:

A cycle basis is a minimal set of independent cycles ci corresponding to vectors v_{ci} (linearly independent), such that any vector of the graph G can be expressed as a function of this basis (of the vectors of this basis).

Example 3.4: Defining a cycle base in a graph

 $c_{1} = (1, 6, 2) \Rightarrow v_{c1} = (+1, -1, 0, 0, 0, +1)$ $c_{2} = (1, 6, 3) \Rightarrow v_{c2} = (+1, 0, +1, 0, 0, +1)$ $c_{3} = (2, 3) \Rightarrow v_{c3} = (0, -1, +1, 0, 0, 0) \qquad h$ $c_{4} = (1, 4, 5, 2) \Rightarrow v_{c4} = (+1, -1, 0, +1, -1, 0)$ $c_{5} = (6, 5, 4) \Rightarrow v_{c5} = (0, 0, 0, +1, -1, +1)$ $c_{6} = (1, 4, 5, 3) \Rightarrow v_{c6} = (+1, 0, +1, +1, -1, 0)$ Fi

Fig. 3.15: Definition of a cycle base

We note that c_1 , c_3 , c_5 are independent, because each cycle contains a vector that the others do not contain $c_1(1)$, $c_3(3)$, $c_5(5/4)$ ===> form a base of cycles BC.

Theorem: Let G(X, U) be a graph of order *n* and size *m*, consisting of *p* distinct connected components.

The dimension of the cycle base of this graph is given by the relation:

$$V(G) = m - n + p$$

V(G) is called the cyclomatic number of G.

3.11. Definition of a cocycle base

G(X, U) a graph, U = {u₁, u₂, ..., u_m}, |X| = n, |U| = m Let *A* be a subset of vertices of X, $A \subset X$ A cocycle θ is the set of arcs connecting A and (X – A), i.e., $\theta = w(A) = w^+(A) \cup w^-(A)$ We associate with the cocycle θ the vector $v_{\theta} = (\theta_{1}, \theta_{2}, ..., \theta_{n})$

We associate with the cocycle θ the vector $v_{\theta} = (\theta_1, \theta_2, ..., \theta_m)$ defined as follows:

$$\theta_{i} = \begin{cases} +1 & if \ \theta_{i} \in w^{+}(A) \\ -1 & if \ \theta_{i} \in w^{-}(A) \\ 0 & otherwise \end{cases}$$

Example 3.5: Defining a cocycle base in a graph

Let the following graph G be:

Fig. 3.16: Definition of a cocycle base

Let the cycle $c = \{a, e, g, c, f\}$ and the cocycle $\theta = \{b, g, i, a\}$ Vectors associated with the cycle *c* and the cocycle θ will be as follows:

	a	b	С	d	e	f	8	h	i		
Vc	+1	0	+1	0	-1	-1	+1	0	0		
$V\theta$	-1	+1	0	0	0	0	+1	0	-1		
$Vc \cdot V_{\theta}$	-1	0	0	0	0	0	+1	0	0	0	
$==>\Sigma \vec{V_c} \cdot \vec{V_{\theta}} = 0$											

 Table. 3.1: Vectors associated with cycles and cocycles

OBS: the scalar product of a cycle and a cocycle is zero

The set of linearly independent cocycles forms a cocycle base for the graph G.

The dimension of this base $\lambda(G)$ is given by the relation:

$$\lambda(G)=n-1$$

 $\lambda(G)$ is also called the cocyclomatic number of G.

3.12. Algorithm for searching a cycle base of a connected graph

Let G(X, U) be a connected graph

- 1. Find a maximal tree T in the graph G (which contains all vertices)
- 2. Adding an arc \vec{u} from the co-tree T' to T creates a unique cycle c_u oriented in the direction of \vec{u}
- 3. Write all the unique obtained cycles ==> form the sought base (are linearly independent)

Example 3.6: Looking for a cycle base in a graph

We consider the following graph:

n = 10; m = 13We have: n = 10 vertices in the tree ==> the size of the resulting tree T is: m' = n - l = 10 - 1 = 9 edges

 \exists only one connected component (p = 1)

The cyclomatic number (the dimension of the cycle base) is V(G) = m - n + p = 13 - 10 + 1 = 4

 $C_6 = (1, 2, 3, 6)$ $C_8 = (1, 2, 3, 5, 8, 7)$ $C_{11} = (9, 10, 11)$ $C_{13} = (3, 4, 13, 5)$

The obtained co-tree

Fig. 3.17: Cycle base search process

OBS: If necessary, we give an arbitrary orientation to the different edges, and to the cycles the same direction of the added edge (which closes the cycle)

3.13. Searching for a cocycle base

- 1. Divide X into A and (X A)
- 2. The *V* arcs including $I(V) \in A$ and $T(V) \in (X A)$ form a cocycle θ_V
- 3. The set of obtained unique cocycles (each cocycle contains an arc that the others do not contain) form the sought base (are linearly independent)

3.14. Algorithm for searching a maximal tree

G(X, U) is a connected graph of order n and size m.

A maximal tree of G is a connected, cycle-free partial graph T of G of order n and size (n - 1).

The algorithm for constructing the tree T of the graph G consists of taking the (n - 1) edges which do not close cycles (We keep all the vertices and delete edges)

Example 3.7: Finding a maximal tree

Let G(X, U) with: |X| = n = 5; |U| = m = 6

Fig. 3.18: Approach to find a maximal tree in a graph

3.15. Minimum weight maximal spanning tree search algorithm (Kruskal 1)

Let G(X, U, L) be a valued, undirected, connected graph with all edge lengths different (if $u \neq v = > L(u) \neq L(v)$)

- (i) The graph is represented by the list of arcs sorted according to their increasing weights.
- (ii) Let's start with an empty graph, and we successively take the first (n 1) edges which do not close cycles with those already taken.
- (iii) The (n l) retained edges form a minimum weight maximal tree.
- **OBS:** the minimum weight maximal tree consists of (n 1) edges)

Example 3.8: Finding a maximal tree of minimum weight by applying KRUSKAL 1

Example: Let G = (X, U, L)With: $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $U = \{a, b, c, d, e, f, g, h, i, j, k, l, p, q\}$

Fig. 3.19: Search for a maximal tree of minimum weight in a valued graph

l,3

h,13 **3**

d,6

2

5

b.15

6

Application of the algorithm:

Unsorted edge list

Table. 3.2: Sorted list of edges representing a graph

Edges	a	b	c	d	e	f	g	h	i	Ι	k	L	p	q
Ext.Init	3	1	3	3	8	4	1	6	4	7	2	7	9	1
Ext.Ter	2	9	9	5	9	2	7	3	8	8	5	4	2	6
Weight	8	15	5	6	15	10	20	13	5	2	4	3	8	12

After sorting we will have:

List of edges sorted by their weight:

Table. 3.3: Weight-sorted edge list representing a graph

Edges	Ι	L	k	c	i	d	a	p	f	q	h	b	e	g
Ext.Init	7	7	2	3	4	3	3	9	4	1	6	1	8	1
Ext.Ter	8	4	5	9	8	5	2	2	2	6	3	9	9	7
Weight	2	3	4	5	5	6	8	8	10	12	13	15	15	20
Decision	ok	ok	ok	ok	Χ	ok	X	X	ok	ok	ok	Х	X	X
	-		-	-		-	-		-	-				

We stop here, because we have the size of the maximum tree is n - 1 = 9- 1 = 8 edges (already

Maximum tree of minimum weight Nb.edges = 9 - 1 = 8; TotalWeight = 55

3.16. Kruskal Algorithm 2

(i) Represent the graph by the list of (arcs/edges) given as input

- (ii) Let's start with an empty graph, we take the arcs successively and as soon as the arc currently being processed forms a cycle with those already taken, we remove the arc of the maximum weight from the cycle
- (iii) The arcs retained are those of a tree of minimum weight

Application to the previous example:

Edges	a	b	c	d	e	f	g	h	i	Ι	k	L	p	q
Ext.Init	3	1	3	3	8	4	1	6	4	7	2	7	9	1
Ext.Ter	2	9	9	5	9	2	7	3	8	8	5	4	2	6
Weight	8	15	5	6	15	10	20	13	5	2	4	3	8	12
Decision	ok	X	ok											
Final Dec	X	X	ok	ok	X	ok	X	ok	Χ	ok	ok	ok	X	ok

 Table. 3.4: Unsorted list of edges representing a graph

Noticed :

By applying the same algorithms we can construct the maximal tree of maximum weight.

Maximum tree of minimum weight

Fig. 3.21: Search for a maximal tree of minimum weight by applying KRUSKAL 2