
Chapter 3: Trees and Arborescences 
 

3.1. Definition of a tree, Co-tree 

 A tree is an undirected graph that is connected and has no 

cycles. 
 

 

 

 

 
 

Fig. 3.1: Example of a tree 

 

 If G is an undirected, connected graph, the tree T of the graph 

G is a partial graph, connected, and without cycles. 

 The co-tree T' associated with T is the complementary partial 

graph of  T with respect to G. 
 

Example 3.1: Building a tree, co-tree from a graph 

Let the following graph G be: 

 

 

  

 

(G)   The tree T associated with the graph G The co-tree T'associate 

Fig. 3.2: Associated Graph, Tree and Co-Tree 

 

3.2. Definition of a forest: 

 Is an undirected graph, without cycles (connectivity is not 

necessary) 
 

 

 

 

 

Fig.3.3: Definition of a forest 
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 A forest of a graph G is a partial, unconnected graph of G, 

without cycles. 

 A forest is not a tree (consists of several trees). 

 

  

 

 

A graph G A forest associated with the graph G 

Fig.3.4: Difference between a tree and a forest 

 

Remarks 

In a tree, Co-tree, forest we distinguish two types of vertices: 

 Vertices with multiple incident edges (d(x) >1) (incoming or 

outgoing edges) 

 Vertices having only one incident edge are called pendant 

vertices (vertices of degree 1). 
 

 

 

 

 

 

Fig. 3.5: Pendant vertices and non pendant vertices 

 

3.3. Some properties of a tree 

 A tree of order2 admits at least two pendant vertices. 

 Every connected graph G admits a tree as a partial graph 

(eliminating cycles) 

 A tree of order n is of size (n- ) 
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 If G is a connected undirected graph of order n and size m, then 

it admits a tree T of order n and size (n- ) and a co-tree of order 

n and size m-(n-   

 Deleting an edge from a tree disconnects the tree (gives two 

connected components) 

 Any edge of a tree is an isthmus (connects 2 connected 

components), it is an edge which is not contained in any cycle. 

 Any pair of vertices x and y in tree T is connected by a unique 

chain. 

 Adding an arc/edge to the tree creates a single cycle. 

 

3.4. Definition of an arborescence 

Let G be a directed graph, we call an arborescence of a directed 

tree such that there exists a particular vertex r, such that there 

exists a path from r to any other vertex of G, r is called the root of 

the arborescence. 

 

 

 

 

 

   Fig.3.6: Defining an arborescence 

 

Observation: An arborescence is a directed tree with a root. 

 

 

 

 

r Root 
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3.5. Properties of an arborescence 

 An arborescence of order  admits at least one pendant vertex. 

 

 

 

 

 

 

 Deleting a pendant vertex from an arborescence of order2 

gives an arborescence. 

 

 

 

 

 

 

 In an arborescence with a root r, there exists a unique path from 

r to any vertex x≠r. (if2 paths cyclecontradiction with 

the definition (is not an arborescence)) 

 

 

 

 

 

 In an arborescence A with a root r, d-(r)=0 and d-(x)=1 for any 

vertex x≠r 

r 

Pendant 

vertex 

r 

Pendant 

vertices 

Fig. 3.7: Definition of pendant vertices 

Fig. 3.8: Result of Deleting a pendant vertex 

 

Fig. 3.9: Path uniqueness in an arborescence 

r 
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 If A is an arborescence, the set of descendants of x +(x) (the 

successors of x) generates an arborescence A of a root x for 

any vertex x. 

 

 

 

 

 

 
 

 Deleting an arc from an arborescence A gives two (02) disjoint 

sub-arborescences A1, A2. 

 

 

 

 

 

 

 

 If G is a directed graph with a root r, then there exists in G an 

arborescence A with root r, which is a partial graph of G. 
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Fig. 3.10: Successors of a vertex 

in an arborescence 

 

Fig. 3.11: Deleting an arc from an arborescence 



[Trees and Arborescences] 

 
 

 

 

3.6. Representation of an arborescence 

An arborescence can be represented by tables (vectors and 

matrices) seen in chapters II. However, it admits a more efficient 

representation using linked lists (dynamic representation) as 

follows: 

 

 

 

 

 

 

 

 

 

Example 3.2: Dynamic representation of an arborescence 

 

Consider the following arborescence: 

 

 

  

 

 

 

 

 

3.7. Browsing an arborescence: 

Several browsing/navigating modes are possible: 

 . Width path: 1, 2, 4, 3, 5, 9, 10, 8, 13, 7, 11, 12, 6 

 . In-depth path                                            

S  N 

 

S  N  

 

S2 N  

 

S3 N  

 

Sk N N 

 

Pointer to 1st son 

Pointer to next sibling 

S 

S1 S2 S3 S4 

1 

4 2 

3 9 
5 

10 
11 

8 

12 6 

13 7 

   N 

 

2   

 

4  N 

 

3 N  

 
5   

 

9 N N 

 

 0 N  

 

8  N 

 

 3 N  

 

7 N N 

 

    N 

 

 2 N   

 

6 N N 

 

Fig. 3.12: Dynamic representation of an arborescence 

structure 

Fig. 3.13: Example of dynamic representation of an arborescence 
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Remark 

Three types of navigation are also used: preorder, inorder, post-

order (prefixed, infixed, postfixed) 

 

3.8. Cycles and associated vectors: 

Let G(X, U) be a directed graph of order |X| = n and size |U| = m. 

We can match any cycle c with a vector vc = (v , v   …, vi, .., vm), 

with: 
 

   {

                                                                                
                                                                        
                                                                                                                      

   

 

Remark : We are talking here about a cycle instead of a circuit, 

because the component vectors have different directions. 

 

Example 3.3: Finding vectors associated with cycles 

Let the graph G be defined as follows: 

X = {a, b, c, d, e, f, g, h} 

Let the cycle c    (                  

The associated vector is as follows: 

vc1        -       0  -   0  0  -       0  

Let the cycle c    (                

The associated vector is as follows: 

vc2        -       0  0  0  0  -   0      

Let the cycle c    (          

The associated vector is as follows: 

vc3    0  0  0  0  -   0  0  0      -   

Let the cycle c    (          

The associated vector is as follows: 

vc4    0  0  0  -   0  0  0  -   0      
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Fig. 3.14: Cycles and associated vectors 
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3.9. Independent cycles: 

The cycles c , c   …  ck are said to be independent if the 

corresponding vectors vc1, vc2  …  vck are linearly independent. 

i.e., there exists a relation of the form: 

 vc1 +2vc2   …….. kvck ≠ ⃗  with : ,2  …. k  are real 

numbers not all zero, otherwise (i.e.,i=0  i   0     …) they are 

said to be dependent. 
 

For example, the cycles c , c , c  are independent because we 

have: 

-vc1 - vc2 + vc3 ≠ ⃗   (   -  2  -  3      

 

Verification : 

(-   (    -          -         -            (-   (    -                   

-            (    (            -                -     (-       -            

      +2, -   ≠ ⃗  
 

Theorem: 

Let c , c2, c3  …  ck cycles, if each cycle contains an arc that the 

others do not contain, then the cycles c , c , c   …  ck form a set of 

independent cycles. 
 

3.10. Definition of a cycle base: 

A cycle basis is a minimal set of independent cycles ci 

corresponding to vectors vci (linearly independent), such that any 

vector of the graph G can be expressed as a function of this basis 

(of the vectors of this basis). 
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Example 3.4: Defining a cycle base in a graph 

c        6  2  vc1        -   0  0  0      

c2       6  3  vc2        0      0  0      

c3    2  3  vc3    0  -       0  0  0  

c4       4  5  2  vc4        -   0      -   0  

c5    6  5  4  vc5    0  0  0      -       

c6       4  5  3  vc6        0          -   0  

 
 

 

We note that c , c , c  are independent, because each cycle 

contains a vector that the others do not contain c (1), c (3), c (5/4) 

===> form a base of cycles BC. 

 

Theorem: Let G(X, U) be a graph of order n and size m, 

consisting of p distinct connected components. 

The dimension of the cycle base of this graph is given by the 

relation: 
 

V(G) = m – n + p 
 

V(G) is called the cyclomatic number of G. 

 

3.11. Definition of a cocycle base 

G(X, U) a graph, U = {u , u   ….  um}, |X| = n, |U| = m 

Let A be a subset of vertices of X, AX 

A cocycle is the set of arcs connecting A and (X – A), i.e., 

 = w(A) = w+(A)w-(A) 

We associate with the cocycle  the vector v= ( ,2  … m) 

defined as follows: 
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Fig. 3.15: Definition of a cycle base 
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Example 3.5: Defining a cocycle base in a graph 

Let the following graph G be: 

 

 

 

 

 

 

 

 

Let the cycle c = {a, e, g, c, f} and the cocycle  = {b, g, i, a} 

Vectors associated with the cycle c and the cocycle  will be as 

follows: 
 

 a b c d e f g h i  

Vc           -  -          

V -                  -   

Vc . V -                     
 

===>∑  ⃗     
⃗⃗⃗⃗    

 

OBS: the scalar product of a cycle and a cocycle is zero 
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Fig. 3.16: Definition of a cocycle base 

Table. 3.1: Vectors associated with cycles and cocycles 
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The set of linearly independent cocycles forms a cocycle base for 

the graph G. 

The dimension of this base (G) is given by the relation: 
 

(G) = n -1 
 

(G) is also called the cocyclomatic number of G. 

 

3.12. Algorithm for searching a cycle base of a connected 

graph 

Let G(X, U) be a connected graph 

 . Find a maximal tree T in the graph G (which contains all 

vertices) 

 . Adding an arc  ⃗  from the co-tree T' to T creates a unique cycle 

cu oriented in the direction of  ⃗  

 . Write all the unique obtained cycles ==> form the sought base 

(are linearly independent) 

 

Example 3.6: Looking for a cycle base in a graph 

We consider the following graph: 

n = 10 ; m = 13 

We have: n = 10 vertices in the tree ==> 

the size of the resulting tree T is: 

m' = n –   = 10 – 1 = 9 edges 

 

 

 only one connected component (p = 1) 

 

 

6 

3   
4 

7 
 3 

2 

5 
 2 

9  0 

   

8 



[Trees and Arborescences] 

 
 

 
 

The cyclomatic number (the dimension of the cycle base) 

is V(G) = m – n + p = 13 –            

 

The cycles that form the cycle base are: 

C6       2  3  6) 

C8       2  3  5  8  7  

C      9   0  11) 

C 3    3  4  13  5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OBS: If necessary, we give an arbitrary orientation to the different 

edges, and to the cycles the same direction of the added edge 

(which closes the cycle) 
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Fig. 3.17: Cycle base search process 
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3.13. Searching for a cocycle base 

 . Divide X into A and (X – A) 

 . The V arcs including I(V)A and T(V)(X – A) form a cocycle 

V 

 . The set of obtained unique cocycles (each cocycle contains an 

arc that the others do not contain) form the sought base (are 

linearly independent) 
 

3.14. Algorithm for searching a maximal tree 

G(X, U) is a connected graph of order n and size m. 

A maximal tree of G is a connected, cycle-free partial graph T of 

G of order n and size (n –   . 

The algorithm for constructing the tree T of the graph G consists 

of taking the (n –    edges which do not close cycles (We keep all 

the vertices and delete edges) 

 

Example 3.7: Finding a maximal tree 

Let G(X, U) with: |X| = n =5; |U| = m = 6 

 

 

                                                               The algorithm 

 

 

                                                       The Maximal Tree 
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Fig. 3.18: Approach to find a maximal tree in a graph 
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3.15. Minimum weight maximal spanning tree search algorithm 

(Kruskal 1) 

Let G(X, U, L) be a valued, undirected, connected graph with all 

edge lengths different (if u ≠ v   > L u  ≠ L v ) 

(i) The graph is represented by the list of arcs sorted according to 

their increasing weights. 

(ii) Let's start with an empty graph, and we successively take the 

first (n –    edges which do not close cycles with those already 

taken. 

(iii) The (n –    retained edges form a minimum weight maximal 

tree. 
 

OBS: the minimum weight maximal tree consists of (n –    edges) 
 

Example 3.8: Finding a maximal tree of minimum weight by applying 

KRUSKAL 1 

 

Example: Let G = (X, U, L) 

With: X = {1, 2, 3, 4, 5, 6, 7, 8, 9} 

U = {a, b, c, d, e, f, g, h, i, j, k, l, p, q} 
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Fig. 3.19: Search for a maximal tree 

of minimum weight in a valued graph 
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Application of the algorithm: 
 

Unsorted edge list 
 

 

 

 

 

 

 

 

After sorting we will have: 
 

List of edges sorted by their weight: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Edges a b c d e f g h i I k L p q 
Ext.Init                             

Ext.Ter                             

Weight                                   

 

4 l,3 7 

2 1 
9 

b,15 p,8 

8 

5 6 3 

Edges I L k c i d a p f q h b e g 

Ext.Init                             

Ext.Ter                             

Weight                                   

Decision ok ok ok ok X ok X X ok ok ok X X X 

 

Maximum tree of minimum weight 

Nb.edges = 9 – 1 =8; TotalWeight = 

   

We stop here, because 

we have the size of the 

maximum tree is n -1 = 9 

– 1 = 8 edges (already 

taken) 

Table. 3.2: Sorted list of edges representing a graph 

Table. 3.3: Weight-sorted edge list representing a graph 

Fig. 3.20: Search process 

of maximum Tree of minimum weight in a valued graph 
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3.16. Kruskal Algorithm 2 

(i) Represent the graph by the list of (arcs/edges) given as input 

(ii) Let's start with an empty graph, we take the arcs successively 

and as soon as the arc currently being processed forms a cycle 

with those already taken, we remove the arc of the maximum 

weight from the cycle 

(iii) The arcs retained are those of a tree of minimum weight 
 

Application to the previous example: 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

Edges a b c d e f g h i I k L p q 
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Fig. 3.21: Search for a maximal tree of 

minimum weight by applying KRUSKAL 2 

Table. 3.4: Unsorted list of edges representing a graph 

Noticed : 

By applying the same algorithms we 

can construct the maximal tree of 

maximum weight. 
 


