
Chapter 3: Trees and Arborescences

3.1. Definition of a tree, Co-tree

 A tree is an undirected graph that is connected and has no

cycles.

Fig. 3.1: Example of a tree

 If G is an undirected, connected graph, the tree T of the graph

G is a partial graph, connected, and without cycles.

 The co-tree T' associated with T is the complementary partial

graph of T with respect to G.

Example 3.1: Building a tree, co-tree from a graph

Let the following graph G be:

(G) The tree T associated with the graph G The co-tree T'associate

Fig. 3.2: Associated Graph, Tree and Co-Tree

3.2. Definition of a forest:

 Is an undirected graph, without cycles (connectivity is not

necessary)

Fig.3.3: Definition of a forest

[Trees and Arborescences]

 A forest of a graph G is a partial, unconnected graph of G,

without cycles.

 A forest is not a tree (consists of several trees).

A graph G A forest associated with the graph G

Fig.3.4: Difference between a tree and a forest

Remarks

In a tree, Co-tree, forest we distinguish two types of vertices:

 Vertices with multiple incident edges (d(x) >1) (incoming or

outgoing edges)

 Vertices having only one incident edge are called pendant

vertices (vertices of degree 1).

Fig. 3.5: Pendant vertices and non pendant vertices

3.3. Some properties of a tree

 A tree of order2 admits at least two pendant vertices.

 Every connected graph G admits a tree as a partial graph

(eliminating cycles)

 A tree of order n is of size (n-)

 non pendant

vertex

pendant

vertices

pendant edge

[Trees and Arborescences]

 If G is a connected undirected graph of order n and size m, then

it admits a tree T of order n and size (n-) and a co-tree of order

n and size m-(n-

 Deleting an edge from a tree disconnects the tree (gives two

connected components)

 Any edge of a tree is an isthmus (connects 2 connected

components), it is an edge which is not contained in any cycle.

 Any pair of vertices x and y in tree T is connected by a unique

chain.

 Adding an arc/edge to the tree creates a single cycle.

3.4. Definition of an arborescence

Let G be a directed graph, we call an arborescence of a directed

tree such that there exists a particular vertex r, such that there

exists a path from r to any other vertex of G, r is called the root of

the arborescence.

 Fig.3.6: Defining an arborescence

Observation: An arborescence is a directed tree with a root.

r Root

[Trees and Arborescences]

3.5. Properties of an arborescence

 An arborescence of order admits at least one pendant vertex.

 Deleting a pendant vertex from an arborescence of order2

gives an arborescence.

 In an arborescence with a root r, there exists a unique path from

r to any vertex x≠r. (if2 paths cyclecontradiction with

the definition (is not an arborescence))

 In an arborescence A with a root r, d-(r)=0 and d-(x)=1 for any

vertex x≠r

r

Pendant

vertex

r

Pendant

vertices

Fig. 3.7: Definition of pendant vertices

Fig. 3.8: Result of Deleting a pendant vertex

Fig. 3.9: Path uniqueness in an arborescence

r

[Trees and Arborescences]

 If A is an arborescence, the set of descendants of x +(x) (the

successors of x) generates an arborescence A of a root x for

any vertex x.

 Deleting an arc from an arborescence A gives two (02) disjoint

sub-arborescences A1, A2.

 If G is a directed graph with a root r, then there exists in G an

arborescence A with root r, which is a partial graph of G.

r

x
A’

A

A

A

r
A1 A

A

x
A2


+
(x)

Fig. 3.10: Successors of a vertex

in an arborescence

Fig. 3.11: Deleting an arc from an arborescence

[Trees and Arborescences]

3.6. Representation of an arborescence

An arborescence can be represented by tables (vectors and

matrices) seen in chapters II. However, it admits a more efficient

representation using linked lists (dynamic representation) as

follows:

Example 3.2: Dynamic representation of an arborescence

Consider the following arborescence:

3.7. Browsing an arborescence:

Several browsing/navigating modes are possible:

 . Width path: 1, 2, 4, 3, 5, 9, 10, 8, 13, 7, 11, 12, 6

 . In-depth path

S N

S N

S2 N

S3 N

Sk N N

Pointer to 1st son

Pointer to next sibling

S

S1 S2 S3 S4

1

4 2

3 9
5

10
11

8

12 6

13 7

 N

2

4 N

3 N

5

9 N N

 0 N

8 N

 3 N

7 N N

 N

 2 N

6 N N

Fig. 3.12: Dynamic representation of an arborescence

structure

Fig. 3.13: Example of dynamic representation of an arborescence

[Trees and Arborescences]

Remark

Three types of navigation are also used: preorder, inorder, post-

order (prefixed, infixed, postfixed)

3.8. Cycles and associated vectors:

Let G(X, U) be a directed graph of order |X| = n and size |U| = m.

We can match any cycle c with a vector vc = (v , v …, vi, .., vm),

with:

 {

Remark : We are talking here about a cycle instead of a circuit,

because the component vectors have different directions.

Example 3.3: Finding vectors associated with cycles

Let the graph G be defined as follows:

X = {a, b, c, d, e, f, g, h}

Let the cycle c (

The associated vector is as follows:

vc1 - 0 - 0 0 - 0

Let the cycle c (

The associated vector is as follows:

vc2 - 0 0 0 0 - 0

Let the cycle c (

The associated vector is as follows:

vc3 0 0 0 0 - 0 0 0 -

Let the cycle c (

The associated vector is as follows:

vc4 0 0 0 - 0 0 0 - 0

8

h

a

b

c

d f

h

e

g

2

3

4

5

 0 9
7

6

Fig. 3.14: Cycles and associated vectors

[Trees and Arborescences]

3.9. Independent cycles:

The cycles c , c … ck are said to be independent if the

corresponding vectors vc1, vc2 … vck are linearly independent.

i.e., there exists a relation of the form:

 vc1 +2vc2 …….. kvck ≠ ⃗ with : ,2 …. k are real

numbers not all zero, otherwise (i.e.,i=0 i 0 …) they are

said to be dependent.

For example, the cycles c , c , c are independent because we

have:

-vc1 - vc2 + vc3 ≠ ⃗ ( - 2 - 3

Verification :

(- (- - - (- (-

- ((- - (- -

 +2, - ≠ ⃗

Theorem:

Let c , c2, c3 … ck cycles, if each cycle contains an arc that the

others do not contain, then the cycles c , c , c … ck form a set of

independent cycles.

3.10. Definition of a cycle base:

A cycle basis is a minimal set of independent cycles ci

corresponding to vectors vci (linearly independent), such that any

vector of the graph G can be expressed as a function of this basis

(of the vectors of this basis).

[Trees and Arborescences]

Example 3.4: Defining a cycle base in a graph

c 6 2  vc1 - 0 0 0

c2 6 3  vc2 0 0 0

c3 2 3  vc3 0 - 0 0 0

c4 4 5 2  vc4 - 0 - 0

c5 6 5 4  vc5 0 0 0 -

c6 4 5 3  vc6 0 - 0

We note that c , c , c are independent, because each cycle

contains a vector that the others do not contain c (1), c (3), c (5/4)

===> form a base of cycles BC.

Theorem: Let G(X, U) be a graph of order n and size m,

consisting of p distinct connected components.

The dimension of the cycle base of this graph is given by the

relation:

V(G) = m – n + p

V(G) is called the cyclomatic number of G.

3.11. Definition of a cocycle base

G(X, U) a graph, U = {u , u …. um}, |X| = n, |U| = m

Let A be a subset of vertices of X, AX

A cocycle is the set of arcs connecting A and (X – A), i.e.,

 = w(A) = w+(A)w-(A)

We associate with the cocycle  the vector v= ( ,2 … m)

defined as follows:

b

d
h

a

3
5

4

6
2

c

Fig. 3.15: Definition of a cycle base

[Trees and Arborescences]

 {

Example 3.5: Defining a cocycle base in a graph

Let the following graph G be:

Let the cycle c = {a, e, g, c, f} and the cocycle  = {b, g, i, a}

Vectors associated with the cycle c and the cocycle  will be as

follows:

 a b c d e f g h i

Vc - -

V - -

Vc . V -

===>∑ ⃗
⃗⃗⃗⃗

OBS: the scalar product of a cycle and a cocycle is zero

i

h

a

a

b

g

c

e

+

d

f

-

-

+

+



C

H

A
XA

Fig. 3.16: Definition of a cocycle base

Table. 3.1: Vectors associated with cycles and cocycles

[Trees and Arborescences]

The set of linearly independent cocycles forms a cocycle base for

the graph G.

The dimension of this base (G) is given by the relation:

(G) = n -1

(G) is also called the cocyclomatic number of G.

3.12. Algorithm for searching a cycle base of a connected

graph

Let G(X, U) be a connected graph

 . Find a maximal tree T in the graph G (which contains all

vertices)

 . Adding an arc ⃗ from the co-tree T' to T creates a unique cycle

cu oriented in the direction of ⃗

 . Write all the unique obtained cycles ==> form the sought base

(are linearly independent)

Example 3.6: Looking for a cycle base in a graph

We consider the following graph:

n = 10 ; m = 13

We have: n = 10 vertices in the tree ==>

the size of the resulting tree T is:

m' = n – = 10 – 1 = 9 edges

 only one connected component (p = 1)

6

3
4

7
 3

2

5
 2

9 0

8

[Trees and Arborescences]

The cyclomatic number (the dimension of the cycle base)

is V(G) = m – n + p = 13 –

The cycles that form the cycle base are:

C6 2 3 6)

C8 2 3 5 8 7

C 9 0 11)

C 3 3 4 13 5

OBS: If necessary, we give an arbitrary orientation to the different

edges, and to the cycles the same direction of the added edge

(which closes the cycle)

3
4

2

7 5
 2

9 0

X - A

H

A

The obtained Maximal Tree

The obtained co-tree

6

 3

8

Fig. 3.17: Cycle base search process

[Trees and Arborescences]

3.13. Searching for a cocycle base

 . Divide X into A and (X – A)

 . The V arcs including I(V)A and T(V)(X – A) form a cocycle

V

 . The set of obtained unique cocycles (each cocycle contains an

arc that the others do not contain) form the sought base (are

linearly independent)

3.14. Algorithm for searching a maximal tree

G(X, U) is a connected graph of order n and size m.

A maximal tree of G is a connected, cycle-free partial graph T of

G of order n and size (n – .

The algorithm for constructing the tree T of the graph G consists

of taking the (n – edges which do not close cycles (We keep all

the vertices and delete edges)

Example 3.7: Finding a maximal tree

Let G(X, U) with: |X| = n =5; |U| = m = 6

 The algorithm

 The Maximal Tree

u1

u2
u5

u4

u3 u6

x1

x2 x3

x4

x5 Edges u1 u2 u3 u4 u5 u6

Decision OK OK OK No OK No

u1

u2
u5

u4

u3 u6

x1

x2 x3

x4

Fig. 3.18: Approach to find a maximal tree in a graph

[Trees and Arborescences]

3.15. Minimum weight maximal spanning tree search algorithm

(Kruskal 1)

Let G(X, U, L) be a valued, undirected, connected graph with all

edge lengths different (if u ≠ v > L u ≠ L v)

(i) The graph is represented by the list of arcs sorted according to

their increasing weights.

(ii) Let's start with an empty graph, and we successively take the

first (n – edges which do not close cycles with those already

taken.

(iii) The (n – retained edges form a minimum weight maximal

tree.

OBS: the minimum weight maximal tree consists of (n – edges)

Example 3.8: Finding a maximal tree of minimum weight by applying

KRUSKAL 1

Example: Let G = (X, U, L)

With: X = {1, 2, 3, 4, 5, 6, 7, 8, 9}

U = {a, b, c, d, e, f, g, h, i, j, k, l, p, q}

5

4

2

l,3

6

7

9

1

3

b,15 p,8

8

Fig. 3.19: Search for a maximal tree

of minimum weight in a valued graph

[Trees and Arborescences]

Application of the algorithm:

Unsorted edge list

After sorting we will have:

List of edges sorted by their weight:

Edges a b c d e f g h i I k L p q
Ext.Init

Ext.Ter

Weight

4 l,3 7

2 1
9

b,15 p,8

8

5 6 3

Edges I L k c i d a p f q h b e g

Ext.Init

Ext.Ter

Weight

Decision ok ok ok ok X ok X X ok ok ok X X X

Maximum tree of minimum weight

Nb.edges = 9 – 1 =8; TotalWeight =

We stop here, because

we have the size of the

maximum tree is n -1 = 9

– 1 = 8 edges (already

taken)

Table. 3.2: Sorted list of edges representing a graph

Table. 3.3: Weight-sorted edge list representing a graph

Fig. 3.20: Search process

of maximum Tree of minimum weight in a valued graph

5

4

2

l,3

6

7

9

1

3

b,15 p,8

8

[Trees and Arborescences]

3.16. Kruskal Algorithm 2

(i) Represent the graph by the list of (arcs/edges) given as input

(ii) Let's start with an empty graph, we take the arcs successively

and as soon as the arc currently being processed forms a cycle

with those already taken, we remove the arc of the maximum

weight from the cycle

(iii) The arcs retained are those of a tree of minimum weight

Application to the previous example:

Edges a b c d e f g h i I k L p q
Ext.Init

Ext.Ter

Weight

Decision ok ok ok ok ok ok ok ok ok ok ok ok X ok

Final Dec X X ok ok X ok X ok X ok ok ok X ok

5

4

2

l,3

6

7

9

1

3

b,15 p,8

8

4 l,3 7

2 1
9

b,15

8

5 6 3

Maximum tree of minimum weight

Fig. 3.21: Search for a maximal tree of

minimum weight by applying KRUSKAL 2

Table. 3.4: Unsorted list of edges representing a graph

Noticed :

By applying the same algorithms we

can construct the maximal tree of

maximum weight.

