Chapter 3: Trees and Arborescences

3.1. Definition of a tree, Co-tree

= A tree is an undirected graph that is connected and has no
cycles.

Fig. 3.1: Example of a tree

» |f G is an undirected, connected graph, the tree T of the graph
G is a partial graph, connected, and without cycles.

» The co-tree T' associated with T is the complementary partial
graph of T with respect to G.

Example 3.1: Building a tree, co-tree from a graph
Let the following graph G be:

®- 9

(G) The tree T associated with the graph G The co-tree T'associate

Fig. 3.2: Associated Graph, Tree and Co-Tree

3.2. Definition of a forest:
= |s an undirected graph, without cycles (connectivity is not

necessary)
7

Fig.3.3: Definition of a forest

[Trees and Arborescences]

= A forest of a graph G is a partial, unconnected graph of G,
without cycles.
= A forest is not a tree (consists of several trees).

NI

A graph G A forest associated with the graph G

Fig.3.4: Difference between a tree and a forest

Remarks

In a tree, Co-tree, forest we distinguish two types of vertices:

= Vertices with multiple incident edges (d(x) >1) (incoming or
outgoing edges)

= Vertices having only one incident edge are called pendant
vertices (vertices of degree 1).

non pendant
vertex

pendant edg_e_»

pendant /

vertices

Fig. 3.5: Pendant vertices and non pendant vertices

3.3. Some properties of a tree

= A tree of order>2 admits at least two pendant vertices.

= Every connected graph G admits a tree as a partial graph
(eliminating cycles)

= A tree of order n is of size (n-1)

[Trees and Arborescences]

» |f G is a connected undirected graph of order n and size m, then
it admits a tree T of order n and size (n-/) and a co-tree of order
n and size m-(n-/)

= Deleting an edge from a tree disconnects the tree (gives two
connected components)

= Any edge of a tree is an isthmus (connects 2 connected
components), it is an edge which is not contained in any cycle.

= Any pair of vertices x and y in tree T is connected by a unique
chain.

= Adding an arc/edge to the tree creates a single cycle.

3.4. Definition of an arborescence

Let G be a directed graph, we call an arborescence of a directed
tree such that there exists a particular vertex r, such that there
exists a path from r to any other vertex of G, r is called the root of
the arborescence.

Fig.3.6: Defining an arborescence

Observation: An arborescence is a directed tree with a root.

[Trees and Arborescences]

3.5. Properties of an arborescence

= An arborescence of order>2 admits at least one pendant vertex.

Pendant
vertex

Fig. 3.7: Definition of pendant vertices

» Deleting a pendant vertex from an arborescence of order>2
gives an arborescence.

\

Pendant
vertices

Fig. 3.8: Result of Deleting a pendant vertex

» |n an arborescence with a root r, there exists a unique path from
r to any vertex x#r. (if 32 paths= 3Jcycle=contradiction with
the definition (is not an arborescence))

Fig. 3.9: Path uniqueness in an arborescence

= |n an arborescence A with a root r, d’(r)=0 and d"(x)=1 for any
vertex X#£r

[Trees and Arborescences]

= |f A is an arborescence, the set of descendants of x I'"(x) (the
successors of x) generates an arborescence A’ of a root x for
any vertex X.

e

Fig. 3.10: Successors of a vertex
in an arborescence

= Deleting an arc from an arborescence A gives two (02) disjoint
sub-arborescences Al, A2.

Fig. 3.11: Deleting an arc from an arborescence

» |f G is a directed graph with a root r, then there exists in G an
arborescence A with root r, which is a partial graph of G.

[Trees and Arborescences]

3.6. Representation of an arborescence

An arborescence can be represented by tables (vectors and
matrices) seen in chapters Il. However, it admits a more efficient
representation using linked lists (dynamic representation) as
follows:

S
/N - Pointer to 1st son
& T sm|4+s3|w|-|---

Pointer to next sibling

Fig. 3.12: Dynamic representation of an arborescence
Example 3.2: Dynamic representation of an arborescence

Consider the following arborescence:

ZANILN

{
STyl FPoININ] [0 N] FP8] |[N]

-
(BIN] 7 [N[N] TN
(2N FPps [NN]

Fig. 3.13: Example of dynamic representation of an arborescence

3.7. Browsing an arborescence:
Several browsing/navigating modes are possible:

1. Width path: 1, 2, 4, 3,5, 9, 10, 8, 13, 7, 11, 12, 6
2. In-depth path: 1, 2, 3, 5, 13, 7,9, 4, 10, 8, 11, 12,6

[Trees and Arborescences]

Remark

Three types of navigation are also used: preorder, inorder, post-
order (prefixed, infixed, postfixed)

3.8. Cycles and associated vectors:

Let G(X, U) be a directed graph of order |X| = n and size |[U| = m.
We can match any cycle ¢ with a vector v, = (Vq, Vs, ..., Vi, .., Vi),
with:

—1 if the arc v; € v, and it is in the inverse direction of the path of c

+1 if the arc v; € v, and it is in the direction of the path of c
v =
0 if the arc v;is not in v,

Remark : We are talking here about a cycle instead of a circuit,
because the component vectors have different directions.

Example 3.3: Finding vectors associated with cycles

Let the graph G be defined as follows:
X={a b,cdefqgh}

Letthe cyclec,=(1,3,5,9,8,2)

The associated vector is as follows:
Vo = (+1,-1, +1,0,-1,0,0, -1, +1, 0)
Let the cyclec, = (1, 3, 10, 8, 2)

The associated vector is as follows:
Vo =(+1,-1, +1,0,0, 0,0, -1, 0, +1)
Let the cycle c; = (5, 9, 10)

The associated vector is as follows:
Vaa=1(0,0,0,0,-1,0, 0,0, +1, -1)
Let the cycle c, = (4, 10, 8)

The associated vector is as follows:
Vea = (0,0,0,-1,0,0,0, -1, 0, +1)

Fig. 3.14: Cycles and associated vectors

[Trees and Arborescences]

3.9. Independent cycles:

The cycles c¢;, ¢, ..., cx are said to be independent if the
corresponding vectors Ve, Ve, ..., Ve are linearly independent.
I.e., there exists a relation of the form:

aNe +FoNo + ...l + o4V ek #6 with a0, ..., are real
numbers not all zero, otherwise (i.e.,a;=0 Vi =0, 1, ...) they are
said to be dependent.

For example, the cycles c;, C,, c; are independent because we
have:

V1 - Ve + Vg 720 (a;=-1,00=-1,a5= +1)

Verification :

(-1)*(+1, -1,+1, 0, -1, 0, 0, -1, +1, 0) + (-1) (+1, -1, +1, 0, 0, 0, O,
-1,0, +1) + (+1) (0,0, 0,0, -1, 0,0, 0, +1, -1) = (-2, +2, -2, 0, 0, 0,
0,0, +2, -2) 20

Theorem:

Let ¢, C,, Cs3, ..., ¢« Cycles, if each cycle contains an arc that the
others do not contain, then the cycles ¢, C,, Cs, ..., ¢k form a set of
independent cycles.

3.10. Definition of a cycle base:

A cycle basis is a minimal set of independent cycles ci
corresponding to vectors v (linearly independent), such that any
vector of the graph G can be expressed as a function of this basis
(of the vectors of this basis).

[Trees and Arborescences]

Example 3.4: Defining a cycle base in a graph

C,=(l,62)PVy=(+1-1000 +I)
C,=(1,6,3)PVe,=(+1,0 +1,0,0, +1)
C;=(2,3)PV;=(0,-1, +1,0,0,0) h
C,=(1,4 5 2) PV =(+1,-1,0, +1, -1, 0)
Cs=1(6,5 4)PVv;s=(0,00, +1, -1, +1)

Cs = (], 4, 5’ 3) 9Vc6 — (_|_]’ 0} _|_], +]’ _]) 0) Fig. 3.15: Definition of a cycle base

We note that c;, c;, Cs are independent, because each cycle
contains a vector that the others do not contain c;(1), c;(3), cs(5/4)
===> form a base of cycles BC.

Theorem: Let G(X, U) be a graph of order n and size m,
consisting of p distinct connected components.

The dimension of the cycle base of this graph is given by the
relation:

V(G)=m-n+p

V(G) is called the cyclomatic number of G.

3.11. Definition of a cocycle base
G(X, U)agraph, U={u;, Uy,,un}, [X|=n, U =m
Let A be a subset of vertices of X, AcX
A cocycle@is the set of arcs connecting A and (X — A), i.e.,
9= w(A) =w"(A)w (A)
We associate with the cocycle & the vector vg= (6,,0,, ...,6y)
defined as follows:

[Trees and Arborescences]

+1 lf 91' € W+(A)
91' =1—1 lf 91' € W_(A)
0 otherwise

Example 3.5: Defining a cocycle base in a graph
Let the following graph G be:

Fig. 3.16: Definition of a cocycle base

Let the cycle c ={a, e, g, c, f} and the cocycle 8= {b, g, I, a}
Vectors associated with the cycle ¢ and the cocycle & will be as
follows:

Table. 3.1: Vectors associated with cycles and cocycles

a/bjc|id|e|f|lg|h]|I
Ve +1[0|+1[O0|-1|-1{+1|0 |0
v |-1|+1[00|00 |+1|0]-1
Ve.Vy|-1{0[0|0|0]0(+1/0]0]0

:::>Z[_/;_V_9\ =0

OBS: the scalar product of a cycle and a cocycle is zero

[Trees and Arborescences]

The set of linearly independent cocycles forms a cocycle base for
the graph G.
The dimension of this base A(G) is given by the relation:

AG)=n-1

A(G) is also called the cocyclomatic number of G.

3.12. Algorithm for searching a cycle base of a connected

graph

Let G(X, U) be a connected graph

1. Find a maximal tree T in the graph G (which contains all
vertices)

2. Adding an arc u from the co-tree T' to T creates a unique cycle
c, oriented in the direction of u

3. Write all the unique obtained cycles ==> form the sought base
(are linearly independent)

Example 3.6: Looking for a cycle base in a graph

We consider the following graph:

n=10; m=13)

We have: n = 10 vertices in the tree ==> ! . 3

the size of the resulting tree T is: 13

m =n-7=10-1=9edges SRS
9 10)

3 only one connected component (p = 1)

[Trees and Arborescences]

The cyclomatic number (the dimension of the cycle base)
isV(G) =m-n+p=13-10+1=4

The cycles that form the cycle base are:
Cs=1(1, 2 3, 6)

Cs=(1,2,35287)

Cii=1(9 10, 11)

Cis=(3,413)5)

The obtained Maximal Tree

13
11
The obtained co-tree

Fig. 3.17: Cycle base search process

OBS: If necessary, we give an arbitrary orientation to the different
edges, and to the cycles the same direction of the added edge
(which closes the cycle)

[Trees and Arborescences]

3.13. Searching for a cocycle base

1. Divide X into Aand (X - A)

2. The V arcs including I(V) €A and T(V) (X — A) form a cocycle
&

3. The set of obtained unique cocycles (each cocycle contains an
arc that the others do not contain) form the sought base (are
linearly independent)

3.14. Algorithm for searching a maximal tree

G(X, U) is a connected graph of order n and size m.

A maximal tree of G is a connected, cycle-free partial graph T of
G of order nand size (n— /).

The algorithm for constructing the tree T of the graph G consists
of taking the (n — 1) edges which do not close cycles (We keep all
the vertices and delete edges)

Example 3.7: Finding a maximal tree
Let G(X, U) with: [X|=n=5; U/ =m=6

X2 u2 X3 .
u
X5 . Edges |ul | u2 | u3 | u4 | u5 | ué
ud m—h
ul e algorithm Decision | OK | OK | OK | No | OK | No
u3 u6
x1 x4
X2 uz2 X3
-&5
] ud
The Maximal Tree ul
u3 . ub
x1 x4

Fig. 3.18: Approach to find a maximal tree in a graph

[Trees and Arborescences]

3.15. Minimum weight maximal spanning tree search algorithm
(Kruskal 1)

Let G(X, U, L) be a valued, undirected, connected graph with all
edge lengths different (if u #v ==> L(u) # L(v))

(i) The graph is represented by the list of arcs sorted according to
their increasing weights.

(i1) Let's start with an empty graph, and we successively take the
first (n — /) edges which do not close cycles with those already
taken.

(i) The (n — 1) retained edges form a minimum weight maximal
tree.

OBS: the minimum weight maximal tree consists of (n — /) edges)

Example 3.8: Finding a maximal tree of minimum weight by applying
KRUSKAL 1

Example: Let G = (X, U, L)
With: X ={1, 2, 3,4,5,6, 7,8, 9}
U={a b,c,defgnhijklpq}

Fig. 3.19: Search for a maximal tree
of minimum weight in a valued graph

[Trees and Arborescences]

Application of the algorithm:

Unsorted edge list

Table. 3.2: Sorted list of edges representing a graph

Edges (a | b |c|d|e | f|g|h|i|l|k|L|p
Extinit |3 |1 [3 3|84 |1]6[4]7]2]7]9
ExtTer |21 9 9|59 2|7 [3[8[|8|5]4]|2
Weight | 8 | 15|56]15]10]20[13|/5]2[4|3]|8

After sorting we will have:

List of edges sorted by their weight:

Table. 3.3: Weight-sorted edge list representing a graph
Edges |I |L|k|cli|d|a|p|[f|lg|/h]lble]|qg
Extnit | 7|7 (12343 [3[]9|4|1|6]1]|38]1
ExtTer | 8 | 4 |5 |9 |8 |5|2(2|2]|6[3)9]9]|7
Weight | 2 [3[4 |5[5]6|8[8|10]12]13)15]15]|20
Decision | ok | ok | ok | ok | X | ok | X | X | ok |ok|ok] X | X | X
We stop here, because

we have the size of the
maximum treeisn-1=9

—1 =8 edges (already

taken)

Maximum tree of minimum weight
Nb.edges = 9 — 1 =8; TotalWeight =
55

Fig. 3.20: Search process

of maximum Tree of minimum weight in a valued graph

[Trees and Arborescences]

3.16. Kruskal Algorithm 2
(i) Represent the graph by the list of (arcs/edges) given as input
(if) Let's start with an empty graph, we take the arcs successively
and as soon as the arc currently being processed forms a cycle
with those already taken, we remove the arc of the maximum

weight from the cycle
(iii) The arcs retained are those of a tree of minimum weight

Application to the previous example:

Table. 3.4: Unsorted list of edges representing a graph

Edges a|b|lcjdje|flg|h|[i[l]k|L|p|q
Ext.Init 3 1 3 3 8 | 4 1 6 |4 |7 |12|71]19]|1
Ext.Ter 2191915 9121|1713 8 8 5141216
Weight 8 |15 5|6 |15/10(20|13| 5|2 |4 |3]|8]|12
Decision ok | ok [ok | ok | ok |ok|ok|ok|ok|ok]|ok]|ok|X|ok
Final Dec X | X|ok|lok| X|]ok| X |ok| X |ok|ok]|ok]|X]|ok
1
Noticed :
By app'Y'”Q the same a|90“thm3 we Maximum tree of minimum weight

can construct the maXimaI tree Of Fig. 3.21: Search for a maximal tree of
maximum Welght minimum weight by applying KRUSKAL 2

