Mohamed Boudiaf University - M'sila Faculty of Technology Department of Civil Engineering- Department of Electrical Engineering Module: Probability-Statistics Chapter 3 : COMBINATORIAL ANALYSIS

Merini Abdelaziz*

23 novembre 2024

Table des matières

1	Intr	roduction	2							
2	Pre	Preliminaries								
	2.1	Definitions :	2							
	2.2	Factor notation	2							
3	Ba	Basic Counting Principles								
	3.1	Addition Principle	3							
	3.2	Multiplication Principle	3							
4	Pe	Permutations								
	4.1	Permutations of n distinct elements	4							
	4.2		4							
	4.3	Circular Permutations	5							
		r-Permutation (arrangement)	5							
5	Combinations									
	5.1	Combination	6							
	5.2	Combinations with Repetition	7							
	*									

5.3	Pascal's Trianlge	7
5.4	Newton's Binomial Theorem	8

1 Introduction

Combinatorial analysis is the science of counting and is used to determine the number of possible outcomes of a given experiment.

Knowledge of these enumeration methods is essential for the elementary calculation of probabilities.

2 Preliminaries

2.1 Definitions :

• A set Ω is finite when it has a finite number of elements.

The number of elements of Ω is called the cardinal of the set and it is noted : $\sharp \Omega$ or $|\Omega|$.

• To count is to determine the number of elements in a finite set, i.e. to determine its cardinal.

Example 1. If $\Omega = \{heads, tails\}, its cardinal is <math>|(\Omega)| = 2...$

- If $\Omega = \{1, 2, 3, 4, 5, 6\}, |(\Omega)| = 6.$

If Ω is the set of integers, $|(\Omega)| = +\infty$. $card(\phi) = 0$.

The set Omega of players in a football team is a finite set. Then $|(\Omega)| = 11$.

Definition 1. We say that two sets Ω_1 and Ω_2 are **disjoint**, if they have no elements in common, *i.e.*

$$\Omega_1 \cap \Omega_2 = \phi$$

2.2 Factor notation

Definition 2. Let $n \in \mathbb{N}$. The product of the integers from 1 to n is called n factorial, denoted n!

$$n! = \begin{cases} 1 & \text{if } n = 0\\ n \times (n-1) \times (n-2) \times \dots \times 3 \times 2 \times 1 & \text{if } n > 0 \end{cases}$$

Example 2. $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$. $6! = 6 \times 5! = 720$. 0! = 1.

Rremark 1. $\frac{n!}{(n-1)!} = n, \quad n! = n \times (n-1)!$

3 Basic Counting Principles

The basic counting principles are **the product rule** and **the sum rule** will be presented and show how can be used to solve many different counng problems.

3.1 Addition Principle

Suppose that a set Ω is partitioned into pairwise disjoint parts $\Omega_1, \Omega_2, ..., \Omega_k$

The addition principle claims that in this case

$$|\Omega| = |(\Omega_1 \cup \Omega_2 \cup ... \cup \Omega_k)| = |(\Omega_1)| + |(\Omega_2)| + ... + |(\Omega_k)|$$

Example 3. Let $\Omega_1 = \{a, b, c, d\}$ and $\Omega_2 = \{g, h, k\}$. we have $\Omega_1 \cap \Omega_2 = \phi$, then

$$|(\Omega_1 \cup \Omega_2)| = |(\Omega_1)| + |(\Omega_2)| = 4 + 3 = 7.$$

Example 4. Let Ω be the set of students attending the combinatorics lecture. It can be partitioned into parts Ω_1 and Ω_2 where :

 $\Omega_1 = set of students that like easy examples.$

 $\Omega_2 = set of students that don't like easy examples.$

If $|\Omega_1| = 22$ and $|\Omega_2| = 8$ then we can conclude $|\Omega| = 8$.

3.2 Multiplication Principle

If k experiments that are to be performed are such that :

the first one may result in any of n_1 possible outcomes;

and if, for each of these n_1 possible outcomes, there are n_2 possible outcomes of the second experiment;

and if, for each of the possible outcomes of the first two experiments, there are n_3 possible outcomes of the third experiment;

and if \dots ,

, .

then there is a total of $n_1 \times n_2 \times \ldots \times n_k$ possible outcomes of the k experiments.

Example 5. We want to print a car number plate with, from left to right, 2 distinct letters and 3 digits, the first of which is not zero (a global experiment). How many plates of this type are there? (CH124, DE665,)

Solution 1.

letter	letter	number	number	number
\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
26	25	g	10	10

According to the Multiplication Principle, the possible number of plates of this type is

$26 \times 25 \times 9 \times 10 \times 10 = 585000$

Example 6. Three 6-sided dice are rolled in succession (a global experiment). How many possible outcomes are there?

Solution 2. For D_1 , we have (6 distinct numbers) For D_2 , we have (6 distinct numbers) For D_3 , we have (6 distinct numbers) According to the Multiplication Principle, the number of possible results is

 $6 \times 6 \times 6 = 216.$

4 Permutations

4.1 Permutations of n distinct elements

Definition 3. A permutation of n distinct elements is an ordered arrangement where each element is used once.

Example 7. The possible permutations of the 3 letters a, b, c are : abc, bca, cab, bac, acb, cba.

Proposition 1. The number of permutations with n distinct elements is

P(n,n) = n!

Rremark 2. Use permutations : if a problem calls for the number of arrangements of objects and different orders are to be counted.

Example 8. In the example 7, on a n = 3, donc $P_3 = 3! = 6$.

4.2 Permutations with Similar Elements

Definition 4. If we classify in a particular order n elements of which n_1 are identical of type 1, n_2 are identical of type 2,, n_k are identical of type k, we form a permutation with repetitions of these $n = n_1 + n_2 + ... + n_k$ elements.

Proposition 2. The number of permutations with repetitions is

$$\bar{P}_n(n_1, n_2, ..., n_k) = \frac{n!}{n_1! n_2! ... n_k!}$$

Example 9. How many different words can you make with all the letters in the word $\ll ERRER \gg$

We have 5 letters (n = 5) some of which are similar.

the letter 'E' appears twice so $n_1 = 2$, the letter 'R' appears three times so $n_2 = 3$, then

$$\bar{P}_5(2;3) = \frac{5!}{2!3!} = 10$$

RRREE, RRERE, RREER, RERRE, RERRE, REERR, ERRRE, ERRER; ERRRR; ERRRR, ERRR, ERRR, ERRRR, ERRRR,

Example 10. A chess tournament has 10 competitors, of which 4 are Russian, 3 are from the United States, 2 are from Great Britain, and 1 is from Brazil. If the tournamentresult lists just the nationalities of the players in the order in which they placed, how many outcomes are possible ? Solution There are $\frac{10!}{2!3!1!4!} = 12600$ possible outcomes

Rremark 3. a) $\bar{P}_n(n_1, n_2, ..., n_k) < P_n$.

b) The bar above the P stands for 'with repetition'.

4.3**Circular Permutations**

Definition 5. Circular permutation is the total number of ways in which n distinct objects can be arranged around a fixed circle.

Proposition 3. The number of circular permutations of n objects is equal to

(n-1)!

Example 11. How many ways can you arrange 4 people : a) On a line? b) Around a round table?

Solution 3. a) 5!=120. b)(5-1)!=4!=24.

4.4r-Permutation (arrangement)

Definition 6. Let r be a positive integer $(r \le n)$. By an r-permutation of a set Ω of n elements, we understand an ordered arrangement of r of the n elements.

Example 12. If $\Omega = \{a, b, c\}$ then the three 1-permutations of Ω are a, b, c, the six 2-permutations of S are $ab \ ac \ ba \ be \ ca \ cb$, and the six 3-permutations of S are abc acb bac bca cab cba.

Proposition 4. The number of r-permutations from set containing n elements is given by

$$P(n,r) = \frac{n!}{(n-r)!} \\ = n(n-1)\dots(n-r+1)$$

Rremark 4. If r = n, we have $P(n, r) = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n!$,

Example 13. With the letters of the word « RELATION », how many can you form, with or without meaning, different 5-letter words?

Answer: n = 8 et r = 5, there are $A_8^5 = \frac{8!}{(8-5)!} = 8 \times 7 \times 6 = 336$

possible words

Proposition 5. The number of permutations of n objects, taken r at a time, when repetition of objects is allowed, is

 n^r

Example 14. How many 3 digit numbers can be formed with the digits 1 and 2?

Answer : n = 2, there are $2^3 = 2^3 = 8$. numbers 111, 112, 121, 211, 122, 222, 221,212.

Example 15. How many two-digit numbers can you make using the digits 5, 6, 7, 8, 9?

Answer : n = 5, r = 2, $5^2 = 25$.

5 Combinations

5.1 Combination

Definition 7. A combination of a set of elements is an arrangement where each element is used once, and order is not important.

Example 16. Four people $\{1; 2; 3; 4\}$ want to play doubles table tennis. How many different teams can they form?

Answer : It's a combination : $\{1; 2\}$, $\{3; \}$, $\{1; 3\}$, $\{2; 4\}$, $\{1; 4\}$, $\{2: 3\}$ We can form 6 teams.

Proposition 6. The Number of Combinations of n Objects Taken r at a Time

$$\begin{pmatrix} n \\ r \end{pmatrix} = \frac{n!}{r! (n-r)!}$$
$$= \frac{P(n,r)}{r!}$$

Rremark 5. 1) We also note C(n, r)

2) Use combinations if a problem calls for the number of ways of selecting objects and the order of selection is not to be counted.

Example 17. A committee of 3 is to be formed from a group of 24 people. How many different committees are possible?

Solution There are

$$\binom{24}{3} = \frac{24!}{3!21!} = \frac{24 \times 23 \times 22}{6} = 2024$$

possible committees

Properties

1)
$$\binom{n}{n} = \binom{n}{0}$$
, $\binom{n}{r} = \binom{n}{n-r}$ (symmetry formula)
2) $\binom{n}{1} = \binom{n}{n-1} = n.$
3) $\binom{n+1}{r+1} = \binom{n}{r} + \binom{n}{r+1}$ (Pascal's triangle).
4) $\sum_{i=0}^{n} \binom{n}{i} = 2^{n}$

Démonstration. exercice.

Example 18. $\begin{pmatrix} 3\\0 \end{pmatrix} = \frac{3!}{0!(3-0)!} = 1; \begin{pmatrix} 3\\3 \end{pmatrix} = 1; \begin{pmatrix} 3\\2 \end{pmatrix} = \begin{pmatrix} 3\\1 \end{pmatrix} = 3$

5.2 Combinations with Repetition

Definition 8. A combination with repetition of r objects from n is a way of selecting r objects from a list of n. The selection rules are :

1) the order of selection does not matter

2) each object can be selected more than once.

Example 19. Let $\Omega = a, b, c$. We want to obtain the list of combinations of k=4 elements taken from the set E, i.e. generate the list of 4-combinations with repetition :

 $\begin{array}{l}(a,\ a,\ a,\ a),\ (a,\ a,\ a,\ b),\ (a,\ a,\ a,\ c),\ (a,\ a,\ b,\ b),\ (a,\ a,\ b,\ c),\ ,\ (a,\ a,\ c,\ c)\\,\ (a,\ b,\ b,\ b)\ ,\ (b,\ b,\ b,\ b)\ ,\ (b,\ b,\ b,\ c)\ ,\ (b,\ b,\ c)\ ,\ (b,\ b,\ c)\ ,\ (b,\ b,\ c)\ ,\ (b,\ b,\ c)\ ,\ (c,\ c,\ c)\ ,\ (c,\ c)\ ,\ (c)\ ,\ (c,\ c)\ ,\ (c)\ ,\ (c,\ c)\ ,\ (c)\ (c)\ (c)\ ,\ (c)\ ,\ (c)\ (c)\ (c)\ ,\ (c)\ (c)\ ,\ (c)\ (c)\ (c)\$

Proposition 7.

Number of combinations with repetition of r objects from n is

$$\binom{n+r-1}{r} = \frac{(n+r-1)!}{r!(n-1)!}$$

Example 20. In the previous example, we have $\begin{pmatrix} 3+4-1\\4 \end{pmatrix} = \begin{pmatrix} 6\\4 \end{pmatrix} = 15$

5.3 Pascal's Trianlge

The relationship
$$\begin{pmatrix} n+1\\r+1 \end{pmatrix} = \begin{pmatrix} n\\r \end{pmatrix} + \begin{pmatrix} n\\r+1 \end{pmatrix}$$

allows practical determination of the various coefficients $\begin{pmatrix} n \\ r \end{pmatrix}$ using Pascal's triangle.

If
$$r > n$$
, we put $\begin{pmatrix} n+r-1 \\ r \end{pmatrix} = 0$

$n \setminus r$	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

5.4 Newton's Binomial Theorem

Let n be a positive integer. Then, for all x and y,

$$(a+b)^{n} = \sum_{i=0}^{n} \binom{n}{i} a^{n-i}b^{i}$$

Example 21. $(a+b)^2 = \begin{pmatrix} 2\\0 \end{pmatrix} a^2 + \begin{pmatrix} 2\\1 \end{pmatrix} ab + \begin{pmatrix} 2\\2 \end{pmatrix} a^0 b^2 = 1a^2 + 2ab + 1b^2$ $(a+b)^3 = \begin{pmatrix} 3\\0 \end{pmatrix} a^3 + \begin{pmatrix} 3\\1 \end{pmatrix} a^2 b \begin{pmatrix} 3\\2 \end{pmatrix} a^1 b^2 + \begin{pmatrix} 3\\3 \end{pmatrix} a^0 b^2$ $= 1a^3 + 3a^2b + 3a^1b^2 + 1b^3.$

5.5 Summary of the combinatorial analysis

order \searrow repetition	repetitions are allowed	repetitions are not allowed		
order does matter	n^r	$\frac{n!}{(n-r)!}$		
does not matter	$\left(\begin{array}{c}n+r-1\\r\end{array}\right)$	$\left(\begin{array}{c}n\\r\end{array}\right)$		