Worksheet n°3

(COMBINATORIAL ANALYSIS)

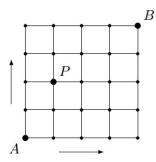
Exercice $n^{\circ}1$:

In some countries, car number plates begin with a letter of the alphabet, followed by five digits. Calculate how many number plates are possible if :

a) The first digit following the letter cannot be 0.

b) The first letter cannot be O or I and the first digit cannot be 0 or 1.

Exercice $n^{\circ}2$:


9 people are seated around a round table.

- 1. How many different ways can they sit? (only the relative position of the nine people in relation to each other is taken into account). relative to each other)
- 2. Same question, but people A and B want to be near to each other.

Exercice n°3 :

Find the number of anagrams of the word MISSISSIPPI. Of these anagrams, how many begin and end with the letter S?

Exercice $\mathbf{n}^{\circ}4$: On this 4 × 4 grid, you can only move to the right or upwards.

a) How many paths are there from point A to point B?

b) How many of these paths pass through point P(1; 2)?

Exercice n°5 :

Let
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$
, where $n, r \in \mathbb{N}$ and $r \leq n$.

1) Show that : a)
$$\binom{n}{n} = \binom{n}{0}$$
, b) $\binom{n}{r} = \binom{n}{n-r}$ (symmetry formula)
c) $\binom{n+1}{r+1} = \binom{n}{r} + \binom{n}{r+1}$

2) Using Newton's Binomial formula $(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^r$, calculate $A = \sum_{r=0}^n \binom{n}{r}$, $B = \sum_{r=0}^n \binom{n}{r} (-1)^r$.

3) What is the coefficient of x^6 in the development of $(x+2)^8$ and $(x^2-5)^7$?

Exercice $n^{\circ}6$:

An urn contains 12 balls numerated from 1 to 12. 3 balls are drawn simultaneously.

- i) Determine the number of different draws.
- ii) Same question if these three balls are drawn successively.

iii)* What if, after each draw, the ball is put back into the urn.

Exercice $n^{\circ}7$:

Consider the set $E = \{1; 2; 3; 4; 5; 6\}$. Using the 6 digits of this set, each taken only once, how many distinct numbers can be formed in each of the following cases :

- a) Numbers of 6 digits?
- **b)** Numbers of 4 digits?
- c) Numbers with 4 digits starting with 3?
- d) Numbers of 4 digits containing the digit 3?
- e) Numbers of 4 digits containing the digits 3 and 6?