Annexes

Propriétés des fluides

Température [°C]	Masse volumique (ρ) [kg/m³]	Viscosité dynamique (μ) [Pa.s]	Viscosité cinématique (v) [m²/s]
0	999,9	1,80 10 ⁻³	1,80 10-6
10	999,7	1,32 10 ⁻³	1,32 10-6
20	998,3	1,01 10 ⁻³	1,01 10 ⁻⁶
30	995,7	8,02 10 ⁻⁴	8,05 10 ⁻⁷
40	992,2	6,60 10-4	6,65 10 ⁻⁷
50	987,9	5,55 10-4	5,62 10-7
60	982,9	4,72 10 ⁻⁴	4,80 10 ⁻⁷
70	977,5	4,05 10-4	4,14 10 ⁻⁷
80	971,6	3,52 10 ⁻⁴	3,62 10-7
90	965,2	3,11 10 ⁻⁴	3,22 10 ⁻⁷
100	958,4	2,80 10 ⁻⁴	2,92 10 ⁻⁷

Tableau A.1 Changement de quelques propriétés de l'Eau en fonction de la température et à la pression atmosphérique

Température [°C]	Masse volumique (ρ) [kg/m³]	Viscosité dynamique (µ) [Pa.s]	Viscosité cinématique (v) [m²/s]
-7	1,326	1,68 10 ⁻⁵	1,263 10 ⁻⁵
4	1,274	1,73 10 ⁻⁵	1,356 10 ⁻⁵
16	1,222	1,79 10 ⁻⁵	1,468 10 ⁻⁵
20	1,202	1,8 10 ⁻⁵	1,486 10 ⁻⁵
27	1,176	1,84 10 ⁻⁵	1,57 10 ⁻⁵
38	1,135	1,9 10 ⁻⁵	1,672 10 ⁻⁵
50	1,109	1,95 10 ⁻³	1,756 10 ⁻⁵

Tableau A.2 Changement de quelques propriétés de l'Air en fonction de la température et à la pression atmosphérique

Fluide	Viscosité dynamique (μ)	Viscosité cinématique (v)
	[Pa.s]	$[\mathbf{m}^2/\mathbf{s}]$
H ₂	8,9 10 ⁻⁶	105 10 ⁻⁶
Air	18,5 10 ⁻⁶	15,6 10 ⁻⁶
Hexane	0,3 10-3	0,46 10-6
Benzène	0,652 10 ⁻³	0,741 10 ⁻⁶
Eau	1,005 10 ⁻³	1,007 10-6
Mercure	1,554 10 ⁻³	0,1147 10 ⁻⁶
Lait	2,0 10-3	1,93 10-6
Sang de l'homme à 37°C'	4,0 10-3	-
Huile d'olive	84 10-3	91,5 10-6
Glycérol	1,49	1182 10-6
Gels /crèmes	1 à 100	-

Tableau A.3 Viscosité dynamique et cinématique de quelques fluides à 20 °C et à 1 bar de pression

Température [°C]	Tension superficielle [N/m]	Pression de vapeur [Pa]	Compressibilité (χ) [N/m²]
0	0,0756	552	5,051 10 ⁻¹⁰
4,4	0,0750	827	4,902 10 ⁻¹⁰
10,0	0,0741	1 170	4,762 10 ⁻¹⁰
15,6	0,0735	1790	4,630 10 ⁻¹⁰
21,1	0,0725	2 480	4,545 10 ⁻¹⁰
26,7	0,0718	3 520	4,464 10 ⁻¹⁰
32,2	0,0709	4830	4,405 10 ⁻¹⁰
37,8	0,0699	6 620	4,386 10 ⁻¹⁰
48,9	0,0680	11700	4,367 10 ⁻¹⁰

Tableau A.4 Quelques propriétés de l'eau en fonction de la température

Gaz	Masse volumique (ρ) [kg/m³]	Constant du gaz (R) [J kg ⁻¹ K ⁻¹]	Exposant Adiabatique (k)
Air	1,2047	287,1	1,40
Ammoniac	0,7177	481,5	1,32
Anhydride carbonique	1,8359	187,8	1,30
Méthane	0,6664	518,5	1,32
Azote	1,1631	296,8	1,40
Oxygène	1,3297	260,1	1,40
Anhydride sulfureux	2,7154	127,1	1,26

Tableau A.5 Les constants des gaz parfait (R, $\bf k$) dans les conditions (T= 20° C et P = 1 bar)

Gaz	Formule	Masse molaire	R [J kg ⁻¹ K ⁻¹]	C _p [J kg ⁻¹ K ⁻¹]	k
Air		28,97	$0,287 \ 10^3$	1,004	1,40
Argon	Ar	39,94	$0,2081\ 10^3$	0,520	1,667
Carbone dioxyde	CO ₂	44,01	$0,1889\ 10^3$	0,841	1,287
Carbone monoxyde	СО	28,01	0,2968 10 ³	1,041	1,40
Ethane	C_2H_6	30,07	$0,2765\ 10^3$	1,766	1,184
Hélium	Не	4,003	$2,077\ 10^3$	5,193	1,667
Hydrogène	H_2	2,016	$4,124\ 10^3$	14,21	1,40
Méthane	CH ₄	16,04	$0,5184\ 10^3$	2,254	1,30
Nitrogène	N_2	28,02	$0,2968\ 10^3$	1,042	1,40
Oxygène	O_2	32,00	$0,2598\ 10^3$	0,921	1,394
Propane	C ₃ H ₈	44,10	$0,1886\ 10^3$	1,679	1,12
Vapeur	H ₂ O	18,02	$0,4615\ 10^3$	1,872	1,33

Tableau A.6 Les constants des gaz parfait (n, R, C_P , k) dans les conditions $(T=20^\circ~C~et~P=1~bar)$

Forme	Figure	X _G	Y _G	Surface
Triangle	1 2 h	b/3	h/3	bh/2
Quart de disque	T T	4r/3π	4r/3π	$\pi r^2/4$
Demi - disque	V V	0	4r/3π	$\pi r^2/2$
Quart d'ellipse		4α/3π	4b/3π	π <i>ab/</i> 4
Demi- ellipse	<u> </u>	0	4b/3π	π <i>ab/</i> 2
Partie d'un disque	***	2r sinα/3α	0	αr^2
Segment circulaire	T T	$\frac{4r (\sin \alpha)^3}{3(2\alpha - \sin 2\alpha)}$	0	$\frac{r^2}{2(2\alpha - \sin 2\alpha)}$

Tableau A.7 Formes géométriques et leurs centres de gravité

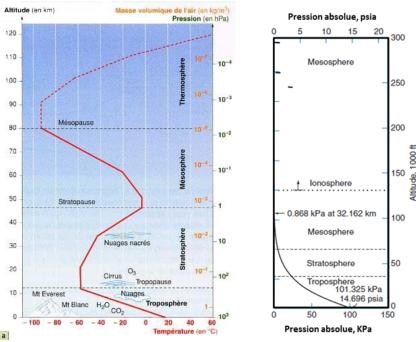


Figure A.8 Schéma représentatif de la variation de la masse volumique et de la pression atmosphérique de l'air en fonction de l'altitude

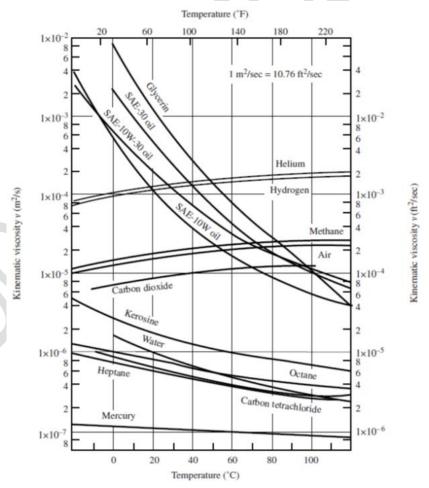
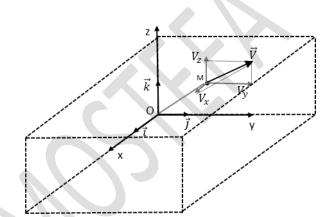


Figure A.9 Viscosité cinématique en fonction de la température et à la pression atmosphérique (D'après R. Fox et T. McDonald, Introduction to Fluid mechanics, 1978)

Annexes 2

Opérateurs mathématiques

En coordonnées cartésiennes


f est une fonction scalaire et \vec{V} est une fonction vectorielle.

• Le gradient

$$\overrightarrow{grad}(f) = \nabla f = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j} + \frac{\partial f}{\partial z} \vec{k}$$

• La divergence

$$div(\vec{V}) = \nabla \cdot \vec{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$$

• Le rotationnel

$$\overrightarrow{rot}(\overrightarrow{V}) = \left(\frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z}\right) \overrightarrow{i} + \left(\frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x}\right) \overrightarrow{j} + \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y}\right) \overrightarrow{k}$$

• Laplacien d'un scalaire :

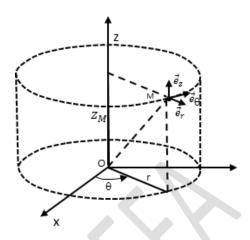
$$\Delta(f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

• Laplacien d'un vecteur :

$$\Delta(\vec{V}) = \Delta(V_x) \vec{i} + \Delta(V_y) \vec{j} + \Delta(V_z) \vec{k}$$

Soit en développant, on obtient :

$$\Delta(\vec{V}) = \nabla^2 \vec{V} = \begin{bmatrix} \Delta(V_x) & = \frac{\partial^2 V_x}{\partial x^2} + \frac{\partial^2 V_x}{\partial y^2} + \frac{\partial^2 V_x}{\partial z^2} \\ \Delta(V_y) & = \frac{\partial^2 V_y}{\partial x^2} + \frac{\partial^2 V_y}{\partial y^2} + \frac{\partial^2 V_y}{\partial z^2} \\ \Delta(V_z) & = \frac{\partial^2 V_z}{\partial x^2} + \frac{\partial^2 V_z}{\partial y^2} + \frac{\partial^2 V_z}{\partial z^2} \end{bmatrix}_{\vec{k}}^{\vec{l}}$$


En Coordonnées cylindriques

• Le gradient

$$\overrightarrow{grad}\left(f\right) = \frac{\partial f}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \vec{e}_\theta + \frac{\partial f}{\partial z} \vec{e}_z$$

• La divergence

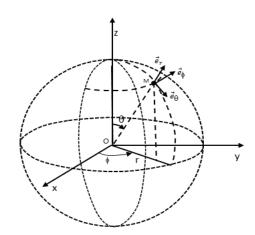
$$div(\vec{V}) = \frac{1}{r} \frac{\partial (rV_r)}{\partial r} + \frac{1}{r} \frac{\partial (V_\theta)}{\partial \theta} + \frac{\partial V_z}{\partial z}$$

• Le rotationnel

$$\overrightarrow{rot}\big(\overrightarrow{V}\big) = \frac{1}{r} \bigg(\frac{\partial V_z}{\partial \theta} - \frac{\partial V_\theta}{\partial z}\bigg) \overrightarrow{e}_r + \bigg(\frac{\partial V_r}{\partial z} - \frac{\partial V_z}{\partial r}\bigg) \overrightarrow{e}_\theta + \frac{1}{r} \bigg(\frac{\partial (rV_\theta)}{\partial r} - \frac{\partial V_r}{\partial \theta}\bigg) \overrightarrow{e}_z$$

• Laplacien d'un scalaire :

$$\Delta(f) = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2}$$


• Laplacien d'un vecteur :

$$\Delta(\vec{V}) = \begin{bmatrix} \Delta(V_r) - \frac{1}{r^2} \left(V_r + 2 \frac{\partial V_{\theta}}{\partial \theta} \right) \\ \Delta(V_{\theta}) - \frac{1}{r^2} \left(V_{\theta} - 2 \frac{\partial V_r}{\partial \theta} \right) \\ \Delta(V_z) \end{bmatrix} \vec{e}_r$$

En Coordonnées sphériques

• Le gradient

$$\overrightarrow{grad}(f) = \frac{\partial f}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \vec{e}_\theta + \frac{1}{r \sin(\theta)} \frac{\partial f}{\partial \phi} \vec{e}_\phi$$

La divergence

$$div(\vec{V}) = \frac{1}{r^2} \frac{\partial (r^2 V_r)}{\partial r} + \frac{1}{r \sin(\theta)} \frac{\partial (\sin(\theta) V_{\theta})}{\partial \theta} + \frac{1}{r \sin(\theta)} \frac{\partial V_{\phi}}{\partial \phi}$$

• Le rotationnel

$$\begin{split} \overrightarrow{rot}(\overrightarrow{V}) &= \frac{1}{r\sin(\theta)} \left(\frac{\partial \left(\sin(\theta) \ V_{\phi}\right)}{\partial \theta} - \frac{\partial V_{\theta}}{\partial \phi} \right) \overrightarrow{e}_{r} + \frac{1}{r} \left(\frac{1}{\sin(\theta)} \frac{\partial V_{r}}{\partial \phi} - \frac{\partial \left(rV_{\phi}\right)}{\partial r} \right) \overrightarrow{e}_{\theta} \\ &+ \frac{1}{r} \left(\frac{\partial \left(rV_{\theta}\right)}{\partial r} - \frac{\partial V_{r}}{\partial \theta} \right) \overrightarrow{e}_{\phi} \end{split}$$

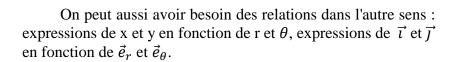
• Laplacien d'un scalaire :

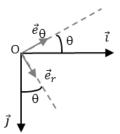
$$\Delta(f) = \frac{1}{r} \frac{\partial}{\partial r^2} (rf) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 f}{\partial \phi^2} + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial f}{\partial \theta} \right)$$

• Laplacien d'un vecteur :

$$\Delta(\vec{V}) = \begin{bmatrix} \Delta(V_r) - \frac{2}{r^2 \sin^2(\theta)} \left(V_r \sin(\theta) + \frac{\partial(\sin(\theta) V_\theta)}{\partial \theta} + \frac{\partial V_\phi}{\partial \phi} \right) \\ \Delta(V_\theta) - \frac{2}{r^2 \sin^2(\theta)} \left(\frac{V_\theta}{2} - \sin^2(\theta) \frac{\partial V_r}{\partial \theta} + \cos(\theta) \frac{\partial V_\phi}{\partial \phi} \right) \\ \Delta(V_\phi) - \frac{2}{r^2 \sin^2(\theta)} \left(\frac{V_\phi}{2} - \sin^2(\theta) \frac{\partial V_r}{\partial \phi} + \cos(\theta) \frac{\partial V_\phi}{\partial \phi} \right) \end{bmatrix}_{\vec{e}}^{\vec{e}_r}$$

Relation entre les différents systèmes de coordonnées


La relation entre les coordonnées cartésiennes et les coordonnées cylindriques :



$$r = \sqrt{x^2 + y^2}$$
 $\tan(\theta) = \frac{y}{x}$

$$\vec{e}_r = \cos(\theta) \,\vec{\iota} + \sin(\theta) \,\vec{j}$$

$$\vec{e}_{\theta} = -\sin(\theta) \vec{i} + \cos(\theta) \vec{j}$$

$$x = r \cos(\theta)$$
 $y = r \sin(\theta)$

$$\vec{\iota} = \cos(\theta) \, \vec{e}_r - \sin(\theta) \, \vec{e}_\theta$$

$$\vec{j} = \sin(\theta) \vec{e}_r + \cos(\theta) \vec{e}_\theta$$

Relations entre vitesse, potentiel et fonction de courant

V est la vitesse, φ le potentiel et ψ est la fonction de courant.

En écoulement bidimensionnel

Coordonnées cartésiennes

$$V_x = \frac{\partial \varphi}{\partial x}$$
 , $V_y = \frac{\partial \varphi}{\partial y}$

$$V_x = \frac{\partial \psi}{\partial y}$$
 , $V_y = -\frac{\partial \psi}{\partial x}$

Coordonnées polaires

$$V_r=rac{\partial \phi}{\partial r}$$
 , $V_ heta=rac{1}{r}rac{\partial \phi}{\partial heta}$

$$V_r=rac{1}{r}rac{\partial \psi}{\partial heta}$$
 , $V_ heta=-rac{\partial \psi}{\partial r}$

En écoulement tridimensionnel

Coordonnées cylindriques

$$V_r=rac{\partial \phi}{\partial r}$$
 , $V_{ heta}=rac{1}{r}rac{\partial \phi}{\partial heta}$, $V_z=rac{\partial \phi}{\partial z}$

Coordonnées sphériques

$$V_r = rac{\partial \phi}{\partial r}$$
 , $V_{ heta} = rac{1}{r \sin(\phi)} rac{\partial \phi}{\partial heta}$, $V_{\phi} = rac{1}{r} rac{\partial \phi}{\partial \phi}$

En écoulement tridimensionnel avec symétrie de révolution

Coordonnées cylindriques z, r, θ

$$V_r = -rac{1}{r}rac{\partial \psi}{\partial z}$$
 , $V_z = rac{1}{r}rac{\partial \psi}{\partial r}$

Coordonnées sphériques r, θ , ϕ

$$V_{ heta} = rac{1}{r^2 sin(\phi)} rac{\partial \psi}{\partial \phi}$$
 , $V_{\phi} = -rac{1}{r \, sin(\phi)} rac{\partial \psi}{\partial r}$

Dérivée partielle et Accélération

Dérivée partielle d'une fonction de plusieurs variables (x, y, z, t)

Coordonnées cartésiennes

$$\frac{d}{dt} = \frac{\partial}{\partial t} + V_x \frac{\partial}{\partial x} + V_y \frac{\partial}{\partial y} + V_z \frac{\partial}{\partial z}$$

Coordonnées cylindriques

$$\frac{d}{dt} = \frac{\partial}{\partial t} + V_r \frac{\partial}{\partial r} + \frac{V_\theta}{r} \frac{\partial}{\partial \theta} + V_z \frac{\partial}{\partial z}$$

Coordonnées sphériques

$$\frac{d}{dt} = \frac{\partial}{\partial t} + V_r \frac{\partial}{\partial r} + \frac{V_\theta}{r} \frac{\partial}{\partial \theta} + \frac{V_\phi}{r \sin(\theta)} \frac{\partial}{\partial \phi}$$

Accélération \vec{a} d'un volume élémentaire de fluide ou particule en système d'Euler

Coordonnées cartésiennes

$$a_x = \frac{\partial V_x}{\partial t} + V_x \frac{\partial V_x}{\partial x} + V_y \frac{\partial V_x}{\partial y} + V_z \frac{\partial V_x}{\partial z}$$

$$a_y = \frac{\partial V_y}{\partial t} + V_x \frac{\partial V_y}{\partial x} + V_y \frac{\partial V_y}{\partial y} + V_z \frac{\partial V_y}{\partial z}$$

$$a_z = \frac{\partial V_z}{\partial t} + V_x \frac{\partial V_z}{\partial x} + V_y \frac{\partial V_z}{\partial y} + V_z \frac{\partial V_z}{\partial z}$$

Coordonnées cylindriques

$$a_r = \frac{\partial V_r}{\partial t} + V_r \frac{\partial V_r}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_r}{\partial \theta} + V_z \frac{\partial V_r}{\partial z} - \frac{V^2_\theta}{r}$$

$$a_{\theta} = \frac{\partial V_{\theta}}{\partial t} + V_{r} \frac{\partial V_{\theta}}{\partial r} + \frac{V_{\theta}}{r} \frac{\partial V_{\theta}}{\partial \theta} + V_{z} \frac{\partial V_{\theta}}{\partial z} + \frac{V_{r} V_{\theta}}{r}$$

$$a_z = \frac{\partial V_z}{\partial t} + V_r \frac{\partial V_z}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_z}{\partial \theta} + V_z \frac{\partial V_z}{\partial z}$$

Coordonnées sphériques

$$a_r = \frac{\partial V_r}{\partial t} + V_r \frac{\partial V_r}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_r}{\partial \theta} + \frac{V_\phi}{r \sin(\theta)} \frac{\partial V_r}{\partial \phi} - \frac{V^2_\theta + V^2_\phi}{r}$$

$$a_{\theta} = \frac{\partial V_{\theta}}{\partial t} + V_{r} \frac{\partial V_{\theta}}{\partial r} + \frac{V_{\theta}}{r} \frac{\partial V_{\theta}}{\partial \theta} + \frac{V_{\phi}}{r \sin(\theta)} \frac{\partial V_{\theta}}{\partial \phi} + \frac{V_{r} V_{\theta} - V_{\phi}^{2} \cot(\theta)}{r}$$

$$a_{\phi} = \frac{\partial V_{\phi}}{\partial t} + V_{r} \frac{\partial V_{\phi}}{\partial r} + \frac{V_{\theta}}{r} \frac{\partial V_{\phi}}{\partial \theta} + \frac{V_{\phi}}{r \sin(\theta)} \frac{\partial V_{\phi}}{\partial \phi} + \frac{V_{r} V_{\phi} + V_{\theta} V_{\phi} \cot(\theta)}{r}$$