Mohamed Boudiaf University - M'sila Faculty of Technology Department of Civil Engineering-Department of Electrical Engineering Module: Probability-Statistics Chapter 5: Conditional probability

Merini Abdelaziz*

December 1, 2024

Contents

1	Intr	roduction]	
2	Conditional Probability			
	2.1	Remarks	:	
	2.2	Theorems on Conditional Probability		
	2.3	Formula of compound probabilities		
3	3 Bayes' formula		4	

1 Introduction

*

Sometimes, partial information is available about a random event. The aim of conditional probabilities is to take this partial information into account when calculating the probability.

2 Conditional Probability

Definition 1. Let A and B be two events in ω such that P(B) > 0. The conditional probability of event A, given that event B has occurred is

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

2.1 Remarks

1) P(A|B) can be interpreted as the fact that Ω is restricted to B and the results of A are restricted to $A \cap B$.

2) If $A \cap B = \Omega$ (A and B are mutually exclusive), A cannot occur if B has already occurred, and therefore

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{P(\phi)}{P(B)} = 0.$$

3) In general $P(B/A) \neq P(A/B)$.

4)
$$P(\Omega/B) = \frac{P(B \cap \Omega)}{P(B)} = 1.$$

Example 1. Let's throw a dice and consider the events $A = \{5\}$ and $B = \{1, 3, 5\}$:

$$P(A) = \frac{1}{6}$$
, $P(B) = \frac{3}{6}$ et $P(A \cap B) = \frac{1}{6}$

• The probability of '5 coming out' knowing that it is 'an odd number' is :

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{6}}{\frac{3}{6}} = \frac{1}{3}$$

• The probability of an 'even number' coming out knowing that it is '5' is

$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{6}}{\frac{3}{6}} = 1$$

Note that $P(B/A) \neq P(A/B)$.

• The probability that '5 does not come out' knowing that it is 'an odd number' is

$$P(\bar{A}/B) = 1 - P(A/B) = 1 - \frac{1}{3} = \frac{2}{3}$$

2.2 Theorems on Conditional Probability

Definition 2. Let n be an integer equal to or greater than 2. To say that n events B_1, B_2, \ldots, B_n form a partition of the Ω universe means that:

- For all $i \in \{1; 2; ...; n\}, B_i \neq \emptyset$.
- $\forall i \neq j : B_i \cap B_j = \emptyset$..
- $B_1 \cup B_2 \cup \ldots \cup B_k = \Omega.$

Theorem 1. (the total probability formula)

Let n events B_1, B_2, \ldots, B_n have non-zero probabilities and form a partition of Ω .

For all event A of Ω we have

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_n)$$

= P(B_1) P(A/B_1) + P(B_2) P(A/B_2) + \dots + P(B_n) P(A/B_n)

Remark. Since $(B \cup \overline{B} = \Omega \text{ and } B \cup \overline{B} = \phi)$, we can apply the total probability formula:

$$P(A) = P(B) \times P(A/B) + P(\bar{B}) \times P(A/\bar{B})$$

2.3 Formula of compound probabilities

theorem 2. Let A, B, C, D be events in a universe *Omega.* a) $P(A \cap B) = P(A)P(B/A)$.

b) $P(A \cap B \cap C) = P(A) \cdot P(B/A)P(C/(B \cap A))$

c) $P(A \cap B \cap C \cap D) = P(A) \cdot P(B/A)P(C/(B \cap A)) \cdot P(D/(A \cap B \cap C)).$ Demonstration. a) According to the definition

$$P(B/A) = \frac{P(A \cap B)}{P(A)} \Rightarrow P(A \cap B) = P(A)P(B/A)$$

b) According to the definition

$$P(C/(B \cap A)) = \frac{P((A \cap B) \cap C)}{P(A \cap B)}$$
$$\implies P(A \cap B \cap C) = P((A \cap B))P(C/(B \cap A)) = P(A) \cdot P(B/A)P(C/(B \cap A))$$

Example 3. Consider an urn containing 4 white balls and 6 red balls. 3 balls are drawn one after the other. What is the probability of obtaining a draw consisting of 3 white balls?

Answer Let B_i be the event: the i-th ball drawn is white. Clearly

$$P(B_{1}) = \frac{4}{10}$$
$$P(B_{2}/B_{1}) = \frac{3}{9}$$
$$(B_{3}/(B_{2} \cap B_{1})) = \frac{2}{8}.$$

By compound probabilities, we obtain

P

$$P(B_1 \cap B_2 \cap B_3) = \frac{4}{10} \times \frac{3}{9} \times \frac{2}{8} = \frac{1}{30}$$

3 Bayes' formula