People's Democratic Republic of Algeria Ministry of Higher Education and Scientific Research Mohamed Boudiaf University of M'sila **Faculty of Sciences Common Trunk of Matter Sciences**

1st year - 2nd semester

Practical works - Physics 2

<u>**3rd Practical Work</u>**</u>

Charging and Discharging of Capacitor

Corrector professor :

Report prepared by :

First name	Family name	Group	Sup- group	Preparation mark	Final mark
				/5,00	/20,00
				/5,00	/20,00
				/5,00	/20,00
				/5,00	/20,00
				/5,00	/20,00
				/5,00	/20,00
				/5,00	/20,00

Academic year : 2023/2024

1-Purpose of the experiment

The aim of this experiment is to study the charge of a capacitor over time as well as discharge and determine its capacity.

2-Notions and preparation work 2-1- Charging of a capacitor Given the setup of the opposite figure init

Given the setup of the opposite figure, initially the capacitor is discharged. We power the circuit «Switch in position 1 ». The capacitor begins to charge. By applying Kirchhoff's law, which says that the sum of voltages in a circuit is zero.

$$\sum_{i} U_{i} = 0 \Rightarrow E = Ri + \frac{1}{c} \int i dt$$

Or the charge « $Q\,$ » of a $\,$ capacitor is linked to the potential difference by the following relation

$$dQ = C dU_C$$

and the courant *i* to the quantity of electricity (or charge) by the relationllowing relation:

$$i = \frac{dQ}{dt}$$

The first relationship is written as a function of the output voltage $U_c \ll a_c follows$:

$$\mathbf{E} = \mathbf{RC}\frac{dU_{C}}{dt} + U_{C} \Rightarrow \frac{\mathbf{E}}{\mathbf{RC}} = \frac{dU_{C}}{dt} + \frac{U_{C}}{\mathbf{RC}}$$

a- Show that under the following initial conditions, t = 0; $U_c = 0$, that the voltage at the terminals capacity is the solution of above differential equation, and is written in the form :

 $U_{C}(t) = E(1 - e^{-t/RC})$ and $i(t) = \frac{E}{R} e^{-t/RC}$

b- Draw the curve of $U_c = f(t)$ and the tangent to the curve for the coordinates of the origin (figure-2).

2-2- Discharge of a capacitor

- **a-** The capacitor being charged, we will disconnect the voltage source leaving the discharge to take place through the resistor R "Switch in position 2".
- **b-** Show that in the initial condition; t = 0; $U_c = E$ that the voltage at the terminals capacitor is the solution of above differential equation (E = 0), and is written in the form :

PW03

3-Practical work

3-1- Charge of a capacitor

Before connecting the capacitor, make sure it is discharged by short-circuiting it.Perform the setup in figure-1 with the switch in position 1 for resistance « $R=3.3M\Omega$ » and a capacitor with capacity « $C=2 \mu F$ ».

Start counting time with a stopwatch simultaneously with powering the circuit with a DC voltage source E=8 V.

Read the voltage of the terminals capacitor each« 05 seconds ». Record the values in the following table :

<i>t</i> (s)	00	05	10	15	20	25	30	35	40	45	50
U_C (Volt)											

a- Plot the voltage $U_c = f(t)$ (figure-4).

b- Plot the tangent to the origin and determine the time constant $\tau = RC$; the abscissa of the point of intersection of this tangent with the load limit voltage. $\tau = \dots$. **c**- From the time constant ensure the value of *C*. $C=\dots \mu F$

3-2- Discharge of a capacitor

In the case of charging the capacitor being charged, we will disconnect the voltage source while letting the discharge take place through the resistance R «Switch in position 2 ». Start counting time with a stopwatch simultaneously when disconnecting power from the

Start counting time with a stopwatch simultaneously when disconnecting power from the circuit.

Read the voltage of the terminals capacitor each« 05 seconds ». Record the values in the following table:

<i>t</i> (s)	00	05	10	15	20	25	30	35	40	45	50
U_C (Volt)											

a-Plot the tension $U_c = f(t)$ (figure-5).

b- Plot the tangent to the discharge point and determine the time constant $\tau = RC$; the abscissa of the point of intersection of this tangent with the load limit voltage. $\tau = \dots$. **c**- From the time constant ensure the value of *C*. $C = \dots \dots \mu F$

Image: state of the state

3-3- Association of capacitors in parallel

Perform the experimental setup in figure-6 for resistance « $R=3.3M\Omega$ » and two capacitor of capacities « $C_1=1 \ \mu F$; $C_2=1 \ \mu F$ ». Start counting time with a stopwatch simultaneously with powering the circuit with a DC voltage source $E=8 \ V.$

Read the voltage of the terminals capacitor each 05 seconds.

Record the values in the following table :

<i>t</i> (s)	00	05	10	15	20	25	30	35	40	45	50
U_C (Volt)											

a-Plot the voltage $U_{c} = f(t)$ (figure-7).

b-Plot the tangent to the discharge point and determine the time constant $\tau = R.C$ the abscissa of the point of intersection of this tangent with the load limit voltage. $\tau = \dots \dots \mu F$. d- Compare this value to the equivalent value for two capacitors in parallel $C_{eq} = C_1 + C_2$

3-4- Association of capacitors in series

Perform the setup in figure-8 for resistance « $R=3.3M\Omega$ » and two capacitors of capacities « $C_1=6 \ \mu F$; $C_2=3 \ \mu F$ » and this after having discharged by short circuit. Start counting time with a stopwatch simultaneously with powering the circuit with a DC voltage source E=8 V.

Read the voltage of the the terminals capacitor each « 05 seconde » Record the values in the following table :

Figure-8

<i>t</i> (s)	00	05	10	15	20	25	30	35	40	45	50
U _C (Volt)											

a- Plot the voltage $U_c = f(t)$ (figure-9).

b- Plot the tangent to the discharge point and determine the time constant $\tau = R.C$ the abscissa of the point of intersection of this tangent with the load limit voltage. $\tau =$ *c*- From the time constant determine the value of *C*. $C = \mu F$. Compare this value to the equivalent value for two capacitors in series:

$$C_{eq} = \frac{C_1 C_2}{(C_1 + C_2)}$$

