People's Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

Mohamed Boudiaf University of M'sila

Faculty of Sciences

Common Trunk of Matter Sciences

Practical works - Physics 2

1st year - 2nd semester

1st Practical Work

Electrical Measuring Instruments

Experiment date :/..../...../

Corrector professor :

Report prepared by :

First name	Family name	Group		Preparation	Final mark
			group	mark	
				/5,00	/20,00
				/5,00	/20,00
				/5,00	/20,00
				/5,00	/20,00
				/5,00	/20,00
				/5,00	/20,00
				/5,00	/20,00

Academic year : 2023/2024

- 1. Purpose : The main objectives of this work are :
 - Raise the characteristics of the different measuring instruments. •
 - Know how to use and handle a measuring instrument. ٠
 - Know how to perform a measurement setup for a given electrical quantity, such as voltage, current • intensity, resistance, etc.

2. Preparation work :

a. Formulate the following definitions :

\triangleright	The electrical voltage (U) is										
	The electric current (intensity I) is										
	The electrical resistance (R) is										
	The electrical capacitance (C) is										
b.	Answer the following questions:										
	What instrument is used to measure the value of	" " U " ?									
\triangleright	What instrument is used to measure the value of	" I " ?									
	What instrument is used to measure the value of	" R " ?									
	What is the relationship between: "U", "I"	and " R " ?									
	What is an electrical multimeter ?										
	What is a cathode ray oscilloscope (CRO) ?										
	What is a low frequency generator (LFG) ?										
3. Elec	ctrical measuring instruments :										
3.1. Ele	ectrical Multimeter (figure 1)										
1	" On/Off " switch	(5) COM terminal (Negative terminal)									
2	Function (and range) selector knob	(6) Positive terminals (depending on function)									
3	Function (Voltmeter, Ammeter or Ohmmeter)	7 Display screen									

(4) Measuring ranges

(8) Dial with needle

Figure 1 :

3.2. Cathode Ray Oscilloscope (CRO) [also known as oscilloscope] (figure 2)

- ① "On/Off" switch
- (2) INPUT[CH1] terminal (X-axis input terminal)
- (3) Connection mode (AC,DC or GND)
- (4) Vertical sensitivity selector (Volts/Div)
- (5) Precise adjustment of vertical sensitivity
- 6 Horizontal sensitivity selector (Time/Div)
- ⑦ Operating mode selector

- (8) Vertical signal positioning control
- (9) Horizontal positioning control
- (1) "Trace signal [–CH1] " switch
- (1) "X-Y Mode " switch
- (12) Adjusting the spot size
- (13) Adjusting the light intensity of the spot
- (14) Fluorescent screen

Figure 2:

3.3. Low Frequency Generator (LFG) (figure 3)

- 1 "On/Off" switch
- 2 Display screen
- 3 Setting the frequency range
- (4) Setting the signal type

- (5) Adjustment of the amplitude (the voltage delivered)
- 6 Frequency adjustment
- ⑦ Output terminal [Black=COM]

Figure 3 :

4. Practical work :

Experiment 1 : Verification of Ohm's law

- Draw the diagram of a simple circuit consisting of a direct current (DC) generator and a resistor , then add an ammeter (or Ampere meter)
- Set up this circuit using an analog multimeter as Ammeter and a digital multimeter as Voltmeter.
- Measure the voltage across resistor R . $U = \dots V$

 $Measurement = \frac{Reading \times Range}{Scale' \ s \ maximum}$

- Using these relationships :

Reading = *Number of divisions* × *Least count of scale*

measure the current in the circuit.

 $I = \dots \dots A$

- Applying Ohm's law, calculate the resistance R from the measured voltage and current values.

$$R_{calc} = \dots \Omega$$

- Use the digital multimeter as an Ohmmeter, and connect it directly to the resistor. Measure the resistance R. $R_{meas} = \dots \Omega$
- Compare the calculated value with the measured value of the resistance. Conclude ?.....

Experiment 2 : Using an oscilloscope to Plot the signal of a DC voltage (a direct current)

Connect a voltmeter (digital multimeter) to the generator terminals (that was used in the previous experiment).

- Measure the voltage delivered : $E = \dots V$ (" E " is the electromotive force)
- Unplug the voltmeter, and connect the generator to the input of channel 1 (CH1) of an oscilloscope.
- Operate the oscilloscope, then set it (choose the light spot, the origin of the times).
- Plot the signal obtained, by putting the oscilloscope in the DC position, then in the AC position.
- Note your remarks and comments.

DC Position AC Position Remarks and results	DC Position	AC Position	Remarks and results
---	-------------	-------------	---------------------

			1						[
			+			-														
			_	_	_			_												
					-		-	_												
Hor	Horiz. Sen. Vert. Sen.			1	Horiz. Sen.					Vert. Sen.										
S_h = ms/div S_v = V/div			:	S_h = ms/div				$S_v = \dots v/div$			v/a	div								

Experiment 3 : Using an oscilloscope to plot the signal of an AC voltage (an alternating current)

 $\label{eq:result} \textbf{Reminder:} if we apply to the oscilloscope input a signal $U(t)$ and we obtain the graph below, we have:$

- Peak-to-peak value : $\mathbf{U}_{\mathrm{pp}} = N_{\mathrm{div}} \times S_{\mathrm{v}}$
- Maximum value (Peak value or Amplitude) : $U_{max} = \frac{U_{pp}}{2}$
- Period : $\mathbf{T} = N_{\text{div}} \times S_{\text{h}}$

Such as : $N_{
m div}$ is the number of divisions

- $S_{
 m v}$ is the vertical sensitivity (Volts/div)
- $S_{\rm h}$ is the horizontal sensitivity (Time/div)

Connect the CH1 input of the oscilloscope to the terminals of a LFG generator

- Apply an alternating voltage, of a frequency $f_{LFG} = 100$ Hz.
- Choose a sinusoidal signal, triangular and then square.
- Measure the applied voltage using a voltmeter. $U_{voltnetre} = U_{eff}$ (the effective voltage).
- Complete the following table :

	Sinusoidal signal	Triangular signal	Square signal				
	$S_{\rm h} = ms/{\rm div} \hspace{0.1 cm} S_{\rm v} = v/{\rm div}$	Sh= ms/div Sv= V/div	Sh= ms/div Sv= V/div				
U _{eff} (V)							
U _{max} (V)							
T (s)							
$\left(\frac{U_{\max}}{U_{\text{eff}}}\right)^2$							

According to the results, what is the relationship between U_{eff} and U_{max} for the three signal modes :

- Sinusoidal signal : $U_{eff} = \dots U_{max}$
- Triangular signal : $U_{eff} = \dots U_{max}$
- Square signal : $U_{eff} = \dots U_{max}$

Experiment 4 : Measurement of phase shift between two signals (voltage-current phase shift of an RC circuit)

Perform the setup of an RC circuit, and apply an alternating voltage of a frequency $f_{LFG} = 200$ Hz.

- Connect the inputs (CH1 and CH2) of the oscilloscope, as shown in the figure 4.
- Complete the table, and check the relationship between the shift phase $\Delta \varphi$, R, C and f?

5. Conclusion

•••