CHAPITRE 1

DÉVELOPPEMENTS LIMITÉS

1.1 Notation de Londau

Définition 1.1.1 Soit $x_0 \in \mathbb{R}$ et f, g deux fonctions définies au voisinage de x_0 . On dit que f est négligeable devant g au voisinage de x_0 si $\lim_{x \to x_0} \frac{f}{g} = 0$.

On note $f \ll g$ (notation de Hardy) ou f = o(g) (notation de Londau)

1. $f = o(1) \Rightarrow \lim_{x \to x_0} f = 0$. Remarque 1.1.2

- 2. fRg n'est pas une relation d'équivalence (car elle est transitive, mais ni réflexive ni symétrique).
- 3. Si $\alpha < \beta \Rightarrow x^{\alpha} = o(x^{\beta})$.

Théorème 1.1.3 Soit $x_0, \lambda \in \mathbb{R}$ et f, g et h trois fonctions définies au voisinage de x_0 alors :

- 1. f = o(h) et $q = o(h) \Rightarrow f + \lambda q = o(h)$.
- 2. $f = o(h) \Rightarrow f.g = o(hg)$.
- 3. f est bornée et g tend vers l'infinie, alors f = o(g).

Définition 1.1.4 Les développements limités consistent grosso modo à trouver une approximation polynomiale à une fonction plus compliquée au voisinage d'un oint choisi. Ils ont de nombreuse application dans d'autre sciences, mais aussi dans les mathématiques elles mêmes en particulier en analyse numérique.

Définition 1.1.5 On dit que $f: I \to \mathbb{R}$, admet un développement limité (DL) d'ordre n au voisinage de $x_0 \in I$ si seulement si il existe un polynôme $P \in \mathbb{R}_{\kappa}[X]$, tel que

$$\forall x \in I : f(x) = P(x - x_0) + o(x - x_0)^n.$$

On appelle $P(x-x_0)$ est la partie régulière du DL et $o(x-x_0)^n$ est le reste d'ordre n.

Par exemple : au voisinage de 0

$$\frac{1}{1-x} = \underbrace{1+x+x^2+x^3}_{\text{partie régulière}} + x^3(\frac{1}{1-x}) \quad \text{et } o(x-0)^3 = x^3(\frac{1}{1-x})$$

0. Responsable de module : M. TOUAHRIA

1.2 Formule de Taylor-Lagrange

Si f une fonction continue sur [a,b] et (n+1) fois dérivable sur]a,b[alors il existe $c\in]a,b[$ tel que

$$f(b) = f(a) + \frac{f'(a)}{1!}(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(b-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}$$

Le réel $R_n = \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}$ s'appelle reste de Lagrange.

Remarque 1.2.1 (Formule de Taylor-Young). Si f une fonction définie et n fois dérivable sur $I =]x_0 - h, x_0 + h[$. Si $f^{n+1}(x_0)$ existe, alors $\forall x \in I$ on a

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(x_0) + \epsilon(x)}{(n+1)!}(x - x_0)^{n+1}$$

 $avec\ \epsilon(x) \longrightarrow 0$ quand $x \longmapsto x_0$. Le réel $R_n = \frac{(x-x_0)^{n+1}}{(n+1)!} (f^{(n+1)}(x_0) + \epsilon(x))$ s'appelle reste de Young.

Cas particulier. Si x = 0.

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(0) + \epsilon(x)}{(n+1)!}x^{n+1}$$

avec $\epsilon(x) \longrightarrow 0$ quand $x \longmapsto x_0$. Cette formule s'appelle la formule de Mac-Laurin

Exemple 1.2.2 On va écrire le DL à l'ordre n de la fonction $\cos: x \mapsto \cos x$ au voisinage de 0.

 $\cos' x = -\sin x$, $\cos'' x = -\cos x$, $\cos^{(3)} x = \sin x$, $\cos^{(4)} x = \cos x$. De manière générale n = 4k, $\cos^{(n)} = \cos x$. n = 4k + 1, $\cos^{(n)} = -\sin x$. n = 4k + 2, $\cos^{(n)} = -\cos x$. n = 4k + 3, $\cos^{(n)} = \sin x$. Donc

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + R_n \text{ où } R_n = \frac{\cos^{n+1}(c)}{(n+1)!} x^{n+1}$$

Le DL à l'ordre 4 $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$,

Remarque 1.2.3 — Si f admet un DL au voisinage de x_0 alors $\lim_{x \to x_0} f(x) = a$.

— Si f n'admet pas une limite au point x_0 alors n'admet pas un DL au voisinage de x_0 .

Propriétés:

- Si f admet un DL au voisinage de x_0 alors ce développement est unique.
- Si f est une fonction paire(impaire) admet un DL au voisinage de x_0 , alors la partie régulière ne contient que les puissance paires (resp. impaires).

En ettet : f admet un DL au voisinage de x_0 , $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n + R_n$ alors $f(-x) = a_0 - a_1 x + a_2 x^2 + ... + (-1)^n a_n x^n + R_n$ * Si f impaire : $f(-x) = -f(x) = -a_0 - a_1 x - a_2 x^2 - ... - a_n x^n - R_n$, alors

- * Si f impaire : $f(-x) = -f(x) = -a_0 a_1x a_2x^2 \dots a_nx^n R_n$, alors $a_0 = a_2 = a_4 = \dots = a_{2k} = 0$, $2k \le n$.
- * Si f paire f(-x) = f(x) alors $a_1 = a_3 = a_5 = \dots = a_{2k+1} = 0$, $2k+1 \le n$.
- 0. Responsable de module : M. TOUAHRIA

1.3 Développement limité de certaines fonctions usuelles à l'origine

La fonction définie par : $f(x) = a^x$, a > 0. On a $a^x = e^{x \ln a}$ et la dérivée n-ème de f est $(a^x)^{(n)} = (\ln a)^n e^{x \ln a}$. Donc le DL de cette fonction est donné par

$$a^{x} = 1 + (\ln a)x + \frac{(\ln a)^{2}}{2!}x^{2} + \dots + \frac{(\ln a)^{n}}{n!}x^{n} + x^{n}\epsilon(x)$$

Pour a = e

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + x^n \epsilon(x)$$

$$Ch(x) = Ch(0) + \frac{Ch'(0)}{1!}x + \frac{Ch''(0)}{2!}x^2 + \dots + \frac{Ch^{(n)}(0)}{n!}x^n + x^n\epsilon(x)$$
$$Ch(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + x^{2n+1}\epsilon(x)$$

$$Sh(x) = Sh(0) + \frac{Sh'(0)}{1!}x + \frac{Sh''(0)}{2!}x^2 + \dots + \frac{Sh^{(n)}(0)}{n!}x^n + x^n\epsilon(x)$$
$$Sh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + x^{2n+2}\epsilon(x)$$

$$\cos(x) = \cos(0) + \frac{\cos'(0)}{1!}x + \frac{\cos''(0)}{2!}x^2 + \dots + \frac{\cos^{(n)}(0)}{n!}x^n + x^n\epsilon(x)$$
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + x^{2n+1}\epsilon(x)$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + x^{2n+2} \epsilon(x)$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + x^n \epsilon(x)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + x^n \epsilon(x)$$

Pour $\alpha \in \mathbb{R}$ et $x \neq -1$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^n + x^n \epsilon(x)$$

Pour $\alpha = \frac{1}{2}$

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \dots + (-1)^{n-1}\frac{1 \cdot 1 \cdot 3 \cdot 5 \dots (2n-3)}{2^n n!}x^n + x^n \epsilon(x)$$

Pour $\alpha = -1$ on retombe sur le DL $\frac{1}{1+x}$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + x^n \epsilon(x)$$

^{0.} Responsable de module : M. TOUAHRIA

1.4 Opération sur les développements limités

1.4.1 La somme

Soient f et g deux fonctions admettent deux DL d'ordre n au voisinage de 0.

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + x^n \epsilon_1(x)$$

et

$$f(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n + x^n \epsilon_2(x)$$

tels que $\lim_{x\to 0} \epsilon_1(x) = 0$, $\lim_{x\to 0} \epsilon_2(x) = 0$ Alors

$$(f+g)(x) = f(x) + g(x) = (a_0 + a_1x + a_2x^2 + \dots + a_nx^n) + (b_0 + b_1x + b_2x^2 + \dots + b_nx^n) + x^n(\epsilon_1(x) + \epsilon_2(x))$$

Donc

$$(f+g)(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots + (a_n + b_n)x^n + x^n(\epsilon_1(x) + \epsilon_2(x))$$

et
$$\lim_{x\to 0} (\epsilon_1(x) + \epsilon_2(x)) = 0$$

Par exemple : Si $f(x) = e^x$ et $g(x) = e^{-x}$ alors

$$e^{x} + e^{-x} = 2 + 2\frac{x^{2}}{2!} + 2\frac{x^{4}}{4!} + \dots + 2\frac{x^{2k}}{(2k)!} + x^{2k}\epsilon(x) \quad 2k \le n$$

D'où

$$\frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2k}}{(2k)!} + x^{2k} \epsilon(x) = Ch(x) \quad 2k \le n$$

1.4.2 Le produit

Sous les mêmes conditions ci-dessus, on a :

$$(f.g)(x) = f(x).g(x) = (A(x) + x^n \epsilon_1(x)) + (B(x) + x^n \epsilon_2(x))$$

où
$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
 et $B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n$ Alors

$$(f.g)(x) = A(x).B(x) + x^{n}\epsilon_{1}(x).B(x) + x^{n}\epsilon_{2}(x).B(x) + x^{2n}\epsilon_{1}(x).\epsilon_{2}(x)$$

Donc le DL de f.g au voisinage de 0 est le produit des parties régulières des deux fonctions.

<u>Par exemple</u>: Soit la fonction $H(x) = e^x \cdot \sin(x)$. On cherche le DL à l'ordre 6 au voisinage de zéro.

$$H(x) = e^x \cdot \sin(x) = (1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots) \cdot (x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots)$$

$$H(x) = x + x^2 + \frac{x^3}{3} - \frac{x^5}{33} + \frac{x^6}{18} + R_6$$

Exercice: Même question pour la fonction définie par : $f(x) = \frac{\ln(1+x)}{1+x}$ au voisinage de zéro.

^{0.} Responsable de module : M. TOUAHRIA

1.4.3 La division

Sous les mêmes conditions ci-dessus telles que $b_0 \neq 0$, on fait la division euclidienne suivant les puissances croissantes jusqu'au l'ordre n.:

$$A(x) = B(x).Q(x) + x^{n+1}R(x)$$
, avec $deg(Q) \le n$.

Alors que Q est la partie polynomiale du DL à l'ordre n de $\frac{f}{q}$

<u>Par exemple</u>: Le DL à l'ordre 2 de $\frac{2+x+x^3}{1+x^2}$. On pose $A(x)=2+x+x^3$ et $B(x)=1+x^2$, alors $Q(x)=2+x-2x^2$, R(x)=1+2x par conséquent

$$A(x) = (1+x^2)(2+x-2x^2) + x^3(1+2x)$$

Exemple 1.4.1 Le DL à l'ordre 5 de la fonction $th: x \mapsto th(x)$

$$th(x) = \frac{sh(x)}{ch(x)} = \frac{x + \frac{x^3}{3!} + \frac{x^5}{5!} + x^5\epsilon(x)}{1 + \frac{x^2}{2!} + \frac{x^4}{4!} + x^5\epsilon(x)} = x - \frac{x^3}{3} + \frac{2x^5}{15} + \frac{x^6 \cdot (\frac{x}{180} + \frac{x^3}{180})}{1 + \frac{x^2}{2!} + \frac{x^4}{4!}}$$

1.4.4 Composition

Proposition 1.4.2 Si g(0) = 0, la fonction $f \circ g$ admet au voisinage de 0 un DL d'ordre n en ne prenant que les termes de degré inférieur ou égal à n. du polynôme A(B(x)).

Par exemple Le DL d'ordre 2 au voisinage de 0 de la fonction $x \mapsto e^{\sin x}$. On a

$$\sin x = x + x^2 \epsilon(x)$$
 et $e^x = 1 + x + \frac{x^2}{2} + \epsilon_2(x)$

Il en résult $e^{\sin x} = 1 + x + \frac{x^2}{2} + \epsilon(x)$ avec $\lim_{x \to 0} \epsilon(x) = 0$.

1.4.5 DL des fonctions en un point quelconque

La fonction f admet un DL au voisinage d'un point x_0 si et seulement si la fonction $t \mapsto f(t+x_0)$, admet un DL au voisinage de 0. Souvent on ramène donc le problème en 0 en faisant le changement de variables $t=x-x_0$.

<u>Par exemple</u> DL de $f(x) = e^x$ en 1. On pose t = x - 1. Si x est proche de 1 alors t est proche de 0. Nous allons nous ramener à un DL de e^t on 0.

$$e^{t} = 1 + t + \frac{t^{2}}{2!} + \frac{t^{3}}{3!} + \dots + \frac{t^{n}}{n!} + x^{n} \epsilon(t)$$

$$e^{x} = e(1 + (x - 1) + \frac{(x - 1)^{2}}{2!} + \frac{(x - 1)^{3}}{3!} + \dots + \frac{(x - 1)^{n}}{n!} + x^{n} \epsilon(x - 1)), \quad \lim_{x \to 1} \epsilon(x - 1) = 0.$$

Exercice:

- 1. Calculer le DL en 0 de $x \mapsto chx$ par la formule de Taylor-Young. Retrouver ce DL en utilisant que $chx = \frac{e^x + e^{-x}}{2}$.
- 2. Écrire le DL en 0 à l'ordre 3 de $\sqrt[2]{1+x}$.
- 3. Justifier l'expression du DL de $\frac{1}{1-x}$ à l'aide de l'unicité des DL de la somme d'une suite géométrique.

^{0.} Responsable de module : M. TOUAHRIA

1.4.6 Développement limité en $+\infty$

Soit f une fonction définie sur un intervalle $I =]x_0, +\infty[$. On dit que f admet un DL en $+\infty$ l'ordre n s'il existe des réels $a_0, a_1, ..., a_n$ tels que

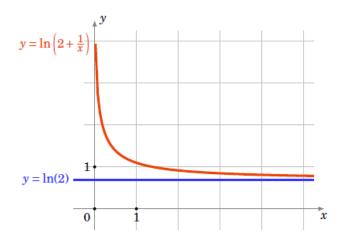
$$f(x) = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \dots + \frac{a_n}{x^n} + \frac{1}{x^n} \epsilon(\frac{1}{x}),$$

où
$$\lim_{x \to +\infty} \epsilon(\frac{1}{x}) = 0$$

Exemple 1.4.3 Soit la fonction définie par : $f: x \mapsto \ln(2 + \frac{1}{x})$

$$f(x) = \ln 2 + \ln(1 + \frac{1}{2x}) = \ln 2 + \frac{1}{2x} - \frac{1}{8x^2} + \frac{1}{24x^3} + \dots + \frac{1}{n2^n x^n} + \frac{1}{x^n} \epsilon(\frac{1}{x})$$

Cela nous permet d'avoir une idée assez précise du comportement de f au voisinage de $+\infty$. Lorsque $x \to +\infty$ alors $x \to \ln 2$. Et le second terme est $+\frac{1}{2}x$ donc est positif, cela signifie que la fonction f(x) tend vers $\ln 2$ tout en restant au-dessus de $\ln 2$.



Remarque 1.4.4 1. Un DL en $+\infty$ s'appelle aussi un développement asymptotique.

- 2. dire que la fonction $x \mapsto f(x)$ admet un DL en $+\infty$ à l'ordre n est équivalent à $x \mapsto f(\frac{1}{x})$ admet un DL en 0^+ à l'ordre n.
- 3. On peut définir de même ce qu'est un DL en $-\infty$

1.5 Applications

1. Les DL sont très efficaces pour calculer des limites ayant des formes indéterminées! Il suffit juste de remarquer que si

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots \text{ alors } \lim_{x \to x_0} f(x) = a_0.$$

Exemple:

$$\lim_{x \to 0} \frac{\ln(1+x) - \tan x + \frac{1}{2}\sin^2 x}{3x^2 \sin^2 x}$$

0. Responsable de module : M. TOUAHRIA

On. En 0

$$f(x) = \ln(1+x) - \tan x + \frac{1}{2}\sin^2 x = \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + x^4\epsilon(x)\right) - \left(x - \frac{x^3}{3} + x^4\epsilon(x)\right) + \frac{1}{2}\left(x - \frac{x^3}{6} + x^4\epsilon(x)\right)^2$$

et

$$g(x) = 3x^2 \sin^2 x = 3x^2 (x + x\epsilon(x))^2 = 3x^4 + x^4 \epsilon(x)$$

Ainsi

$$\frac{f(x)}{g(x)} = \frac{-\frac{5}{12}x^4 + x^4\epsilon(x)}{3x^4 + x^4\epsilon(x)}$$

Donc

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = -\frac{5}{36}$$

Note: en calculant le DL à un ordre inférieur (2 par exemple), on n'aurait pas pu conclure, car on aurait obtenu $\frac{f(x)}{g(x)} = \frac{x^2 \epsilon(x)}{x^2 \epsilon(x)}$, ce qui ne lève pas l'indétermination. De façon générale, on calcule les DL à l'ordre le plus bas possible, et si cela ne suffit pas, on augmente progressivement l'ordre (donc la précision de l'approximation).

2. Supposons une fonction $f: I \to \mathbb{R}$ admettant une DL en $x_0:$ alors

$$f(x) = a_0 + a_1(x - x_0) + a_k(x - x_0)^k + (x - x_0)^k \epsilon(x)$$

où k est le plus petit entier supérieur où égale à 2 tel que le coefficient a_k soit non nul. Alors l'équation de la tangente à la courbe de f en x_0 est $y = a_0 + a_1(x - x_0)$ et la position de la courbe par rapport à la tangente pour x proche de x_0 est donnée par le signe f(x) - y c'est-à-dire le signe de $a_k(x - x_0)^k$.

Exemple:

Soit la fonction définie par : $f(x) = x^4 - 2x^3 + 1$.

— Déterminons la tangente en $\frac{1}{2}$ du graphe de f et précisons la position du graphe par rapport à la tangente.

On a
$$f''(\frac{1}{2}) = -3 \neq 0$$
 et $k = 2$

On en déduit le DL de f en $\frac{1}{2}$ par la formule de Taylor-Young

$$f(x) = f(\frac{1}{2}) + f'(\frac{1}{2})(x - \frac{1}{2}) + f''(\frac{1}{2})(x - \frac{1}{2})^2 + (x - \frac{1}{2})^2 \epsilon(x)$$

Donc le tangente en $\frac{1}{2}$ est $y = \frac{13}{16} - (x - \frac{1}{2})$ et le graphe de f est en dessous de la tangente car $f(x) - y = (-\frac{3}{2} + \epsilon(x))(x - \frac{1}{2})^2$ est négatif autour de $x = \frac{1}{2}$

Déterminons les points d'inflexion.

Les points d'inflexion sont à chercher parmi les solutions de f''(x) = 0. Donc parmi x = 0 et x = 1.

* Le DL en 0 : est $f(x) = 1 - 2x^3 + x^4$ (il s'agit juste d'écrire les monômes par degrés croissants!). L'équation de la tangente au point d'abscisse 0 est donc y=1(une tangente horizontale). Comme $-3x^2$ change de signe en 0 alors 0 est un point d'inflexion de f.

* Le DL en x = 1: est $f(x) = -2(x-1) + 2(x-1)^3 + (x-1)^4$. L'équation de la tangente au point d'abscisse 1 est donc y = -2(x-1). Comme $2(x-1)^3$ change de signe en 1, 1 est aussi un point d'inflexion de f.

^{0.} Responsable de module : M. TOUAHRIA

UNIVERSITÉ MOHAMED BOUDIAF M'SILA

Faculté de Mathématiques et d'Informatique

Département de l'Informatique

Année universitaire : 2022/2023

1-ère année Informatique - Semestre 2 Module Analyse 02- Série :01

Exercice 01:

Calculer les DL d'ordre 4 au voisinage de de $x_0=0$ des fonctions suivantes :

1.

$$f_1(x) = \ln(1+x), \quad f_2(x) = e^x, \quad f_3(x) = \cos x, \quad f_4(x) = \sin x, \quad f_5(x) = \tan x,$$

$$f_6(x) = x^5 + x^4 + x^3 + x^2 + x + 1, \quad f_7(x) = \frac{1+x}{2+x}, \quad f_8(x) = \frac{1}{\cos x}$$

2. Déduire les DL d'ordre 4 au voisinage de $x_0 = 0$ des fonctions suivantes :

$$g_1(x) = \cos x + \sin x$$
, $g_2(x) = e^x \cdot \tan x$, $g_3(x) = \frac{\ln(1+x)}{x}$, $g_4(x) = e^{\cos x}$
 $g_5(x) = \sin(\ln(1+x))$, $g_6(x) = \sqrt{\cos x}$

Exercice 02:

En utilisant les DL calculer les limies suivantes :

$$\lim_{x \to 0} \frac{\sin x}{x}, \quad \lim_{x \to 0} \frac{1 - \cos x}{x^2}, \quad \lim_{x \to 0} \frac{\sin(\cos(x) - 1)}{x},$$

$$\lim_{x \to 0} \frac{1 - x \sin x - \cos x}{(e^x - 1)^2}, \quad \lim_{x \to 0} \frac{1}{(\sin x)^4} \left[\sin \frac{x}{1 - x} - \frac{\sin x}{1 - \sin x}\right]$$

Exercice 03:

En utilisant la division euclidienne calculer les DL d'ordre 3 au voisinage de $x_0=0$ des fonctions suivantes :

$$f_1(x) = \frac{\ln(1+x)}{\cos x}, \quad f_2(x) = \frac{e^x}{1+x-x^2}$$

Exercice 04:

Calculer les DL d'ordre 3 au voisinage de de $x_0 = 0$ des fonctions suivantes :

$$f_1(x) = Sh(x), \quad f_2(x) = \arcsin x, \quad f_3(x) = th(x), \quad f_4(x) = e^{\arcsin x}$$

Exercice 05 : Calculer les développements limités suivants :

1)
$$\frac{1}{x}$$
 à l'ordre 3 en 2, 2) $\ln x$ à l'ordre 3 en 2

3)
$$\cos x$$
 à l'ordre 3 en $\frac{\pi}{3}$, 4) \sqrt{x} à l'ordre 3 en 2

Exercice 06:

Calculer les limites

$$\lim_{x \to +\infty} \left(\frac{\ln(1+x)}{\ln(x)}\right)^x, \quad \lim_{x \to +\infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2}\right)^x$$

0. Responsable de module : M. TOUAHRIA