FIRST PART: DEMENSIONAL ANALYSIS

EXERCISE 01:

Study the homogeneity of the following equations:

✓ $C = P + \rho$. g. z In which P represents pressure, p stands for density, z denotes height, and C remains a constant.

$$\checkmark 2(x_0 - vt) = gt^2 \sin(\theta)$$

$$\checkmark v = -\frac{f}{R}gt + \sqrt{2Lg\sin(\theta)}$$

Where x_0 is the initial position, v is velocity, L is distance, f and Rn are reaction forces, θ is an angle, and t and T are times.

EXERCISE 02:

Consider the physical quantities s, v, a and t with dimensions [s] = L, $[v] = LT^{-1}$, $[a] = LT^{2}$, and [t] = T. Check whether each of the following equations is dimensionally consistent:

 $s = vt + 0.5 a t^{2} s = vt^{2} + 0.5 a tv = sin (at^{2}/s)$

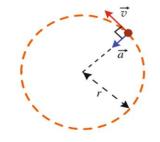
EXERCISE 03:

Determine the dimension of the variable 'X' that achieve dimensional consistency for the equation, given that 'h' represents height, "v" is the velocity and 'm' represents mass.

$$\frac{1}{2}m\,v^2 = m\,X\,h$$

EXERCISE 04:

A particle moves with a constant velocity v in a circular orbit of a radius r as shown in the facing figure. The magnitude of its acceleration is proportional to some power of $r(r^n)$ and some power of $v(v^m)$. Determine both powers n and m of r and v respectively.



SECOND PART: VECTORS

EXERCISE 01:

Consider the following points: A (1, 1, 1), B (2, -1, 0), and C (0, 2, 2).

- 1- Represent these points in a Cartesian coordinates system (O, xyz)
- 2- Determine the components of the vectors \overrightarrow{AB} and \overrightarrow{BC}
- *3-* Calculate the angle M between the two vectors \overrightarrow{AB} and \overrightarrow{BC} .

EXERCISE 02:

Using the graphical and analytical methods, find the sum and subtraction of the following vectors

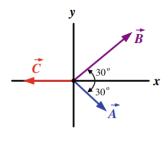
$$\overrightarrow{V_1} = 3\overrightarrow{\iota} + 3\overrightarrow{j} \overrightarrow{V_2} = 2\overrightarrow{\iota} + 2\overrightarrow{j}$$

Find the angle formed by $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$

Calculate the dot (scalar) product and the cross (vector) product of $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$

EXERCISE 03:

Vector \vec{A} has x and y components of 4 cm and -5 cm, respectively. Vector \vec{B} has x and y components of -2 cm and 1 cm, respectively. If $\vec{A} - \vec{B} + 3\vec{C} = \vec{0}$, then what are the components of the vector \vec{C} . Three vectors are oriented as shown in Figure below, where A = 10, B = 20, and C = 15 units. Find: (a) the x and y components of the resultant vector $\vec{D} = \vec{A} + \vec{B} + \vec{C}$, (b) the magnitude and direction of the resultant vector \vec{D} .



EXERCISE 04:

In a direct orthonormal coordinate system $\Re(\vec{i}, \vec{j}, \vec{k})$ we consider the following vectors:

$$\overrightarrow{V_1} = 3\overrightarrow{i} + 3\overrightarrow{j}\overrightarrow{V_2} = \overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k}\overrightarrow{V_3} = \overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}\overrightarrow{V_4} = 2\overrightarrow{i} - \overline{k}$$

- ✓ *Represent the vectors* $\overrightarrow{V_1}$ *and* $\overrightarrow{V_2}$.
- ✓ Calculate the magnitude of $\vec{V_1}$ and $\vec{V_2}$, the dot product $\vec{V_1}$. $\vec{V_2}$ and the cross product $\vec{V_1} \land \vec{V_2}$.
- ✓ Calculate the angle θ formed by the vectors $\vec{V_1}$ and $\vec{V_2}$.
- ✓ Prove that the vector $\overrightarrow{V_3}$ is perpendicular to the plane (P) formed by vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$.
- ✓ Prove that the vector $\overrightarrow{V_4}$ belongs to the plane (P).
- ✓ Determine the unit vector \vec{U} carried by the vector $\vec{V_1}$ and $\vec{V_2}$.