
Component-Based Development 1 Dr Raouf Lakehal-Ayat

Component-Based Development

1. Introduction

High-level design (HLD) is a critical phase in the system design process, wherein the

overall system architecture and design are formulated. HLD provides a top-down view of the

system, focusing on the architecture and the relationships between main components

without delving into intricate details. It's akin to looking at a city map to understand the main

roads and landmarks without examining every single building or street.

When considering computer software, the high-level design focuses on the high-level

structuring of software components, it's concerned with :

Layers: The system can be divided into layers, each of which provides services to the layer

above it, for example, in a typical layered architecture of an OS, you might have a hardware

layer at the bottom, followed by the kernel, then system services, middleware, and finally

application software .

Modules/Components: Modular architectures break down software into separate functional

units (modules or components) that have well-defined interfaces .

Patterns: Architectural patterns are tried-and-true solutions for certain types of problems.

Examples include the Model-View-Controller (MVC) pattern, the Observer pattern, or the

Publish-Subscribe pattern .

Data Flow: This is about how data moves through the system, which components

produce/consume data, and how they interact.

2. Definition of the Component-based development

Component-based development (CBD) is a software development approach at the High-

level design phase of a computer project that emphasizes the construction of software

systems by composing them from individual and reusable Modules/Components.

A component is a self-contained and encapsulate specific functionality, making them easier

to develop, maintain, and reuse across different parts of a software application or even in

different applications.

The CBD is particularly useful for teamwork and facilitates the industrialization of software

development, it ensures better readability and maintenance of the software, developers,

instead of creating a monolithic executable, make use of reusable building blocks.

Component-Based Development 2 Dr Raouf Lakehal-Ayat

 Is CBD equivalent to OOP

No! despite sharing similarities with Object-Oriented Programming (OOP), as it involves a

modular approach, but the modularity in CBD is not within the code itself, but at the

general architecture level of the software.

3. Component-based development through history

Component-based development (CBD) has evolved over several decades, and it doesn't

have a specific starting point. Instead, it's the result of ongoing advancements in software

engineering practices and technologies. However, there are some key milestones and

developments in the history of CBD:

1. Early Modular Programming (1950s-1960s): The concept of modularity in software

development dates back to the early days of programming. Early pioneers in computing,

such as John von Neumann and Grace Hopper, promoted the idea of breaking down

software into smaller, reusable modules.

2. Software Libraries (1970s): In the 1970s, the use of software libraries and reusable code

became more common. Programmers started to develop and use libraries of functions and

routines that could be incorporated into various programs.

3. Object-Oriented Programming (1980s): Object-oriented programming (OOP) emerged as

a major paradigm for software development in the 1980s. OOP promotes the use of objects

and classes, which can be considered as components with encapsulated data and behavior.

4. Component Object Model (COM) and Distributed Component Object Model (DCOM)

(1990s): Microsoft introduced COM and DCOM, which provided a framework for creating

and using software components. These technologies allowed developers to build and reuse

components in Windows applications The Component Object Model (COM) is a specification

created by Microsoft, which describes how an executable program can be packaged into an

object by a programmer, one of the goals of COM is to facilitate the creation of programs by

assembling components, where each component can be updated or improved

independently of the others. COM components are used for building Windows applications,

both desktop and server, and they can also be employed in web-based applications through

technologies like ActiveX, Programs that adhere to the COM specification can be reused in

multiple programming languages, such as C, Visual Basic, Java, Delphi, FoxPro, or COBOL.

Component-Based Development 3 Dr Raouf Lakehal-Ayat

 5. JavaBeans and Enterprise JavaBeans (EJB) (Late 1990s): In the Java ecosystem,

JavaBeans and EJBs were introduced to promote component-based development. These

technologies facilitated the creation of reusable Java components. JavaBeans are used in

various Java applications, ranging from standalone desktop apps to web applications. EJB

is primarily used in enterprise-level applications where distributed, scalable, and

transactional components are required.

 Are COM and JB/EJB competing technologies?

The Component Object Model (COM) and JavaBeans/Enterprise JavaBeans (EJB) are not

directly competing technologies, as they serve different purposes and are typically used in

different ecosystems. However, they can sometimes be used in similar contexts, so it's

essential to understand their differences and use cases. While these technologies aren't

direct competitors, there are scenarios where you might have to choose between them,

especially in mixed-technology environments or when deciding which technology to use in

specific application domains. For example, if you are building a Windows-specific desktop

application, COM might be a more suitable choice. However, if you are developing a

platform-independent, enterprise-level application, EJB or other Java-based technologies

would be a better fit. JavaBeans can be used for component development within Java

applications across various domains, including desktop and web applications.

6. .NET Framework (Early 2000s): Microsoft's .NET Framework extended the concept of

component-based development, with a focus on building applications using reusable

components. It included the Common Language Runtime (CLR) and the Assembly concept

for managing and deploying components.

7. Component-Based Web Development (2000s-Present): Component-Based Web

Development is an approach to building web applications that emphasizes the creation and

organization of reusable, self-contained components. These components can represent

various parts of a web application's user interface (UI), functionality, or even the data itself.

This approach aims to improve code modularity, maintainability, and reusability, making it

easier to develop and maintain complex web applications, technologies like Servlets, Java

Server Pages (JSP), and later, various JavaScript frameworks and libraries, have promoted

component-based development for building web applications.

Component-Based Development 4 Dr Raouf Lakehal-Ayat

4. Advantages of Component-Based Development (CBD)

Reusability : Components are designed to be reusable, which means the same component

can be used in multiple applications. This reduces the need to create software functions

from scratch each time.

Reduced Time-to-Market: Since components are pre-built and reusable, it can reduce

development time significantly. This allows for faster deployment of applications .

Scalability : It's easier to scale applications developed using CBD. To add a new feature or

functionality, one can integrate a new component without heavily modifying the existing

system .

Maintainability : Modular nature of CBD makes it easier to maintain and update. If a

component has an issue, it can be replaced or updated without affecting the entire system.

Cost-Effective: Over time, as more components are developed and stored in repositories,

the cost of developing new applications decreases since there's less need to develop

features from scratch .

Flexibility and Adaptability: Applications can be easily adapted to changing requirements

by replacing or adding components .

Reliability: Reusing tested and proven components can increase the reliability of the

application .

Standardization: CBD often promotes the use of standard interfaces and protocols, leading

to consistent and standardized application architectures .

5. Challenges of Component-Based Development (CBD)

Integration Issues: Different components, especially those sourced from different vendors,

might have integration issues due to differences in interfaces or data formats .

Quality Assurance: Ensuring the quality of each component is essential. A faulty

component can compromise the entire system .

Component Management: Managing multiple versions of components and their

dependencies can become complex .

Component-Based Development 5 Dr Raouf Lakehal-Ayat

Hidden Implementation: The black-box nature of components can sometimes be a

hindrance when there's a need to deeply understand or modify a component's internal

behavior .

Vendor Lock-in: Relying heavily on components from a particular vendor can lead to being

locked into their ecosystem, which can pose problems in terms of cost, future updates, or

flexibility.

Performance Overhead: There might be some performance overhead due to the general-

purpose nature of reusable components. A component designed to handle multiple

scenarios might not be as optimized as one designed for a specific task .

Initial Costs: While CBD can be cost-effective in the long run, initial investments in

developing or acquiring components can be high .

Complexity: Building applications by integrating multiple components can sometimes

introduce complexity, especially when components have overlapping functionalities .

Lack of Suitable Components: Sometimes, there might not be a pre-existing component

that fits a specific need, requiring custom development .

In conclusion, while Component-Based Development offers numerous advantages that can

streamline and optimize the software development process, it also comes with its set of

challenges that developers and organizations need to be mindful of. Proper management,

a thorough understanding of the components in use, and a well-defined strategy can help in

leveraging the strengths of CBD while mitigating its challenges.

6. principles of component-based development

Key features and principles of component-based development include :

1 .Reusability: Components are designed to be reusable, so they can be employed in

various parts of an application or across different projects, reducing redundancy and saving

development time .

2 .Encapsulation: Components encapsulate their functionality, meaning that their internal

details are hidden from the rest of the application. This promotes modularity and helps

prevent unintended interference with a component's operation .

Component-Based Development 6 Dr Raouf Lakehal-Ayat

3 .Interoperability: Components are designed to work well with other components, allowing

them to communicate and interact effectively. This is often achieved through well-defined

interfaces .

4 .Maintenance and Updates: Components can be maintained and updated independently,

which simplifies the process of fixing bugs or enhancing functionality.

5 .Scalability: As an application grows, developers can add new components or replace

existing ones without affecting the entire system .

6 .Standardization: Component-based development often relies on standardized

component models or frameworks, which help developers follow best practices and create

components that work seamlessly together .

7 .Testing and Verification: Components can be tested in isolation, which simplifies the

debugging process and ensures that the component behaves as expected.

7. Component life cycle

The Component Lifecycle is a cyclic process. Once maintenance is done,

components might circle back to the design phase if significant overhauls or new features

are needed. Understanding this lifecycle is key to managing and deploying robust,

reusable software components effectively.

1. Design & Specification: This phase involves defining what the component will do and its

interfaces. It lays out the blueprint for how the component will function and interact with

other components .

2 .Implementation :In this stage, the actual code for the component is written based on the

design specifications. It's the process of turning the component's blueprint into a functional

piece of software .

3 .Testing: The component undergoes various tests to ensure it works as intended. This

includes checking for bugs, compatibility issues, and ensuring it meets all specified

requirements .

4 .Deployment : Once tested, the component is made available for use in applications. This

could involve placing it in a component library or repository, or directly integrating it into a

software system .

Component-Based Development 7 Dr Raouf Lakehal-Ayat

5 .Maintenance : Over time, the component might need updates for bug fixes,

enhancements, or to meet new requirements. Maintenance ensures the component

remains functional, relevant, and up-to-date.

